Hod Lipson: Robots that are "self-aware"

117,286 views ・ 2007-10-13

TED


Please double-click on the English subtitles below to play the video.

Translator: Jordina Nogués Graell Reviewer: Elisabet Delgado Mas
00:25
So, where are the robots?
0
25000
2000
On són els robots?
00:27
We've been told for 40 years already that they're coming soon.
1
27000
3000
Fa 40 anys que ens diuen que ja venen.
00:30
Very soon they'll be doing everything for us.
2
30000
3000
Molt aviat faran de tot per nosaltres:
00:33
They'll be cooking, cleaning, buying things, shopping, building. But they aren't here.
3
33000
5000
cuinar, netejar, comprar, construir. Però no són aquí.
00:38
Meanwhile, we have illegal immigrants doing all the work,
4
38000
4000
Mentrestant, tenim immigrants il·legals fent tota aquesta feina,
00:42
but we don't have any robots.
5
42000
2000
però no tenim cap robot.
00:44
So what can we do about that? What can we say?
6
44000
4000
Què podem fer-hi? Què podem dir?
00:48
So I want to give a little bit of a different perspective
7
48000
4000
Vull donar una perspectiva un pèl diferent
00:52
of how we can perhaps look at these things in a little bit of a different way.
8
52000
6000
de com podem mirar-nos-ho d'una altra manera.
00:58
And this is an x-ray picture
9
58000
2000
Això és una imatge de raigs X
01:00
of a real beetle, and a Swiss watch, back from '88. You look at that --
10
60000
5000
d'un escarabat i un rellotge suís del 88.
T'ho mires i el que era veritat encara ho és.
01:05
what was true then is certainly true today.
11
65000
2000
01:07
We can still make the pieces. We can make the right pieces.
12
67000
3000
Encara podem fer les peces. Podem fer les peces exactes.
01:10
We can make the circuitry of the right computational power,
13
70000
3000
Podem fer els circuits del poder computacional exacte,
01:13
but we can't actually put them together to make something
14
73000
3000
però no podem posar-les juntes per a fer alguna cosa
01:16
that will actually work and be as adaptive as these systems.
15
76000
5000
que funcioni i sigui tan adaptativa com aquests sistemes.
01:21
So let's try to look at it from a different perspective.
16
81000
2000
Mirem-ho des d'una altra perspectiva.
01:23
Let's summon the best designer, the mother of all designers.
17
83000
4000
Invoquem el millor dissenyador, la mare de tots els dissenyadors.
01:27
Let's see what evolution can do for us.
18
87000
3000
A veure què hi pot fer l'evolució.
01:30
So we threw in -- we created a primordial soup
19
90000
4000
Hi posem - hem creat un caldo primigeni
01:34
with lots of pieces of robots -- with bars, with motors, with neurons.
20
94000
4000
amb moltes peces de robots- amb barres, motors, neurones.
01:38
Put them all together, and put all this under kind of natural selection,
21
98000
4000
Ho ajuntem tot i ho sotmetem a una certa selecció natural,
01:42
under mutation, and rewarded things for how well they can move forward.
22
102000
4000
a mercè de la mutació, i recompensem la capacitat d'avançar.
01:46
A very simple task, and it's interesting to see what kind of things came out of that.
23
106000
6000
Una tasca senzilla, és interessant veure què en resulta.
Si observeu, podeu veure un munt de màquines diferents
01:52
So if you look, you can see a lot of different machines
24
112000
3000
01:55
come out of this. They all move around.
25
115000
2000
que han sortit d'això. Totes es mouen,
01:57
They all crawl in different ways, and you can see on the right,
26
117000
4000
s'arrosseguen cada una a la seva manera
i podeu veure que n'hem fet un parell
02:01
that we actually made a couple of these things,
27
121000
2000
02:03
and they work in reality. These are not very fantastic robots,
28
123000
3000
que funcionen a la realitat. No són gaire sofisticats
02:06
but they evolved to do exactly what we reward them for:
29
126000
4000
però han evolucionat per fer el que els hem recompensat per fer:
anar endavant. Tot es va fer en una simulació,
02:10
for moving forward. So that was all done in simulation,
30
130000
3000
02:13
but we can also do that on a real machine.
31
133000
2000
però ho podem fer amb màquines reals.
02:15
Here's a physical robot that we actually
32
135000
5000
Aquí hi ha un robot que tenim
una població de cervells
02:20
have a population of brains,
33
140000
3000
competint o evolucionant en la màquina.
02:23
competing, or evolving on the machine.
