Smart tech and climate change - 6 Minute English

124,861 views ใƒป 2021-10-07

BBC Learning English


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ. ื›ืชื•ื‘ื™ื•ืช ืžืชื•ืจื’ืžื•ืช ืžืชื•ืจื’ืžื•ืช ื‘ืžื›ื•ื ื”.

00:07
Hello. This is 6 Minute English from
0
7406
1920
ืฉืœื•ื. ื–ื•ื”ื™ 6 ื“ืงื•ืช ืื ื’ืœื™ืช ืžื‘ื™ืช
00:09
BBC Learning English. Iโ€™m Neil.
1
9326
2560
BBC Learning English. ืื ื™ ื ื™ืœ.
00:11
And Iโ€™m Sam.
2
11886
1752
ื•ืื ื™ ืกื.
00:13
These days, our lives are filled with
3
13638
2088
ื‘ื™ืžื™ื ื•, ื—ื™ื™ื ื• ืžืœืื™ื
00:15
devices that were unimaginable only
4
15726
2240
ื‘ืžื›ืฉื™ืจื™ื ืฉืœื ื ื™ืชืŸ ื”ื™ื” ืœื”ืขืœื•ืช ืขืœ ื”ื“ืขืช ืจืง
00:17
a few years ago โ€“ the sorts of things
5
17966
2160
ืœืคื ื™ ื›ืžื” ืฉื ื™ื - ืžื™ื ื™ ื“ื‘ืจื™ื ืฉืงืจืืชื
00:20
you read about in science-fiction novels,
6
20126
2080
ืขืœื™ื”ื ื‘ืจื•ืžื ื™ ืžื“ืข ื‘ื“ื™ื•ื ื™,
00:22
but never thought youโ€™d own.
7
22206
1920
ืื‘ืœ ืžืขื•ืœื ืœื ื—ืฉื‘ืชื ืฉื™ื”ื™ื• ื‘ื‘ืขืœื•ืชื›ื.
00:24
Yes, like those robots that vacuum your
8
24126
2480
ื›ืŸ, ื›ืžื• ื”ืจื•ื‘ื•ื˜ื™ื ื”ืฉื•ืื‘ื™ื ืืช
00:26
floor or voice-activated lights โ€“
9
26606
3280
ื”ืจืฆืคื” ืื• ื”ืื•ืจื•ืช ื”ืžื•ืคืขืœื™ื ื‘ืงื•ืœ -
00:29
we call many of these things โ€˜smart techโ€™.
10
29886
3360
ืื ื—ื ื• ืงื•ืจืื™ื ืœืจื‘ื™ื ืžื”ื“ื‘ืจื™ื ื”ืืœื” 'ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื›ืžื”'.
00:33
But while they can help with the little
11
33246
1840
ืื‘ืœ ื‘ืขื•ื“ ืฉื”ื ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืขื
00:35
tasks at home, some people are
12
35086
1760
ื”ืžืฉื™ืžื•ืช ื”ืงื˜ื ื•ืช ื‘ื‘ื™ืช, ื™ืฉ ืื ืฉื™ื
00:36
wondering whether they can help
13
36846
1360
ืฉืชื•ื”ื™ื ืื ื”ื ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ
00:38
fight climate change.
14
38206
1680
ืœื”ื™ืœื—ื ื‘ืฉื™ื ื•ื™ื™ ื”ืืงืœื™ื.
