Hod Lipson: Robots that are "self-aware"

117,286 views ・ 2007-10-13

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Tatjana Jevdjic
00:25
So, where are the robots?
0
25000
2000
Pa, gde su roboti?
00:27
We've been told for 40 years already that they're coming soon.
1
27000
3000
Već 40 godina nam govore da roboti dolaze uskoro.
00:30
Very soon they'll be doing everything for us.
2
30000
3000
Uskoro će raditi sve za nas.
00:33
They'll be cooking, cleaning, buying things, shopping, building. But they aren't here.
3
33000
5000
Kuvaće, čistiće, ići u kupovinu, gradiće. Ali nisu ovde.
00:38
Meanwhile, we have illegal immigrants doing all the work,
4
38000
4000
Sa druge strane, ilegalni imigranti rade sav posao,
00:42
but we don't have any robots.
5
42000
2000
ali nemamo robote.
00:44
So what can we do about that? What can we say?
6
44000
4000
Šta možemo uraditi povodom toga? Šta možemo reći?
00:48
So I want to give a little bit of a different perspective
7
48000
4000
Želim da pružim drugačiju perspektivu
00:52
of how we can perhaps look at these things in a little bit of a different way.
8
52000
6000
kako bismo mogli da gledamo na ove stvari na drugačiji način.
00:58
And this is an x-ray picture
9
58000
2000
Ovo je rendgenski snimak
01:00
of a real beetle, and a Swiss watch, back from '88. You look at that --
10
60000
5000
prave bube i švajcarskog sata, iz 1988. Pogledajte to -
01:05
what was true then is certainly true today.
11
65000
2000
ono što je tad bilo istina i danas je.
01:07
We can still make the pieces. We can make the right pieces.
12
67000
3000
Još uvek možemo proizvesti delove. Prave delove.
01:10
We can make the circuitry of the right computational power,
13
70000
3000
Možemo napraviti kola prave računarske snage,
01:13
but we can't actually put them together to make something
14
73000
3000
ali ne možemo ih zapravo spojiti da bismo napravili nešto
01:16
that will actually work and be as adaptive as these systems.
15
76000
5000
što će zaista raditi i biti prilagodljivo poput ovih sistema.
01:21
So let's try to look at it from a different perspective.
16
81000
2000
Hajde da probamo da gledamo iz drugačije perspektive.
01:23
Let's summon the best designer, the mother of all designers.
17
83000
4000
Hajde da pozovemo najboljeg dizajnera, majku svih dizajnera.
01:27
Let's see what evolution can do for us.
18
87000
3000
Hajde da vidimo šta evolucija može da uradi za nas.
01:30
So we threw in -- we created a primordial soup
19
90000
4000
Napravili smo prvobitnu supu
01:34
with lots of pieces of robots -- with bars, with motors, with neurons.
20
94000
4000
sa puno delova robota - sa polugama, motorima i neuronima.
01:38
Put them all together, and put all this under kind of natural selection,
21
98000
4000
Sastavite ih zajedno i sve ovo prepustite mutaciji kao prirodnoj selekciji
01:42
under mutation, and rewarded things for how well they can move forward.
22
102000
4000
i nagradite stvari na osnovu toga koliko brzo se kreću unapred.
01:46
A very simple task, and it's interesting to see what kind of things came out of that.
23
106000
6000
Jednostavan zadatak i zanimljivo je videti šta je sve nastalo iz toga.
01:52
So if you look, you can see a lot of different machines
24
112000
3000
Ako pogledate, možete videti da je dosta različitih mašina
01:55
come out of this. They all move around.
25
115000
2000
nastalo iz ovoga. Sve se kreću.
01:57
They all crawl in different ways, and you can see on the right,
26
117000
4000
Pužu na različite načine i sa desne strane možete videti
02:01
that we actually made a couple of these things,
27
121000
2000
da smo zapravo napravili par ovih stvari
02:03
and they work in reality. These are not very fantastic robots,
28
123000
3000
i da rade u stvarnosti. Ovo nisu naročito fantastični roboti,
02:06
but they evolved to do exactly what we reward them for:
29
126000
4000
ali su se razvili da rade tačno onako kako ih nagrađujemo:
02:10
for moving forward. So that was all done in simulation,
30
130000
3000
za kretanje unapred. To je urađeno u simulaciji,
02:13
but we can also do that on a real machine.
31
133000
2000
ali možemo to uraditi i na pravoj mašini.
02:15
Here's a physical robot that we actually
32
135000
5000
Ovo je fizički robot kod kog zapravo
02:20
have a population of brains,
33
140000
3000
imamo populaciju mozgova,
02:23
competing, or evolving on the machine.
34
143000
2000
koji se takmiče ili se razvijaju na mašini.