34
143000
2000
És com un rodeo. Tots passegen la màquina
02:25
It's like a rodeo show. They all get a ride on the machine,
35
145000
3000
i són recompensats per com de ràpid o lluny
02:28
and they get rewarded for how fast or how far
36
148000
3000
02:31
they can make the machine move forward.
37
151000
2000
poden fer que la màquina avanci.
02:33
And you can see these robots are not ready
38
153000
2000
Aquests robots encara no estan llestos
02:35
to take over the world yet, but
39
155000
3000
per dominar el món,
però van aprenent com avançar
02:38
they gradually learn how to move forward,
40
158000
2000
i ho fan de manera autònoma.
02:40
and they do this autonomously.
41
160000
3000
En aquests dos exemples, teníem bàsicament
02:43
So in these two examples, we had basically
42
163000
4000
màquines que han après a caminar en una simulació
02:47
machines that learned how to walk in simulation,
43
167000
3000
02:50
and also machines that learned how to walk in reality.
44
170000
2000
i màquines que han après a caminar en la realitat.
02:52
But I want to show you a different approach,
45
172000
2000
Us vull ensenyar un altre enfocament,
02:54
and this is this robot over here, which has four legs.
46
174000
6000
aquest robot d'aquí,
que té 4 cames i 8 motors
03:00
It has eight motors, four on the knees and four on the hip.
47
180000
2000
4 als genolls i 4 als malucs.
03:02
It has also two tilt sensors that tell the machine
48
182000
3000
També té dos sensors d'inclinació
03:05
which way it's tilting.
49
185000
3000
que li diuen cap a on s'està inclinant.
Però no sap com és ell mateix.
03:08
But this machine doesn't know what it looks like.
50
188000
2000
03:10
You look at it and you see it has four legs,
51
190000
2000
El mireu i veieu que té 4 cames,
03:12
the machine doesn't know if it's a snake, if it's a tree,
52
192000
2000
però ell no sap si és una serp, un arbre,
03:14
it doesn't have any idea what it looks like,
53
194000
3000
no té ni idea de com és,
però intentarà esbrinar-ho.
03:17
but it's going to try to find that out.
54
197000
2000
Al principi fa moviments aleatoris,
03:19
Initially, it does some random motion,
55
199000
2000
intenta esbrinar com pot ser,
03:21
and then it tries to figure out what it might look like.
56
201000
3000
03:24
And you're seeing a lot of things passing through its minds,
57
204000
2000
i veiem un munt de coses que passen per les "seves ments",
03:26
a lot of self-models that try to explain the relationship
58
206000
4000
models d'ells mateixos que intenten explicar la relació
03:30
between actuation and sensing. It then tries to do
59
210000
3000
entre les accions i les percepcions.
Llavors intenta executar una segona acció
03:33
a second action that creates the most disagreement
60
213000
4000
que generi la major discrepància
entre les prediccions d'aquests models alternatius,
03:37
among predictions of these alternative models,
61
217000
2000
03:39
like a scientist in a lab. Then it does that
62
219000
2000
com un científic en un laboratori.
03:41
and tries to explain that, and prune out its self-models.
63
221000
4000
Ho fa i ho intenta explicar i reduïr els models.
03:45
This is the last cycle, and you can see it's pretty much
64
225000
3000
Aquest és l'últim cicle i podeu veure que pràcticament s'ha adonat com és.
03:48
figured out what its self looks like. And once it has a self-model,
65
228000
4000
Quan ja té el model de si mateix
03:52
it can use that to derive a pattern of locomotion.
66
232000
4000
pot fer-lo servir per derivar-ne un patró de locomoció.
03:56
So what you're seeing here are a couple of machines --
67
236000
2000
El que veieu aquí és un parell de màquines,
03:58
a pattern of locomotion.
68
238000
2000
un patró de locomoció.
04:00
We were hoping that it wass going to have a kind of evil, spidery walk,
69
240000
4000
Esperàvem que tingués un caminar maligne, aràcnid,
04:04
but instead it created this pretty lame way of moving forward.
70
244000
4000
però en canvi, ha creat aquesta manera patètica d'avançar.
04:08
But when you look at that, you have to remember
71
248000
3000
Quan mireu això heu de tenir present
04:11
that this machine did not do any physical trials on how to move forward,
72
251000
6000
que no havia fet cap assaig físic de com avançar
ni tenia un model de si mateixa.
04:17
nor did it have a model of itself.
73
257000
2000
Va esbrinar per si mateixa com era i com avançar,
04:19
It kind of figured out what it looks like, and how to move forward,
74
259000
3000
i ho va posar en pràctica.
04:22
and then actually tried that out.