00:39
Yes, smart homes, regulating things
15
39886
2480
ื›ืŸ, ื‘ืชื™ื ื—ื›ืžื™ื, ื•ื™ืกื•ืช ื“ื‘ืจื™ื
00:42
like the temperature, are a step in the
16
42366
2240
ื›ืžื• ื”ื˜ืžืคืจื˜ื•ืจื”, ื”ื ืฆืขื“
00:44
right direction. Using AI to learn when
17
44606
3120
ื‘ื›ื™ื•ื•ืŸ ื”ื ื›ื•ืŸ. ืฉื™ืžื•ืฉ ื‘ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื›ื“ื™ ืœืœืžื•ื“ ืžืชื™
00:47
the house is occupied and the optimal
18
47726
2560
ื”ื‘ื™ืช ืชืคื•ืก ื•ื”ื–ืžืŸ ื”ืื•ืคื˜ื™ืžืœื™
00:50
time to fire up the heating, is one way
19
50286
3040
ืœื”ื“ืœื™ืง ืืช ื”ื—ื™ืžื•ื, ื”ื™ื ืื—ืช ื”ื“ืจื›ื™ื
00:53
to limit wasteful use of resources.
20
53326
3188
ืœื”ื’ื‘ื™ืœ ืืช ื”ืฉื™ืžื•ืฉ ื”ื‘ื–ื‘ื–ื ื™ ื‘ืžืฉืื‘ื™ื.
00:56
The problem comes from the origin
21
56514
1932
ื”ื‘ืขื™ื” ื ื•ื‘ืขืช ืžืžืงื•ืจ
00:58
of the energy which powers these home
22
58446
2080
ื”ืื ืจื’ื™ื” ืฉืžื ื™ืขื” ืืช ื”ืžืขืจื›ื•ืช ื”ื‘ื™ืชื™ื•ืช ื”ืœืœื•
01:00
systems. If itโ€™s fossil fuels, then digging
23
60526
2800
. ืื ืžื“ื•ื‘ืจ ื‘ื“ืœืงื™ื ืžืื•ื‘ื ื™ื, ืื–
01:03
them up โ€“ an informal way of saying
24
63326
1920
ื—ืคื™ืจืชื - ื“ืจืš ืœื ืจืฉืžื™ืช ืœื•ืžืจ
01:05
removing something from the earth -
25
65246
1840
ื”ืกืจืช ืžืฉื”ื• ืžื”ืื“ืžื” -
01:07
and burning them creates carbon
26
67086
2000
ื•ืฉืจื™ืคืชื ื™ื•ืฆืจืช
01:09
emissions.
27
69086
500
ืคืœื™ื˜ืช ืคื—ืžืŸ.
01:10
I suppose thatโ€™s why many people
28
70286
2080
ืื ื™ ืžื ื™ื— ืฉื–ื• ื”ืกื™ื‘ื” ืฉืื ืฉื™ื ืจื‘ื™ื
01:12
are trying to find more renewable
29
72366
2080
ืžื ืกื™ื ืœืžืฆื•ื ืฆื•ืจื•ืช ืžืชื—ื“ืฉื•ืช ื™ื•ืชืจ
01:14
forms of energy to reduce their
30
74446
1920
ืฉืœ ืื ืจื’ื™ื” ื›ื“ื™ ืœื”ืคื—ื™ืช ืืช
01:16
carbon footprint.
31
76366
1680
ื˜ื‘ื™ืขืช ื”ืจื’ืœ ื”ืคื—ืžื ื™ืช ืฉืœื”ื.
01:18
Well, itโ€™s interesting that you
32
78046
1200
ื•ื‘ื›ืŸ, ื–ื” ืžืขื ื™ื™ืŸ
01:19
mentioned carbon footprint,
33
79246
1520
ืฉื”ื–ื›ืจืช ืืช ื˜ื‘ื™ืขืช ื”ืจื’ืœ ื”ืคื—ืžื ื™ืช,
01:20
because my question is about that
34
80766
1680
ื›ื™ ื”ืฉืืœื” ืฉืœื™ ื”ื™ื ืขืœ ื–ื”
01:22
today. How many tonnes of carbon dioxide
35
82446
3520
ื”ื™ื•ื. ื›ืžื” ื˜ื•ื ื•ืช ืฉืœ ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™
01:25
are humans responsible for emitting into
36
85966
2160
ืื—ืจืื™ื ื‘ื ื™ ื”ืื“ื ืœืคืœื™ื˜ืช
01:28
the atmosphere every year? Is it more than:
37
88126
3200
ื”ืื˜ืžื•ืกืคื™ืจื” ืžื“ื™ ืฉื ื”? ื”ืื ื–ื” ื™ื•ืชืจ ืž:
01:31
a) 30 billion
38
91326
2000
ื) 30 ืžื™ืœื™ืืจื“
01:33
b) 40 billion; or
39
93326
2080
ื‘) 40 ืžื™ืœื™ืืจื“; ืื•
01:35
c) 50 billion?
