Are opinion polls accurate? - 6 Minute English

77,357 views ใƒป 2022-12-15

BBC Learning English


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ. ื›ืชื•ื‘ื™ื•ืช ืžืชื•ืจื’ืžื•ืช ืžืชื•ืจื’ืžื•ืช ื‘ืžื›ื•ื ื”.

00:08
Hello. This is 6 Minute English
0
8400
1560
ืฉืœื•ื. ื–ื•ื”ื™ 6 ื“ืงื•ืช ืื ื’ืœื™ืช
00:09
from BBC Learning English.
1
9960
1480
ืžื‘ื™ืช BBC Learning English.
00:11
I'm Neil.
2
11440
760
ืื ื™ ื ื™ืœ.
00:12
And I'm Sam. Predicting the future is not easy,
3
12200
3040
ื•ืื ื™ ืกื. ืœื—ื–ื•ืช ืืช ื”ืขืชื™ื“ ื–ื” ืœื ืงืœ,
00:15
but that's exactly the job of opinion pollsters - researchers who ask people
4
15240
4640
ืื‘ืœ ื–ื” ื‘ื“ื™ื•ืง ื”ืชืคืงื™ื“ ืฉืœ ืกื•ืงืจื™ ื“ืขืช ืงื”ืœ - ื—ื•ืงืจื™ื ืฉืฉื•ืืœื™ื ืื ืฉื™ื
00:19
questions to discover what they think about certain topics. Often their aim
5
19880
5120
ืฉืืœื•ืช ื›ื“ื™ ืœื’ืœื•ืช ืžื” ื”ื ื—ื•ืฉื‘ื™ื ืขืœ ื ื•ืฉืื™ื ืžืกื•ื™ืžื™ื. ืœืขืชื™ื ืงืจื•ื‘ื•ืช ืžื˜ืจืชื
00:25
is predicting which political party will win in an election
6
25000
3560
ื”ื™ื ืœื—ื–ื•ืช ืื™ื–ื• ืžืคืœื’ื” ืคื•ืœื™ื˜ื™ืช ืชื ืฆื— ื‘ื‘ื—ื™ืจื•ืช
00:28
by asking members of the public how they intend to vote.
7
28560
3200
ืขืœ ื™ื“ื™ ืฉืื™ืœืช ื—ื‘ืจื™ ื”ืฆื™ื‘ื•ืจ ื›ื™ืฆื“ ื”ื ืžืชื›ื•ื•ื ื™ื ืœื”ืฆื‘ื™ืข.
00:31
But predicting the future is never 100 per cent accurate,
8
31760
4400
ืื‘ืœ ื—ื™ื–ื•ื™ ื”ืขืชื™ื“ ืœืขื•ืœื ืื™ื ื• ืžื“ื•ื™ืง ื‘-100 ืื—ื•ื–,
00:36
and opinion polls don't always get it right.
9
36200
3280
ื•ืกืงืจื™ ื“ืขืช ืงื”ืœ ืœื ืชืžื™ื“ ืžื‘ื™ื ื™ื ื–ืืช.