75
262000
4000
(Aplaudiments)
04:26
(Applause)
76
266000
5000
04:31
So, we'll move forward to a different idea.
77
271000
4000
Avancem cap a una altra idea.
04:35
So that was what happened when we had a couple of --
78
275000
5000
Això és el que va passar amb un parell de...
04:40
that's what happened when you had a couple of -- OK, OK, OK --
79
280000
4000
Això és el que va passar amb un parell de...
D'acord, d'acord, d'acord.
04:44
(Laughter)
80
284000
2000
(Rialles)
04:46
-- they don't like each other. So
81
286000
2000
No s'agraden.
04:48
there's a different robot.
82
288000
3000
Aquí tenim un altre robot.
Això era el que va passar quan els robots
04:51
That's what happened when the robots actually
83
291000
2000
04:53
are rewarded for doing something.
84
293000
2000
van ser verdaderament recompensats pel que feien.
04:55
What happens if you don't reward them for anything, you just throw them in?
85
295000
3000
Què passa si no els recompensem per res, si els deixem estar?
04:58
So we have these cubes, like the diagram showed here.
86
298000
3000
Tenim aquests cubs, com es veu al diagrama.
05:01
The cube can swivel, or flip on its side,
87
301000
2000
El cub pot rotar o donar la volta sobre un costat.
Vam afegir 1000 d'aquests cubs al caldo, això és en una simulació,
05:04
and we just throw 1,000 of these cubes into a soup --
88
304000
4000
05:08
this is in simulation --and don't reward them for anything,
89
308000
2000
i no els vam recompensar per res.
05:10
we just let them flip. We pump energy into this
90
310000
3000
Els vam deixar donant voltes.
Si li insuflem energia, veiem que es donen un parell de mutacions.
05:13
and see what happens in a couple of mutations.
91
313000
3000
Al principi no passa res, només donen voltes.
05:16
So, initially nothing happens, they're just flipping around there.
92
316000
3000
Però al cap de ben poc, podeu veure que aquestes coses blaves
05:19
But after a very short while, you can see these blue things
93
319000
4000
05:23
on the right there begin to take over.
94
323000
2000
a la dreta comencen a dominar.
05:25
They begin to self-replicate. So in absence of any reward,
95
325000
4000
Es comencen a auto-replicar.
En absència de recompensa,
la recompensa intrínseca és l'auto-rèplica.
05:29
the intrinsic reward is self-replication.
96
329000
3000
N'hem construït un parell de veritat,
05:32
And we've actually built a couple of these,
97
332000
1000
05:33
and this is part of a larger robot made out of these cubes.
98
333000
4000
aquest és part d'un robot més gros fet d'aquests cubs.
05:37
It's an accelerated view, where you can see the robot actually
99
337000
3000
En aquest vídeo accelerat, podeu veure al robot
05:40
carrying out some of its replication process.
100
340000
2000
realitzant el procés de replicar-se.
05:42
So you're feeding it with more material -- cubes in this case --
101
342000
4000
Si l'alimentem amb més material, cubs,
05:46
and more energy, and it can make another robot.
102
346000
3000
i energia, pot fer un altre robot.
05:49
So of course, this is a very crude machine,
103
349000
3000
Per suposat, és una màquina rudimentària,
però estem treballant en una versió micro,
05:52
but we're working on a micro-scale version of these,
104
352000
2000
05:54
and hopefully the cubes will be like a powder that you pour in.
105
354000
3000
i esperem que algun dia els cubs siguin com un polsim.
05:57
OK, so what can we learn? These robots are of course
106
357000
5000
Així doncs, què n'aprenem?
Aquests robots no són gaire útils per si mateixos,
06:02
not very useful in themselves, but they might teach us something
107
362000
3000
però ens poden ensenyar com podem construir-ne de millors
06:05
about how we can build better robots,
108
365000
3000
06:08
and perhaps how humans, animals, create self-models and learn.
109
368000
5000
i potser com els humans o animals aprenen i creen automodels.
06:13
And one of the things that I think is important
110
373000
2000
Una de les coses que penso que és important,
06:15
is that we have to get away from this idea
111
375000
2000
és deixar la idea de dissenyar màquines artesanalment.
06:17
of designing the machines manually,
112
377000
2000
Ans al contrari, hem de deixar-les evolucionar i aprendre com els infants,
06:19
but actually let them evolve and learn, like children,
113
379000
3000
06:22
and perhaps that's the way we'll get there. Thank you.
114
382000
2000
i potser d'aquesta manera hi arribarem.
06:24
(Applause)
115
384000
2000
Gràcies. (Aplaudiments)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7