40
95406
2160
ื’) 50 ืžื™ืœื™ืืจื“?
01:37
Well, Neil, that all sounds like a lot to
41
97566
2400
ื•ื‘ื›ืŸ, ื ื™ืœ, ื”ื›ืœ ื ืฉืžืข
01:39
me, but Iโ€™ll go straight down the middle
42
99966
2000
ืœื™ ื”ืจื‘ื”, ืื‘ืœ ืื ื™ ืืœืš ื™ืฉืจ ื‘ืืžืฆืข
01:41
and say b โ€“ 40 billion tonnes.
43
101966
3356
ื•ืื•ืžืจ ื‘' - 40 ืžื™ืœื™ืืจื“ ื˜ื•ืŸ.
01:45
OK, Sam, weโ€™ll find out the correct
44
105322
1524
ื‘ืกื“ืจ, ืกื, ืื ื—ื ื• ื ื’ืœื” ืืช
01:46
answer at the end of the programme.
45
106846
2080
ื”ืชืฉื•ื‘ื” ื”ื ื›ื•ื ื” ื‘ืกื•ืฃ ื”ืชื•ื›ื ื™ืช.
01:48
So you mentioned earlier that people
46
108926
1760
ืื– ื”ื–ื›ืจืช ืงื•ื“ื ืฉืื ืฉื™ื
01:50
are looking into ways to use more
47
110686
1840
ืžื—ืคืฉื™ื ื“ืจื›ื™ื ืœื”ืฉืชืžืฉ ื™ื•ืชืจ
01:52
renewable energy, but there are also
48
112526
2240
ื‘ืื ืจื’ื™ื” ืžืชื—ื“ืฉืช, ืื‘ืœ ื™ืฉ ื’ื
01:54
some problems with that form
49
114766
1280
ื›ืžื” ื‘ืขื™ื•ืช ืขื ืฆื•ืจืช
01:56
of energy production.
50
116046
1680
ื”ืคืงืช ื”ืื ืจื’ื™ื” ื”ื–ื•.
01:57
Yes โ€“ for example many of these
51
117726
1840
ื›ืŸ - ืœืžืฉืœ ื”ืจื‘ื”
01:59
technologies rely on certain weather
52
119566
2320
ืžื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืœืœื• ืžืกืชืžื›ื•ืช ืขืœ ืชื ืื™ ืžื–ื’ ืื•ื•ื™ืจ ืžืกื•ื™ืžื™ื
02:01
conditions, which affect the level
53
121886
2560
, ื”ืžืฉืคื™ืขื™ื ืขืœ ืจืžืช
02:04
of energy production.
54
124446
1840
ื™ื™ืฆื•ืจ ื”ืื ืจื’ื™ื”.
02:06
Dr Enass Abo-Hamed, CEO of H2go,
55
126286
4320
ื“"ืจ Enass Abo-Hamed, ืžื ื›"ืœ H2go,
02:10
is working on a project on Orkney,
56
130606
2080
ืขื•ื‘ื“ ืขืœ ืคืจื•ื™ืงื˜ ื‘ืื•ืจืงื ื™,
02:12
an island off the coast of Scotland,
57
132686
2000
ืื™ ืžื•ืœ ื—ื•ืคื™ ืกืงื•ื˜ืœื ื“,
02:14
testing ways of storing renewable
58
134686
2080
ื‘ื•ื“ืง ื“ืจื›ื™ื ืœืื’ื™ืจืช
02:16
forms of energy. Here she is on BBC
59
136766
3120
ืฆื•ืจื•ืช ืžืชื—ื“ืฉื•ืช ืฉืœ ืื ืจื’ื™ื”. ื”ื ื” ื”ื™ื ื‘ืชื•ื›ื ื™ืช BBC
02:19
World Service programme Crowd Science,
60
139886
2080
World Service Crowd Science,
02:21
speaking with Graihagh Jackson, talking
61
141966
2080
ืžื“ื‘ืจืช ืขื Graihagh Jackson, ืžื“ื‘ืจืช
02:24
about the limitations of renewable energy sources.