00:39
In 2016, few pollsters predicted a victory for Donald Trump over Hillary Clinton
10
39480
5800
ื‘ืฉื ืช 2016, ืกืงืจื™ื ืžืขื˜ื™ื ื—ื–ื• ืœื“ื•ื ืœื“ ื˜ืจืืžืค ื ื™ืฆื—ื•ืŸ ืขืœ ื”ื™ืœืจื™ ืงืœื™ื ื˜ื•ืŸ
00:45
in the U S presidential election. And in the 2020 US elections,
11
45280
4760
ื‘ื‘ื—ื™ืจื•ืช ืœื ืฉื™ืื•ืช ืืจื”"ื‘. ื•ื‘ื‘ื—ื™ืจื•ืช 2020 ื‘ืืจื”"ื‘,
00:50
most polls predicted
12
50040
1440
ืจื•ื‘ ื”ืกืงืจื™ื ื—ื–ื• ืฉื˜ืจืืžืค
00:51
Trump would lose to Joe Biden, by a much larger amount
13
51480
3800
ื™ืคืกื™ื“ ืœื’'ื• ื‘ื™ื™ื“ืŸ, ื‘ืกื›ื•ื ื”ืจื‘ื” ื™ื•ืชืจ ื’ื“ื•ืœ
00:55
than he actually did. These mistakes sometimes called 'misfires',
14
55280
4960
ืžืžื” ืฉื”ื•ื ืขืฉื” ื‘ืคื•ืขืœ. ื˜ืขื•ื™ื•ืช ืืœื• ื”ื ืงืจืื•ืช ืœืขืชื™ื 'ื”ื˜ืขื™ื•ืช',
01:00
when things do not work in the way intended,
15
60240
2760
ื›ืืฉืจ ื”ื“ื‘ืจื™ื ืื™ื ื ืคื•ืขืœื™ื ื‘ืื•ืคืŸ ื”ืžื™ื•ืขื“,
01:03
have damaged the reputation of opinion pollsters. In this programme,
16
63000
4160
ืคื’ืขื• ื‘ืžื•ื ื™ื˜ื™ืŸ ืฉืœ ืกื•ืงืจื™ ื“ืขืช ืงื”ืœ. ื‘ืชื•ื›ื ื™ืช ื–ื•,
01:07
we'll be taking a look into the opinion polling industry and of course,
17
67160
4160
ื ืกืงื•ืจ ืืช ืชืขืฉื™ื™ืช ืกืงืจื™ ื”ื“ืขื•ืช ื•ื›ืžื•ื‘ืŸ
01:11
learning some useful vocabulary as well.
18
71320
2320
ื ืœืžื“ ื’ื ืื•ืฆืจ ืžื™ืœื™ื ืฉื™ืžื•ืฉื™.
01:13
But first I have a question for you,
19
73640
1840
ืื‘ืœ ืงื•ื“ื ื™ืฉ ืœื™ ืฉืืœื” ืืœื™ืš,
01:15
Sam, it's about another time when the opinion polls got it wrong.
20
75480
5080
ืกื, ืžื“ื•ื‘ืจ ื‘ืชืงื•ืคื” ืื—ืจืช ืฉื‘ื” ืกืงืจื™ ื“ืขืช ื”ืงื”ืœ ื˜ืขื•.
01:20
Few pollsters predicted that Britain would vote to leave the European Union
21
80560
4360
ืกืงืจื™ื ืžืขื˜ื™ื ื—ื–ื• ืฉื‘ืจื™ื˜ื ื™ื” ืชืฆื‘ื™ืข ื‘ืขื“ ืขื–ื™ื‘ืช ื”ืื™ื—ื•ื“ ื”ืื™ืจื•ืคื™
01:24
in the 2016 Brexit referendum,
22
84920
2680
ื‘ืžืฉืืœ ื”ืขื ืขืœ ื”ื‘ืจืงื–ื™ื˜ ื‘-2016,
01:27
which in the end, it did.
23
87600
2480
ืžื” ืฉื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืขืฉื”.
01:30
But what was the final split between those who voted to leave
24
90080
3640
ืื‘ืœ ืžื” ื”ื™ื” ื”ืคื™ืฆื•ืœ ื”ืกื•ืคื™ ื‘ื™ืŸ ืืœื” ืฉื”ืฆื‘ื™ืขื• ื‘ืขื“ ืœืขื–ื•ื‘
01:33
and those who wanted to remain?
25
93720
2200
ืœื‘ื™ืŸ ืืœื” ืฉืจืฆื• ืœื”ื™ืฉืืจ? ื”ืื
01:35
Was it a) 51 leave to 49 remain,
26
95920
3840
ื–ื” ื”ื™ื” ื) 51 ืขื–ื‘ื• ืขื“ 49 ื ืฉืืจื•,
01:39
b) 52 leave to 48 remain, or
27
99840
3480
ื‘) 52 ืขื–ื‘ื• ืขื“ 48 ื ืฉืืจื•, ืื•
01:43
c) 52 remain to 48 leave?
28
103320
3200
ื’) 52 ื ืฉืืจื• ืขื“ 48 ืขื–ื‘ื•?
01:46
I think it was b)
29
106520
1720
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื”ื™ื” ื‘)
01:48
52 per cent voted to leave and 48 per cent to remain.
30
108240
4240
52 ืื—ื•ื– ื”ืฆื‘ื™ืขื• ื‘ืขื“ ืœืขื–ื•ื‘ ื•-48 ืื—ื•ื– ื›ื“ื™ ืœื”ื™ืฉืืจ.