02:25
It's like a rodeo show. They all get a ride on the machine,
35
145000
3000
To je kao rodeo šou. Svi mogu da jašu na mašini
02:28
and they get rewarded for how fast or how far
36
148000
3000
i nagrađuju se za to koliko brzo ili daleko
02:31
they can make the machine move forward.
37
151000
2000
mogu da pomere mašinu unapred.
02:33
And you can see these robots are not ready
38
153000
2000
Vidite da ovi roboti
02:35
to take over the world yet, but
39
155000
3000
još uvek nisu spremni da preuzmu svet,
02:38
they gradually learn how to move forward,
40
158000
2000
ali postepeno uče kako da se kreću unapred
02:40
and they do this autonomously.
41
160000
3000
i ovo rade samostalno.
02:43
So in these two examples, we had basically
42
163000
4000
Na ova dva primera, u principu smo imali
02:47
machines that learned how to walk in simulation,
43
167000
3000
mašine koje su u simulaciji naučile da hodaju
02:50
and also machines that learned how to walk in reality.
44
170000
2000
i mašine koje su naučile da hodaju u stvarnosti.
02:52
But I want to show you a different approach,
45
172000
2000
Ali želim da vam pokažem drugačiji pristup,
02:54
and this is this robot over here, which has four legs.
46
174000
6000
na ovom robotu, koji ima četiri noge.
03:00
It has eight motors, four on the knees and four on the hip.
47
180000
2000
Ima osam motora, četiri na kolenima i četiri na kukovima.
03:02
It has also two tilt sensors that tell the machine
48
182000
3000
Takođe ima dva senzora za nakretanje koji mu govore
03:05
which way it's tilting.
49
185000
3000
na koju stranu se nakreće.
03:08
But this machine doesn't know what it looks like.
50
188000
2000
Ali ova mašina ne zna kako to izgleda.
03:10
You look at it and you see it has four legs,
51
190000
2000
Vi je gledate i vidite da ima četiri noge,
03:12
the machine doesn't know if it's a snake, if it's a tree,
52
192000
2000
mašina ne zna da li je zmija ili drvo,
03:14
it doesn't have any idea what it looks like,
53
194000
3000
nema predstavu kako izgleda,
03:17
but it's going to try to find that out.
54
197000
2000
ali pokušaće da to sazna.
03:19
Initially, it does some random motion,
55
199000
2000
Isprva napravi nasumični pokret
03:21
and then it tries to figure out what it might look like.
56
201000
3000
i onda pokušava da shvati kako bi mogao da izgleda.
03:24
And you're seeing a lot of things passing through its minds,
57
204000
2000
Vidite puno stvari koje im proleću kroz um,
03:26
a lot of self-models that try to explain the relationship
58
206000
4000
puno samostalnih modela koji pokušavaju da objasne vezu
03:30
between actuation and sensing. It then tries to do
59
210000
3000
između aktiviranja i detekcije. Onda pokušava da uradi
03:33
a second action that creates the most disagreement
60
213000
4000
drugu radnju koja stvara najviše nesporazuma
03:37
among predictions of these alternative models,
61
217000
2000
između predviđanja ovih alternativnih modela,
03:39
like a scientist in a lab. Then it does that
62
219000
2000
poput naučnika u laboratoriji. Onda uradi to
03:41
and tries to explain that, and prune out its self-models.
63
221000
4000
i pokušava da objasni tu radnju i izdvoji model samog sebe.
03:45
This is the last cycle, and you can see it's pretty much
64
225000
3000
Ovo je poslednji ciklus i kao što možete videti
03:48
figured out what its self looks like. And once it has a self-model,
65
228000
4000
otprilike je shvatila kako izgleda. A kada ima model samog sebe,
03:52
it can use that to derive a pattern of locomotion.
66
232000
4000
može da ga iskoristi da smisli šablon kretanja.
03:56
So what you're seeing here are a couple of machines --
67
236000
2000
Ovde vidite nekoliko mašina -
03:58
a pattern of locomotion.
68
238000
2000
šablon kretanja.
04:00
We were hoping that it wass going to have a kind of evil, spidery walk,
69
240000
4000
Nadali smo se da će imati nekakav zloban hod, poput pauka,
04:04
but instead it created this pretty lame way of moving forward.
70
244000
4000
ali je umesto toga smislila ovaj prilično dosadan način kretanja unapred.
04:08
But when you look at that, you have to remember
71
248000
3000
Ali kad to pogledate, morate se setiti
04:11
that this machine did not do any physical trials on how to move forward,
72
251000
6000
da ova mašina nije fizički pokušala da se kreće unapred
04:17
nor did it have a model of itself.
73
257000
2000
i nije imala model svog izgleda.
04:19
It kind of figured out what it looks like, and how to move forward,
74
259000
3000
Otprilike je shvatila kako izgleda i kako da se kreće
04:22
and then actually tried that out.