62
144046
4400
ืขืœ ื”ืžื’ื‘ืœื•ืช ืฉืœ ืžืงื•ืจื•ืช ืื ืจื’ื™ื” ืžืชื—ื“ืฉื™ื.
02:28
Renewable energy is intermittent by
63
148446
1680
ืื ืจื’ื™ื” ืžืชื—ื“ืฉืช ื”ื™ื ืœืกื™ืจื•ื’ื™ืŸ
02:30
its nature because itโ€™s dependant
64
150126
1760
ืžื˜ื‘ืขื” ืžื›ื™ื•ื•ืŸ ืฉื”ื™ื ืชืœื•ื™ื”
02:31
and relying on the weather. When
65
151886
2800
ื•ืžืกืชืžื›ืช ืขืœ ืžื–ื’ ื”ืื•ื•ื™ืจ. ื›ืืฉืจ
02:34
the Sun shines and when the wind blows,
66
154686
2880
ื”ืฉืžืฉ ื–ื•ืจื—ืช ื•ื›ืืฉืจ ื”ืจื•ื— ื ื•ืฉื‘ืช,
02:37
and these by nature are not
67
157566
1920
ื•ืืœื” ืžื˜ื‘ืขื ืื™ื ื ืงื‘ื•ืขื™ื ืืžื™ื ื™ื
02:39
24-hour 7 reliable constant.
68
159486
2640
24 ืฉืขื•ืช ื‘ื™ืžืžื”. ื•ื–ื”
02:42
And that means that demand doesnโ€™t
69
162126
1520
ืื•ืžืจ ืฉื”ื‘ื™ืงื•ืฉ ืœื
02:43
always meet supply of renewables โ€“
70
163646
1840
ืชืžื™ื“ ืขื•ืžื“ ื‘ื”ื™ืฆืข ืฉืœ ืื ืจื’ื™ื” ืžืชื—ื“ืฉืช -
02:45
it can mean that we get blackouts,
71
165486
2160
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืฉื ืงื‘ืœ ื”ืคืกืงื•ืช ื—ืฉืžืœ,
02:47
but on the other hand, when the Sun
72
167646
2800
ืื‘ืœ ืžืฆื“ ืฉื ื™, ื›ืฉื”ืฉืžืฉ
02:50
is up and we are producing all that
73
170446
1680
ื–ื•ืจื—ืช ื•ืื ื—ื ื• ืžื™ื™ืฆืจื™ื ืืช ื›ืœ
02:52
power or when the wind is blowing
74
172126
1440
ื”ื›ื•ื— ื”ื–ื” ืื• ื›ืฉื”ืจื•ื— ื ื•ืฉื‘ืช
02:53
and were producing that power, we
75
173566
1680
ื•ื”ื™ื™ื ื• ืžื™ื™ืฆืจื™ื ืืช ื–ื” ื›ื•ื—,
02:55
might not be able to use that energy -
76
175246
1280
ืื•ืœื™ ืœื ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ืื ืจื’ื™ื” ื”ื–ื• -
02:56
Thereโ€™s no demand for it and so itโ€™s wasted.
77
176526
4240
ืื™ืŸ ืœื” ื‘ื™ืงื•ืฉ ื•ืœื›ืŸ ื”ื™ื ืžื‘ื•ื–ื‘ื–ืช.