01:52
OK, Sam, I'll reveal the answer at the end of the programme.
31
112480
3600
ื‘ืกื“ืจ, ืกืื, ืื ื™ ืื’ืœื” ืืช ื”ืชืฉื•ื‘ื” ื‘ืกื•ืฃ ื”ืชื•ื›ื ื™ืช.
01:56
One of the biggest polling companies
32
116080
1800
ืื—ืช ืžื—ื‘ืจื•ืช ื”ืกืงืจื™ื ื”ื’ื“ื•ืœื•ืช
01:57
was founded by George Gallup, born in 1901
33
117880
2960
ื ื•ืกื“ื” ืขืœ ื™ื“ื™ ื’'ื•ืจื’' ื’ืืœื•ืค, ื™ืœื™ื“ 1901
02:00
on a farm in Iowa, Gallup was a student of journalism.
34
120840
4480
ื‘ื—ื•ื•ื” ื‘ืื™ื•ื•ื”, ื’ืืœื•ืค ื”ื™ื” ืกื˜ื•ื“ื ื˜ ืœืขื™ืชื•ื ืื•ืช.
02:05
He wanted to know people's opinion on a range of subjects
35
125320
3360
ื”ื•ื ืจืฆื” ืœื“ืขืช ืืช ื“ืขืชื ืฉืœ ืื ืฉื™ื ื‘ืžื’ื•ื•ืŸ ื ื•ืฉืื™ื
02:08
and came up with a simple idea -
36
128680
2400
ื•ื”ื’ื” ืจืขื™ื•ืŸ ืคืฉื•ื˜ -
02:11
why not try asking them?
37
131080
2360
ืœืžื” ืœื ืœื ืกื•ืช ืœืฉืื•ืœ ืื•ืชื?
02:13
Here's G Elliott Morris,
38
133440
1840
ื”ื ื” G ืืœื™ื•ื˜ ืžื•ืจื™ืก,
02:15
a data journalist from the Economist, explaining more to BBC
39
135280
3760
ืขื™ืชื•ื ืื™ ื ืชื•ื ื™ื ืžื”ืืงื•ื ื•ืžื™ืกื˜, ืžืกื‘ื™ืจ ื™ื•ืชืจ
02:19
World Service Programme, More or Less.
40
139040
2840
ืœืชื•ื›ื ื™ืช ื”ืฉื™ืจื•ืช ื”ืขื•ืœืžื™ ืฉืœ BBC, ื™ื•ืชืจ ืื• ืคื—ื•ืช.
02:21
And,he publishes his dissertation
41
141880
2280
ื•ื”ื•ื ืžืคืจืกื ืืช ืขื‘ื•ื“ืช ื”ื“ื•ืงื˜ื•ืจื˜ ืฉืœื•
02:24
on this - how to measure what people want, basically.
42
144160
2280
ืขืœ ื–ื” - ืื™ืš ืœืžื“ื•ื“ ืžื” ืื ืฉื™ื ืจื•ืฆื™ื, ื‘ืขืฆื.
02:26
And he gets hired by a much bigger advertising agency
43
146440
3960
ื•ื”ื•ื ื ืฉื›ืจ ืขืœ ื™ื“ื™ ืžืฉืจื“ ืคืจืกื•ื ื”ืจื‘ื” ื™ื•ืชืจ ื’ื“ื•ืœ
02:30
in New York called Young and Rubicam, and they basically give him
44
150400
3360
ื‘ื ื™ื• ื™ื•ืจืง ื‘ืฉื ื™ืื ื’ ื•ืจื•ื‘ื™ืงื, ื•ื”ื ื‘ืขืฆื ื ื•ืชื ื™ื ืœื•
02:33
a blank cheque to do their research, to figure out how to call people,
45
153760
4280
ืฆ'ืง ืจื™ืง ื›ื“ื™ ืœืขืฉื•ืช ืืช ื”ืžื—ืงืจ ืฉืœื”ื, ืœื”ื‘ื™ืŸ ืื™ืš ืœื”ืชืงืฉืจ ืœืื ืฉื™ื,
02:38
how to talk to them, to figure out if they remember or liked a certain product.
