Hod Lipson: Robots that are "self-aware"

Hod Lipson constrói robôs "auto-conscientes"

117,286 views ・ 2007-10-13

TED


Por favor, clique duas vezes nas legendas em inglês abaixo para reproduzir o vídeo.

Tradutor: Daniel Tschick Tomaz Revisor: Marcos Vinícius Petri
00:25
So, where are the robots?
0
25000
2000
Bem, onde estão os robôs?
00:27
We've been told for 40 years already that they're coming soon.
1
27000
3000
Há 40 anos que nos dizem que eles estão chegando.
00:30
Very soon they'll be doing everything for us.
2
30000
3000
Que em breve eles estarão fazendo tudo para nós:
00:33
They'll be cooking, cleaning, buying things, shopping, building. But they aren't here.
3
33000
5000
vão cozinhar, limpar, fazer compras, construir. Mas eles não estão aí.
00:38
Meanwhile, we have illegal immigrants doing all the work,
4
38000
4000
Por enquanto temos imigrantes ilegais fazendo todo o trabalho,
00:42
but we don't have any robots.
5
42000
2000
mas não temos nenhum robô.
00:44
So what can we do about that? What can we say?
6
44000
4000
Como podemos resolver isso então? O que temos para dizer?
00:48
So I want to give a little bit of a different perspective
7
48000
4000
Bem, eu quero mostrar de uma perspectiva diferente
00:52
of how we can perhaps look at these things in a little bit of a different way.
8
52000
6000
como podemos talvez olhar para estas coisas de um outro modo.
00:58
And this is an x-ray picture
9
58000
2000
E esta é uma foto de raio X
01:00
of a real beetle, and a Swiss watch, back from '88. You look at that --
10
60000
5000
de um besouro de verdade e de um relógio suiço de 1988. Olhando para isto
01:05
what was true then is certainly true today.
11
65000
2000
o que era verdade continua sendo verdade hoje em dia.
01:07
We can still make the pieces. We can make the right pieces.
12
67000
3000
Nós ainda somos capazes fazer as peças, podemos fazer as peças certas,
01:10
We can make the circuitry of the right computational power,
13
70000
3000
podemos fazer o circuito com o poder computacional correto,
01:13
but we can't actually put them together to make something
14
73000
3000
mas ainda não somos capazes de colocar tudo junto para fazer algo
01:16
that will actually work and be as adaptive as these systems.
15
76000
5000
que realmente funcione e seja tão adaptativo como estes sistemas.
01:21
So let's try to look at it from a different perspective.
16
81000
2000
Vamos tentar olhar para isso de um outro ângulo.
01:23
Let's summon the best designer, the mother of all designers.
17
83000
4000
Vamos convocar o melhor designer, o pai de todos os designers:
01:27
Let's see what evolution can do for us.
18
87000
3000
vamos ver o que a evolução pode fazer por nós.
01:30
So we threw in -- we created a primordial soup
19
90000
4000
Nós colocamos -- nós criamos uma sopa primordial
01:34
with lots of pieces of robots -- with bars, with motors, with neurons.
20
94000
4000
com muitas peças de robôs: barras, motores, neurônios.
01:38
Put them all together, and put all this under kind of natural selection,
21
98000
4000
Colocamos tudo junto, sob um certo tipo de seleção natural,
01:42
under mutation, and rewarded things for how well they can move forward.
22
102000
4000
sob mutação, e recompensamos as coisas por andarem bem para frente.
01:46
A very simple task, and it's interesting to see what kind of things came out of that.
23
106000
6000
Uma tarefa muito simples, e é interessante ver as coisas que saíram de lá.
01:52
So if you look, you can see a lot of different machines
24
112000
3000
E se vocês olharem, poderão ver um monte de máquinas diferentes
01:55
come out of this. They all move around.
25
115000
2000
que saíram daí. Elas se locomovem,
01:57
They all crawl in different ways, and you can see on the right,
26
117000
4000
todas elas rastejam de diversos modos, e vocês podem ver à direita,
02:01
that we actually made a couple of these things,
27
121000
2000
que nós construímos de verdade algumas dessas coisas,
02:03
and they work in reality. These are not very fantastic robots,
28
123000
3000
e elas funcionam na realidade. Não são robôs muito fantásticos,
02:06
but they evolved to do exactly what we reward them for:
29
126000
4000
mas eles evoluíram para fazer exatamente aquilo pelo qual os recompensamos:
02:10
for moving forward. So that was all done in simulation,
30
130000
3000
por andar para frente. Isso tudo foi feito em simulação,
02:13
but we can also do that on a real machine.
31
133000
2000
mas podemos fazer numa máquina real também.
02:15
Here's a physical robot that we actually
32
135000
5000
Aqui está um robô físico
02:20
have a population of brains,
33
140000
3000
com vários cérebros,
02:23
competing, or evolving on the machine.
34
143000
2000
concorrendo, ou evoluindo na máquina.
02:25
It's like a rodeo show. They all get a ride on the machine,
35
145000
3000
É como uma festa de rodeio: todos eles têm direito à uma volta na máquina,
02:28
and they get rewarded for how fast or how far