03:00
So, Dr Enass Abo-Hamed said the
78
180766
2720
ืื–, ื“"ืจ ืื ืืก ืื‘ื•-ื—ืžื“ ืืžืจ
03:03
renewable energy is intermittent,
79
183486
2960
ืฉื”ืื ืจื’ื™ื” ื”ืžืชื—ื“ืฉืช ื”ื™ื ืœืกื™ืจื•ื’ื™ืŸ,
03:06
which means that something is
80
186446
1520
ืžื” ืฉืื•ืžืจ ืฉืžืฉื”ื•
03:07
not continuous and has many breaks.
81
187966
3520
ืื™ื ื• ืจืฆื™ืฃ ื•ื™ืฉ ืœื• ื”ืคืกืงื•ืช ืจื‘ื•ืช.
03:11
She also said that because there
82
191486
1600
ื”ื™ื ื’ื ืืžืจื” ืฉื‘ื’ืœืœ
03:13
isnโ€™t always a steady stream of energy,
83
193086
2720
ืฉืœื ืชืžื™ื“ ื™ืฉ ื–ืจื ืงื‘ื•ืข ืฉืœ ืื ืจื’ื™ื”,
03:15
we can get blackouts โ€“
84
195806
1520
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื‘ืœ ื”ืคืกืงื•ืช -
03:17
periods of time without energy.
85
197326
2640
ืคืจืงื™ ื–ืžืŸ ืœืœื ืื ืจื’ื™ื”.
03:19
People like Dr Enass Abo-Hamed
86
199966
1920
ืื ืฉื™ื ื›ืžื• ื“"ืจ ืื ืืก ืื‘ื•-ื—ืžื“
03:21
are trying to find solutions to make
87
201886
1920
ืžื ืกื™ื ืœืžืฆื•ื ืคืชืจื•ื ื•ืช ืœื™ื™ืฆื•ืจ
03:23
renewable energy storage devices โ€“
88
203806
2480
ื”ืชืงื ื™ ืื—ืกื•ืŸ ืื ืจื’ื™ื” ืžืชื—ื“ืฉืช -
03:26
which would make the supply
89
206286
1200
ืžื” ืฉื™ื”ืคื•ืš ืืช ืืกืคืงืช
03:27
of energy more constant.
90
207486
2640
ื”ืื ืจื’ื™ื” ืœืงื‘ื•ืขื” ื™ื•ืชืจ.
03:30
Smart tech can also help with this
91
210126
1920
ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื›ืžื” ื™ื›ื•ืœื” ืœืขื–ื•ืจ ื’ื ื‘ื‘ืขื™ื” ื–ื•
03:32
problem with renewable sources.
92
212046
2160
ืขื ืžืงื•ืจื•ืช ืžืชื—ื“ืฉื™ื.
03:34
Now, of course, not only can computers
93
214206
2240
ื›ืขืช, ื›ืžื•ื‘ืŸ, ืœื ืจืง ืฉื ื™ืชืŸ
03:36
be used to design efficient models,
94
216446
1840
ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื ืœืชื›ื ื•ืŸ ื“ื’ืžื™ื ื™ืขื™ืœื™ื,
03:38
but smart tech can also be used to
95
218286
2080
ืืœื ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื›ืžื” ื’ื ื›ื“ื™
03:40
improve performance after things like
96
220366
2160
ืœืฉืคืจ ื‘ื™ืฆื•ืขื™ื ืœืื—ืจ ื”ืชืงื ืช ื“ื‘ืจื™ื ื›ืžื•
03:42
wind turbines have been installed.
97
222526
2320
ื˜ื•ืจื‘ื™ื ื•ืช ืจื•ื—.