46
158040
4800
ืื™ืš ืœื“ื‘ืจ ืื™ืชื, ื›ื“ื™ ืœื”ื‘ื™ืŸ ืื ื”ื ื–ื•ื›ืจ ืื• ืื”ื‘ ืžื•ืฆืจ ืžืกื•ื™ื.
02:42
Basically, to figure out early methodologies
47
162840
2880
ื‘ืขืฆื, ื›ื“ื™ ืœื”ื‘ื™ืŸ ืžืชื•ื“ื•ืœื•ื’ื™ื•ืช ืžื•ืงื“ืžื•ืช
02:45
in advertising and then by 1931 or so, he's wondering
48
165720
4920
ื‘ืคืจืกื•ื ื•ืœืื—ืจ ืžื›ืŸ ืขื“ 1931 ื‘ืขืจืš, ื”ื•ื ืชื•ื”ื”
02:50
well, if it works for toothpaste
49
170640
1400
ื”ื™ื˜ื‘, ืื ื–ื” ืขื•ื‘ื“ ืœืžืฉื—ืช ืฉื™ื ื™ื™ื
02:52
why not politics?
50
172040
1560
ืœืžื” ืœื ืคื•ืœื™ื˜ื™ืงื”?
02:53
George Gallup tried to figure out what customers wanted to buy.
51
173600
4280
ื’'ื•ืจื’' ื’ืืœื•ืค ื ื™ืกื” ืœื”ื‘ื™ืŸ ืžื” ื”ืœืงื•ื—ื•ืช ืจื•ืฆื™ื ืœืงื ื•ืช.
02:57
If you figure something out,
52
177880
1680
ืื ืืชื” ืžื‘ื™ืŸ ืžืฉื”ื•,
02:59
you finally understand it or find a solution to a problem
53
179560
3640
ืืชื” ืกื•ืฃ ืกื•ืฃ ืžื‘ื™ืŸ ืื•ืชื• ืื• ืžื•ืฆื ืคืชืจื•ืŸ ืœื‘ืขื™ื”
03:03
after thinking about it a lot.
54
183200
2440
ืœืื—ืจ ืฉื—ืฉื‘ืชื™ ืขืœื™ื• ื”ืจื‘ื”.
03:05
Later, he was hired by a New York advertising agency to find out
55
185640
4080
ืžืื•ื—ืจ ื™ื•ืชืจ, ื”ื•ื ื ืฉื›ืจ ืขืœ ื™ื“ื™ ืžืฉืจื“ ืคืจืกื•ื ื‘ื ื™ื• ื™ื•ืจืง ื›ื“ื™ ืœื‘ืจืจ ืืช
03:09
people's opinion of consumer products like toothpaste and soft drinks.
56
189720
4840
ื“ืขืชื ืฉืœ ืื ืฉื™ื ืขืœ ืžื•ืฆืจื™ ืฆืจื™ื›ื” ื›ืžื• ืžืฉื—ืช ืฉื™ื ื™ื™ื ื•ืžืฉืงืื•ืช ืงืœื™ื.
03:14
George was given a 'blank cheque' - an unlimited amount of money
57
194560
3960
ื’'ื•ืจื’' ืงื™ื‘ืœ 'ืฆ'ืง ืจื™ืง' - ืกื›ื•ื ื›ืกืฃ ื‘ืœืชื™ ืžื•ื’ื‘ืœ
03:18
and freedom to do his job.
58
198520
2080
ื•ื—ื•ืคืฉ ืœืขืฉื•ืช ืืช ืขื‘ื•ื“ืชื•.
03:20
At this time, polling was focused on consumer preferences,
59
200600
3560
ื‘ืฉืœื‘ ื–ื”, ื”ืกืงืจื™ื ื”ืชืžืงื“ื• ื‘ื”ืขื“ืคื•ืช ืฆืจื›ื ื™ื,
03:24
not politics.
60
204160
1560
ืœื ื‘ืคื•ืœื™ื˜ื™ืงื”.
03:25
But asking people about their political views is
61
205720
2640
ืื‘ืœ ืœืฉืื•ืœ ืื ืฉื™ื ืขืœ ื“ืขื•ืชื™ื”ื ื”ืคื•ืœื™ื˜ื™ื•ืช ื–ื”
03:28
a lot more complicated than asking them about toothpaste.