75
262000
4000
i onda je to zapravo isprobala.
04:26
(Applause)
76
266000
5000
(Aplauz)
04:31
So, we'll move forward to a different idea.
77
271000
4000
Krenućemo ka drugačijoj ideji.
04:35
So that was what happened when we had a couple of --
78
275000
5000
To se desilo kada smo imali par -
04:40
that's what happened when you had a couple of -- OK, OK, OK --
79
280000
4000
to se desilo kada ste imali par - OK, OK, OK -
04:44
(Laughter)
80
284000
2000
(Smeh)
04:46
-- they don't like each other. So
81
286000
2000
- ne vole jedan drugog.
04:48
there's a different robot.
82
288000
3000
Dakle, to je drugačiji robot.
04:51
That's what happened when the robots actually
83
291000
2000
To se desi kada robote zaista nagradite
04:53
are rewarded for doing something.
84
293000
2000
za nešto što rade.
04:55
What happens if you don't reward them for anything, you just throw them in?
85
295000
3000
Šta se desi kada ih ne nagradite i samo ubacite unutra?
04:58
So we have these cubes, like the diagram showed here.
86
298000
3000
Imamo ove kocke, kao što vidite na dijagramu.
05:01
The cube can swivel, or flip on its side,
87
301000
2000
Kocka može da se rotira ili okrene na stranu,
05:04
and we just throw 1,000 of these cubes into a soup --
88
304000
4000
samo smo ubacili 1 000 ovih kocki u supu -
05:08
this is in simulation --and don't reward them for anything,
89
308000
2000
ovo je u simulaciji - i nismo ih nagradili ni za šta,
05:10
we just let them flip. We pump energy into this
90
310000
3000
samo smo ih pustili da se okreću. U ovo pumpamo energiju
05:13
and see what happens in a couple of mutations.
91
313000
3000
i gledamo šta će se desiti kroz nekoliko mutacija.
05:16
So, initially nothing happens, they're just flipping around there.
92
316000
3000
U početku se ne dešava ništa, samo se okreću u krug.
05:19
But after a very short while, you can see these blue things
93
319000
4000
Ali nakon kratkog vremena, možete videti
05:23
on the right there begin to take over.
94
323000
2000
da ove plave stvari sa desne strane počinju da preuzimaju vođstvo.
05:25
They begin to self-replicate. So in absence of any reward,
95
325000
4000
Počinju da se međusobno kopiraju. U nedostatku nagrade,
05:29
the intrinsic reward is self-replication.
96
329000
3000
suštinska korist je kopiranje samog sebe.
05:32
And we've actually built a couple of these,
97
332000
1000
Zapravo smo napravili par ovih robota
05:33
and this is part of a larger robot made out of these cubes.
98
333000
4000
i ovo je deo većeg robota napravljenog od ovih kocki.
05:37
It's an accelerated view, where you can see the robot actually
99
337000
3000
Ovo je ubrzan snimak gde možete videti da robot
05:40
carrying out some of its replication process.
100
340000
2000
izvršava deo procesa kopiranja.
05:42
So you're feeding it with more material -- cubes in this case --
101
342000
4000
Ako ih hranite sa više materijala - u ovom slučaju kockama -
05:46
and more energy, and it can make another robot.
102
346000
3000
i sa više energije, mogu da naprave još jednog robota.
05:49
So of course, this is a very crude machine,
103
349000
3000
Naravno ovo je veoma sirova mašina,
05:52
but we're working on a micro-scale version of these,
104
352000
2000
ali radimo na verziji mikroskopskih dimenzija,
05:54
and hopefully the cubes will be like a powder that you pour in.
105
354000
3000
s nadom da će kocke biti poput praška koji se može usuti
05:57
OK, so what can we learn? These robots are of course
106
357000
5000
Ok, šta možemo naučiti? Naravno, ovi roboti
06:02
not very useful in themselves, but they might teach us something
107
362000
3000
sami po sebi nisu veoma korisni, ali mogu nas naučiti nešto
06:05
about how we can build better robots,
108
365000
3000
o tome kako napraviti bolje robote
06:08
and perhaps how humans, animals, create self-models and learn.
109
368000
5000
i možda o tome kako ljudi i životinje prave modele sami sebe i uče.
06:13
And one of the things that I think is important
110
373000
2000
Jedna od bitnih stvari je
06:15
is that we have to get away from this idea
111
375000
2000
da moramo da zaboravimo na to
06:17
of designing the machines manually,
112
377000
2000
da dizajniramo mašine ručno
06:19
but actually let them evolve and learn, like children,
113
379000
3000
i da ih pustimo da se same razvijaju i uče, poput dece,
06:22
and perhaps that's the way we'll get there. Thank you.
114
382000
2000
i možda ćemo na taj način doći do toga. Hvala vam.
06:24
(Applause)
115
384000
2000
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7