03:44
Here is Graihagh Jackson, science broadcaster
98
224846
2320
ื”ื ื” Graihagh Jackson, ืฉื“ืจืŸ ืžื“ืข
03:47
and podcaster, speaking about how
99
227166
2080
ื•ืคื•ื“ืงืืกื˜, ืžื“ื‘ืจ ืขืœ ืื™ืš
03:49
smart tech can improve efficiency
100
229246
2480
ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื›ืžื” ื™ื›ื•ืœื” ืœืฉืคืจ ืืช ื”ื™ืขื™ืœื•ืช
03:51
on BBC World Service programme, Crowd Science:
101
231726
4000
ื‘ืชื•ื›ื ื™ืช BBC World Service, Crowd Science:
03:55
Some engineers use something
102
235726
1200
ื™ืฉ ืžื”ื ื“ืกื™ื ืฉืžืฉืชืžืฉื™ื ื‘ืžืฉื”ื•
03:56
called a digital twin. This is really
103
236926
1920
ืฉื ืงืจื ืชืื•ื ื“ื™ื’ื™ื˜ืœื™. ื–ื” ื‘ืืžืช
03:58
interesting, actually. This is where
104
238846
1520
ืžืขื ื™ื™ืŸ, ืœืžืขืฉื”. ื–ื” ื”ืžืงื•ื ืฉื‘ื•
04:00
lots of sensors are attached to the
105
240366
1760
ืžื—ื•ื‘ืจื™ื ื”ืžื•ืŸ ื—ื™ื™ืฉื ื™ื
04:02
wind turbine, so it can be modelled
106
242126
2640
ืœื˜ื•ืจื‘ื™ื ืช ื”ืจื•ื—, ื›ืš ืฉื ื™ืชืŸ ืœืขืฆื‘ ืื•ืชื”
04:04
on a computer in real time. And then,
107
244766
2640
ื‘ืžื—ืฉื‘ ื‘ื–ืžืŸ ืืžืช. ื•ืื–,
04:07
using machine learning, you can then
108
247406
2000
ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”, ืชื•ื›ืœ
04:09
simulate whatโ€™s happening to the wind
109
249406
2480
ืœื“ืžื•ืช ืืช ืžื” ืฉืงื•ืจื”
04:11
turbine in specific weather conditions.
110
251886
2160
ืœื˜ื•ืจื‘ื™ื ืช ื”ืจื•ื— ื‘ืชื ืื™ ืžื–ื’ ืื•ื•ื™ืจ ืกืคืฆื™ืคื™ื™ื.
04:14
And this is important because it means
111
254046
2240
ื•ื–ื” ื—ืฉื•ื‘ ื›ื™ ื–ื” ืื•ืžืจ
04:16
they can make sure theyโ€™re
112
256286
1120
ืฉื”ื ื™ื›ื•ืœื™ื ืœื•ื•ื“ื ืฉื”ื
04:17
performing their best.
113
257406
2160
ืžื‘ืฆืขื™ื ืืช ื”ืžื™ื˜ื‘ ืฉืœื”ื.
04:19
Graihagh Jackson used the expression
114
259566
1840
Graihagh Jackson ื”ืฉืชืžืฉ ื‘ื‘ื™ื˜ื•ื™
04:21
in real time, which means without delay or live.
115
261406
4658
ื‘ื–ืžืŸ ืืžืช, ื›ืœื•ืžืจ ืœืœื ื“ื™ื—ื•ื™ ืื• ื—ื™.
04:26
She also mentioned machine learning,
116
266064
2462
ื”ื™ื ื’ื ื”ื–ื›ื™ืจื” ืœืžื™ื“ืช ืžื›ื•ื ื”,
04:28
which is the way computers change their
117
268526
2080
ืฉื”ื™ื ื”ื“ืจืš ืฉื‘ื” ืžื—ืฉื‘ื™ื ืžืฉื ื™ื ืืช
04:30
behaviour based on data they collected.
118
270606
3680
ื”ืชื ื”ื’ื•ืชื ืขืœ ืกืžืš ื ืชื•ื ื™ื ืฉื”ื ืืกืคื•.