62
208360
4080
ื”ืจื‘ื” ื™ื•ืชืจ ืžืกื•ื‘ืš ืžืืฉืจ ืœืฉืื•ืœ ืื•ืชื ืขืœ ืžืฉื—ืช ืฉื™ื ื™ื™ื.
03:32
Making accurate election predictions.
63
212440
2200
ื‘ื™ืฆื•ืข ืชื—ื–ื™ื•ืช ื‘ื—ื™ืจื•ืช ืžื“ื•ื™ืงื•ืช.
03:34
depends on polling a sample group of people
64
214640
3040
ืชืœื•ื™ ื‘ืกืงืจ ืงื‘ื•ืฆืช ืžื“ื’ื ืฉืœ ืื ืฉื™ื
03:37
who accurately represent the population as a whole. One of the reasons
65
217680
4520
ื”ืžื™ื™ืฆื’ื™ื ื‘ืžื“ื•ื™ืง ืืช ื”ืื•ื›ืœื•ืกื™ื™ื” ื›ื•ืœื”. ืื—ืช ื”ืกื™ื‘ื•ืช
03:42
for pollsters' failure to predict Trump's election in 2016,
66
222200
4120
ืœื›ื™ืฉืœื•ืŸ ืฉืœ ืกื•ืงืจื™ื ืœื—ื–ื•ืช ืืช ื‘ื—ื™ืจืชื• ืฉืœ ื˜ืจืืžืค ื‘-2016,
03:46
is that they didn't ask enough white, non-college educated voters.
67
226320
4160
ื”ื™ื ืฉื”ื ืœื ืฉืืœื• ืžืกืคื™ืง ืžืฆื‘ื™ืขื™ื ืœื‘ื ื™ื ืฉืื™ื ื ื‘ืขืœื™ ื”ืฉื›ืœื” ืžื›ืœืœื”.
03:50
So, polling is a very complex process -
68
230480
2640
ืื–, ืกืงืจื™ื ื”ื ืชื”ืœื™ืš ืžื•ืจื›ื‘ ืžืื•ื“ -
03:53
one which is never totally reliable,
69
233120
2640
ืชื”ืœื™ืš ืฉืœืขื•ืœื ืื™ื ื• ืืžื™ืŸ ืœื—ืœื•ื˜ื™ืŸ,
03:55
according to G Elliott Morris, speaking again here to BBC
70
235760
3880
ืœื“ื‘ืจื™ G ืืœื™ื•ื˜ ืžื•ืจื™ืก, ืžื“ื‘ืจ ืฉื•ื‘ ื›ืืŸ ืœ-BBC
03:59
World Service's More or Less... ย 
71
239640
2480
World Service ืฉืœ More or Less...
04:02
If people were understanding this process that is generating all these polls,
72
242120
5640
ืื ืื ืฉื™ื ื”ื™ื• ืžื‘ื™ื ื™ื ืืช ื”ืชื”ืœื™ืš ื”ื–ื” ืฉื™ื•ืฆืจ ืืช ื›ืœ ื”ืกืงืจื™ื ื”ืืœื”, ืื–
04:07
then they would understand polls as less, sort of, precise tools,
73
247760
4040
ื”ื ื™ื‘ื™ื ื• ืกืงืจื™ื ื›ื›ืœื™ื ืคื—ื•ืช, ื‘ืขืจืš, ืžื“ื•ื™ืงื™ื,
04:11
tools they definitely can't offer the laser-like predictive accuracy
74
251800
2760
ื›ืœื™ื ืฉื”ื ื‘ื”ื—ืœื˜ ืœื ื™ื›ื•ืœื™ื ืœื”ืฆื™ืข ืืช ื“ื™ื•ืง ื”ื ื™ื‘ื•ื™ ื“ืžื•ื™ ื”ืœื™ื™ื–ืจ
04:14
we've come to expect from them.
75
254560
2040
ืฉืฆื™ืคื™ื ื• ืžื”ื.
04:16
then the difference between pollings'
76
256600
2160
ืื– ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ื”ืฆื™ืคื™ื•ืช ืฉืœ ื”ืกืงืจื™ื
04:18
expectations and performance wouldn't be so stark.
77
258760
3720
ืœื‘ื™ืฆื•ืขื™ื ืœื ื™ื”ื™ื” ื›ื” ื‘ื•ืœื˜.