36
148000
3000
e são recompensados por quão rápido, ou quão longe
02:31
they can make the machine move forward.
37
151000
2000
eles podem fazer a máquina andar para frente.
02:33
And you can see these robots are not ready
38
153000
2000
E como vocês podem ver, estes robôs não estão prontos
02:35
to take over the world yet, but
39
155000
3000
para dominar o mundo ainda,
02:38
they gradually learn how to move forward,
40
158000
2000
mas eles aprendem pouco a pouco como andar para frente,
02:40
and they do this autonomously.
41
160000
3000
e o fazem com autonomia.
02:43
So in these two examples, we had basically
42
163000
4000
Bem, nestes dois exemplos basicamente temos
02:47
machines that learned how to walk in simulation,
43
167000
3000
máquinas que aprenderam a caminhar em simulação,
02:50
and also machines that learned how to walk in reality.
44
170000
2000
e também máquinas que aprenderam a caminhar na realidade.
02:52
But I want to show you a different approach,
45
172000
2000
Mas eu quero mostrar a vocês uma abordagem diferente,
02:54
and this is this robot over here, which has four legs.
46
174000
6000
e este aqui é um robô que tem quatro pernas,
03:00
It has eight motors, four on the knees and four on the hip.
47
180000
2000
ele tem oito motores, quatro nos joelhos e quatro no quadril.
03:02
It has also two tilt sensors that tell the machine
48
182000
3000
Ele também tem dois sensores de inclinação que dizem à máquina
03:05
which way it's tilting.
49
185000
3000
em qual direção ela está se inclinando.
03:08
But this machine doesn't know what it looks like.
50
188000
2000
Mas esta máquina não sabe como ela é.
03:10
You look at it and you see it has four legs,
51
190000
2000
Vocês olham e veem que ela tem quatro pernas.
03:12
the machine doesn't know if it's a snake, if it's a tree,
52
192000
2000
O robô não sabe se ele é uma cobra, ou uma árvore,
03:14
it doesn't have any idea what it looks like,
53
194000
3000
ele não tem a menor ideia de como se parece,
03:17
but it's going to try to find that out.
54
197000
2000
mas ele vai tentar descobrir.
03:19
Initially, it does some random motion,
55
199000
2000
Inicialmente, ele faz alguns movimentos aleatórios,
03:21
and then it tries to figure out what it might look like.
56
201000
3000
e então tenta imaginar como ele seria --
03:24
And you're seeing a lot of things passing through its minds,
57
204000
2000
vocês veem um monte de coisas passando pela sua cabeça,
03:26
a lot of self-models that try to explain the relationship
58
206000
4000
um monte de modelos de si mesmo que tentam explicar a relação
03:30
between actuation and sensing. It then tries to do
59
210000
3000
entre impulso e sentidos -- e então
03:33
a second action that creates the most disagreement
60
213000
4000
tenta uma segunda ação que contradiz
03:37
among predictions of these alternative models,
61
217000
2000
os prognósticos destes modelos alternativos,
03:39
like a scientist in a lab. Then it does that
62
219000
2000
como um cientista num laboratório. Então ele faz isto,
03:41
and tries to explain that, and prune out its self-models.
63
221000
4000
tenta achar explicações, e descarta os modelos de si mesmo que não servem.
03:45
This is the last cycle, and you can see it's pretty much
64
225000
3000
Este é o último ciclo, e vocês podem ver que ele fez
03:48
figured out what its self looks like. And once it has a self-model,
65
228000
4000
um bom trabalho descobrindo como se parece, e uma vez tendo um modelo de si próprio,
03:52
it can use that to derive a pattern of locomotion.
66
232000
4000
pode usá-lo para desenvolver um padrão de locomoção.
03:56
So what you're seeing here are a couple of machines --
67
236000
2000
O que vocês veem aqui são algumas máquinas --
03:58
a pattern of locomotion.
68
238000
2000
um padrão de locomoção.
04:00
We were hoping that it wass going to have a kind of evil, spidery walk,
69
240000
4000
Nós esperávamos que ela tivesse um andar meio maléfico, como uma aranha,
04:04
but instead it created this pretty lame way of moving forward.
70
244000
4000
mas ao invés disso, ela criou este jeito bem manco de andar para frente.
04:08
But when you look at that, you have to remember
71
248000
3000
Mas ao olhar para isso, lembrem-se
04:11
that this machine did not do any physical trials on how to move forward,
72
251000
6000
que esta máquina não fez nenhum teste físico de como mover-se para frente,
04:17
nor did it have a model of itself.
73
257000
2000
nem tinha um modelo de si mesma.
04:19
It kind of figured out what it looks like, and how to move forward,
74
259000
3000
Ela meio que tentou descobrir como se parecia, e como se mover para frente,
04:22
and then actually tried that out.
75
262000
4000
e só então tentou na realidade.
04:26
(Applause)
76
266000
5000
(Aplausos)
04:31
So, we'll move forward to a different idea.
77
271000
4000
Bom, vamos prosseguir para uma ideia diferente.
04:35
So that was what happened when we had a couple of --
78
275000