04:22
Opinion polls can estimate the outcome of an election,
78
262480
3080
ืกืงืจื™ ื“ืขืช ืงื”ืœ ื™ื›ื•ืœื™ื ืœื”ืขืจื™ืš ืืช ืชื•ืฆืื•ืช ื”ื‘ื—ื™ืจื•ืช,
04:25
but they can't give us laser-like accuracy.
79
265560
3320
ืื‘ืœ ื”ื ืœื ื™ื›ื•ืœื™ื ืœืชืช ืœื ื• ื“ื™ื•ืง ื›ืžื• ืœื™ื™ื–ืจ.
04:28
If you describe something as 'laser-like' you mean it
80
268880
2840
ืื ืืชื” ืžืชืืจ ืžืฉื”ื• ื›'ื›ืžื• ืœื™ื™ื–ืจ' ืืชื” ืžืชื›ื•ื•ืŸ ืœื–ื”
04:31
it's very accurate and focused, like a laser.
81
271720
3440
ืฉื”ื•ื ืžืื•ื“ ืžื“ื•ื™ืง ื•ืžืžื•ืงื“, ื›ืžื• ืœื™ื™ื–ืจ.
04:35
If people understand how hard
82
275160
1800
ืื ืื ืฉื™ื ืžื‘ื™ื ื™ื ื›ืžื” ืงืฉื”
04:36
it is to predict the future,
83
276960
1680
ืœื—ื–ื•ืช ืืช ื”ืขืชื™ื“,
04:38
they might be more realistic about
84
278640
1960
ื”ื ืขืฉื•ื™ื™ื ืœื”ื™ื•ืช ืžืฆื™ืื•ืชื™ื™ื ื™ื•ืชืจ ืœื’ื‘ื™
04:40
how accurate opinion polls can be. Then differences between a prediction
85
280600
5280
ืžื™ื“ืช ื”ื“ื™ื•ืง ืฉืœ ืกืงืจื™ ื“ืขืช ืงื”ืœ. ืื– ื”ื”ื‘ื“ืœื™ื ื‘ื™ืŸ ืชื—ื–ื™ืช
04:45
and the final result would not be so stark - obvious and easily visible or harsh.
86
285880
6720
ืœืชื•ืฆืื” ื”ืกื•ืคื™ืช ืœื ื™ื”ื™ื• ื›ื” ื‘ืจื•ืจื™ื - ื‘ืจื•ืจื™ื ื•ื ื™ื›ืจื™ื ื‘ืงืœื•ืช ืื• ืงืฉื™ื.
04:52
Predicting the future is difficult,
87
292600
2360
ืงืฉื” ืœื—ื–ื•ืช ืืช ื”ืขืชื™ื“,
04:54
otherwise everyone would be a lottery winner by now.
88
294960
3560
ืื—ืจืช ื›ื•ืœื ื›ื‘ืจ ื”ื™ื• ื–ื•ื›ื™ื ื‘ืœื•ื˜ื•.
04:58
Maybe it's not opinion polls that have broken,
89
298520
2360
ืื•ืœื™ ื–ื” ืœื ืกืงืจื™ ื“ืขืช ืงื”ืœ ืฉื ืฉื‘ืจื•,
05:00
but our desire to know the future that's the problem.
90
300880
3920
ืืœื ื”ืจืฆื•ืŸ ืฉืœื ื• ืœื“ืขืช ืืช ื”ืขืชื™ื“ ื–ื• ื”ื‘ืขื™ื”.
05:05
OK, it's time to reveal the answer to my question about the Brexit referendum.
91
305000
4600
ื‘ืกื“ืจ, ื”ื’ื™ืข ื”ื–ืžืŸ ืœื—ืฉื•ืฃ ืืช ื”ืชืฉื•ื‘ื” ืœืฉืืœืชื™ ืœื’ื‘ื™ ืžืฉืืœ ื”ืขื ืขืœ ื”ื‘ืจืงื–ื™ื˜.
05:09
I said the final result was 52 per cent for leave,
92
309600
3560
ืืžืจืชื™ ืฉื”ืชื•ืฆืื” ื”ืกื•ืคื™ืช ื”ื™ื 52 ืื—ื•ื– ืœื—ื•ืคืฉื”
05:13
and 48 per cent for remain.
93
313160
2360
ื•-48 ืื—ื•ื– ืœื—ื•ืคืฉื”.
05:15
Which was the correct answer. And another example of an opinion poll 'misfire' - a situation
94
315520
6360
ืžื” ืฉื”ื™ื™ืชื” ื”ืชืฉื•ื‘ื” ื”ื ื›ื•ื ื”. ื•ืขื•ื“ ื“ื•ื’ืžื” ืœืกืงืจ ื“ืขื” 'ื˜ืขื•ืช' - ืžืฆื‘
05:21
where something does not work as intended.
95
321880
3360
ืฉื‘ื• ืžืฉื”ื• ืœื ืขื•ื‘ื“ ื›ืžืชื•ื›ื ืŸ.
05:25
OK, let's recap the rest of the vocabulary
96
325240
2480
ื‘ืกื“ืจ, ื‘ื•ืื• ื ืกื›ื ืืช ืฉืืจ ืื•ืฆืจ ื”ืžื™ืœื™ื
05:27
from this programme about opinion pollsters -
97
327720
2480
ืžื”ืชื•ื›ื ื™ืช ื”ื–ื• ืขืœ ืกื•ืงืจื™ ื“ืขืช ืงื”ืœ -
05:30
people who conduct polls
98
330200
1480
ืื ืฉื™ื ืฉืขื•ืจื›ื™ื ืกืงืจื™ื
05:31
asking the public their opinion on particular subjects,
99
331680
3400
ืฉืฉื•ืืœื™ื ืืช ื”ืฆื™ื‘ื•ืจ ืœื“ืขืชื ื‘ื ื•ืฉืื™ื ืžืกื•ื™ืžื™ื,
05:35
especially politics.
100
335080
1760
ื‘ืžื™ื•ื—ื“ ืคื•ืœื™ื˜ื™ืงื”.
05:36
If you figure something out.
101
336840
1640
ืื ืชื‘ื™ืŸ ืžืฉื”ื•.
05:38
you finally understand it or find the solution to a problem
102
338480
4320
ืืชื” ืกื•ืฃ ืกื•ืฃ ืžื‘ื™ืŸ ืืช ื–ื” ืื• ืžื•ืฆื ืืช ื”ืคืชืจื•ืŸ ืœื‘ืขื™ื”
05:42
after thinking long and hard about it.
103
342800
2240
ืœืื—ืจ ืžื—ืฉื‘ื” ืืจื•ื›ื” ื•ืงืฉื” ืขืœ ื–ื”.
05:45
If someone gives you a blank cheque,
104
345040
2400
ืื ืžื™ืฉื”ื• ื ื•ืชืŸ ืœืš ืฆ'ืง ืจื™ืง,
05:47
you have unlimited money and freedom to complete a task.,
105
347440
3920
ื™ืฉ ืœืš ื›ืกืฃ ื•ื—ื•ืคืฉ ื‘ืœืชื™ ืžื•ื’ื‘ืœ ืœื‘ืฆืข ืžืฉื™ืžื”.,
05:51
When you describe something as 'laser-like', you mean that
106
351360
3080
ื›ืฉืืชื” ืžืชืืจ ืžืฉื”ื• ื›'ื›ืžื• ืœื™ื™ื–ืจ', ืืชื” ืžืชื›ื•ื•ืŸ
05:54
it's very accurate and precise.
107
354440
2160
ืฉื”ื•ื ืžืื•ื“ ืžื“ื•ื™ืง ื•ืžื“ื•ื™ืง.
05:56
And finally, the adjective 'stark' has several meanings,
108
356600
3360
ื•ืœื‘ืกื•ืฃ, ืœืฉื ื”ืชื•ืืจ 'ื—ื–ืง' ื™ืฉ ื›ืžื” ืžืฉืžืขื•ื™ื•ืช,
05:59
including 'obvious', 'harsh' and 'plain'.
109
359960
3080
ื›ื•ืœืœ 'ื‘ืจื•ืจ', 'ืงืฉื”' ื•'ืคืฉื•ื˜'.
06:03
Once again, our six minutes are up. Bye for now.
110
363040
2880
ืฉื•ื‘, ืฉืฉ ื”ื“ืงื•ืช ืฉืœื ื• ื ื’ืžืจื•. ืœื”ืชืจืื•ืช ื‘ื™ื ืชื™ื™ื.
06:05
Bye bye.
111
365920
1160
ื‘ื™ื™ ื‘ื™ื™.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7