5000
Isso é o que aconteceu, quando tínhamos alguns --
04:40
that's what happened when you had a couple of -- OK, OK, OK --
79
280000
4000
isso é o que aconteceu quando haviam alguns -- OK, OK, OK --
04:44
(Laughter)
80
284000
2000
(Risos)
04:46
-- they don't like each other. So
81
286000
2000
-- eles não se dão muito bem. Então
04:48
there's a different robot.
82
288000
3000
aqui está um robô diferente.
04:51
That's what happened when the robots actually
83
291000
2000
Isto é o que aconteceu quando os robôs
04:53
are rewarded for doing something.
84
293000
2000
são recompensados por fazer alguma coisa.
04:55
What happens if you don't reward them for anything, you just throw them in?
85
295000
3000
O que acontece se você não os recompensa por nada, somente os larga lá?
04:58
So we have these cubes, like the diagram showed here.
86
298000
3000
Temos estes cubos, como mostrado no diagrama aqui.
05:01
The cube can swivel, or flip on its side,
87
301000
2000
O cubo pode girar, ou virar para o lado,
05:04
and we just throw 1,000 of these cubes into a soup --
88
304000
4000
e nós simplesmente jogamos 1.000 destes cubos em uma sopa --
05:08
this is in simulation --and don't reward them for anything,
89
308000
2000
isso é uma simulação -- e não os recompensamos por nada,
05:10
we just let them flip. We pump energy into this
90
310000
3000
apenas deixamos eles se virarem. Nós bombeamos energia nisso
05:13
and see what happens in a couple of mutations.
91
313000
3000
e observamos o que acontece depois de algumas mutações.
05:16
So, initially nothing happens, they're just flipping around there.
92
316000
3000
Inicialmente nada acontece, eles estão apenas virando pra lá e pra cá.
05:19
But after a very short while, you can see these blue things
93
319000
4000
Mas não demora muito e vocês podem ver que estes azulzinhos
05:23
on the right there begin to take over.
94
323000
2000
na direita começam a dominar.
05:25
They begin to self-replicate. So in absence of any reward,
95
325000
4000
Eles começam a se autorreplicar. Na ausência de qualquer recompensa,
05:29
the intrinsic reward is self-replication.
96
329000
3000
a recompensa intrínseca é a autorreplicação.
05:32
And we've actually built a couple of these,
97
332000
1000
E nós construímos alguns destes de verdade,
05:33
and this is part of a larger robot made out of these cubes.
98
333000
4000
e isso é parte de um robô maior feito destes cubos,
05:37
It's an accelerated view, where you can see the robot actually
99
337000
3000
é um vídeo acelerado, onde vocês podem ver o robô
05:40
carrying out some of its replication process.
100
340000
2000
realizando algumas de suas replicações.
05:42
So you're feeding it with more material -- cubes in this case --
101
342000
4000
Ele está sendo alimentado com mais material -- cubos, no caso --
05:46
and more energy, and it can make another robot.
102
346000
3000
e mais energia, e ele pode fazer outro robô.
05:49
So of course, this is a very crude machine,
103
349000
3000
Claro que esta é uma máquina muito simples,
05:52
but we're working on a micro-scale version of these,
104
352000
2000
mas estamos trabalhando em uma versão em micro escala,
05:54
and hopefully the cubes will be like a powder that you pour in.
105
354000
3000
e esperamos que os cubos sejam como um pó a ser despejado.
05:57
OK, so what can we learn? These robots are of course
106
357000
5000
O que podemos aprender? Claro que estes robôs
06:02
not very useful in themselves, but they might teach us something
107
362000
3000
não são muito úteis em si, mas eles podem nos ensinar algo
06:05
about how we can build better robots,
108
365000
3000
sobre como construir robôs melhores,
06:08
and perhaps how humans, animals, create self-models and learn.
109
368000
5000
e, talvez, como humanos, animais, criam modelos de si próprio e aprendem.
06:13
And one of the things that I think is important
110
373000
2000
E uma das coisas que julgo importante
06:15
is that we have to get away from this idea
111
375000
2000
é que temos que fugir desta ideia
06:17
of designing the machines manually,
112
377000
2000
de desenhar as máquinas manualmente,
06:19
but actually let them evolve and learn, like children,
113
379000
3000
mas sim deixá-las se desenvolver e aprender, como crianças,
06:22
and perhaps that's the way we'll get there. Thank you.
114
382000
2000
e talvez este seja o jeito que chegaremos lá. Obrigado.
06:24
(Applause)
115
384000
2000
(Aplausos)
Sobre este site

Este site apresentará a você vídeos do YouTube que são úteis para o aprendizado do inglês. Você verá aulas de inglês ministradas por professores de primeira linha de todo o mundo. Clique duas vezes nas legendas em inglês exibidas em cada página de vídeo para reproduzir o vídeo a partir daí. As legendas rolarão em sincronia com a reprodução do vídeo. Se você tiver algum comentário ou solicitação, por favor, entre em contato conosco usando este formulário de contato.

https://forms.gle/WvT1wiN1qDtmnspy7