04:34
And she also said simulate โ€“
119
274286
1680
ื•ื”ื™ื ื’ื ืืžืจื” ืœื“ืžื•ืช -
04:35
produce a computer model of something.
120
275966
2800
ืœื™ื™ืฆืจ ืžื•ื“ืœ ืžืžื•ื—ืฉื‘ ืฉืœ ืžืฉื”ื•.
04:38
So, while there are issues with
121
278766
1760
ืœื›ืŸ, ื‘ืขื•ื“ ืฉื™ืฉ ื‘ืขื™ื•ืช ืขื
04:40
the reliability of the source of
122
280526
1920
ื”ืืžื™ื ื•ืช ืฉืœ ืžืงื•ืจ
04:42
renewable energy, itโ€™s clear that
123
282446
2160
ื”ืื ืจื’ื™ื” ื”ืžืชื—ื“ืฉืช, ื‘ืจื•ืจ ืฉืื ืฉื™ื
04:44
people are working on solutions
124
284606
1600
ืขื•ื‘ื“ื™ื ืขืœ ืคืชืจื•ื ื•ืช
04:46
such as energy storage to make
125
286206
2240
ื›ืžื• ืื—ืกื•ืŸ ืื ืจื’ื™ื” ื›ื“ื™
04:48
sure there is always a supply.
126
288446
2400
ืœื•ื•ื“ื ืฉืชืžื™ื“ ืชื”ื™ื” ืืกืคืงื”.
04:50
And that computers can be used to
127
290846
1520
ื•ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื ื›ื“ื™
04:52
design and operate technology
128
292366
1920
ืœืชื›ื ืŸ ื•ืœื”ืคืขื™ืœ ื˜ื›ื ื•ืœื•ื’ื™ื”
04:54
as efficiently as possible.
129
294286
2000
ื‘ืฆื•ืจื” ื™ืขื™ืœื” ื›ื›ืœ ื”ืืคืฉืจ.
04:56
Much in the same way that AI can
130
296286
1920
ื‘ื“ื™ื•ืง ื‘ืื•ืชื• ืื•ืคืŸ ืฉื‘ื• ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช
04:58
be used in your home to make it
131
298206
1840
ื‘ื‘ื™ืช ืฉืœืš ื›ื“ื™ ืœื’ืจื•ื ืœื•
05:00
run as efficiently as possible.
132
300046
2320
ืœืคืขื•ืœ ื‘ืฆื•ืจื” ื™ืขื™ืœื” ื›ื›ืœ ื”ืืคืฉืจ.
05:02
Yes โ€“ all in the hope of
133
302366
1120
ื›ืŸ - ื”ื›ืœ ื‘ืชืงื•ื•ื”
05:03
reducing your carbon footprint.
134
303486
2080
ืœื”ืคื—ื™ืช ืืช ื˜ื‘ื™ืขืช ื”ืจื’ืœ ื”ืคื—ืžื ื™ืช ืฉืœืš.
05:05
Which reminds me of your quiz question, Neil.
135
305566
2880
ืžื” ืฉืžื–ื›ื™ืจ ืœื™ ืืช ืฉืืœืช ื”ื—ื™ื“ื•ืŸ ืฉืœืš, ื ื™ืœ.
05:08
Yes, in my quiz question I asked Sam
136
308446
2240
ื›ืŸ, ื‘ืฉืืœืช ื”ื—ื™ื“ื•ืŸ ืฉืœื™ ืฉืืœืชื™ ืืช ืกื
05:10
how many tonnes of carbon dioxide
137
310686
2080
ื›ืžื” ื˜ื•ื ื•ืช ืฉืœ ืคื—ืžืŸ ื“ื• ื—ืžืฆื ื™
05:12
humans produce each year!
138
312766
2240
ื‘ื ื™ ืื“ื ืžื™ื™ืฆืจื™ื ื‘ื›ืœ ืฉื ื”!
05:15
I went for b) 40 billion tonnes.
139
315006
3120
ื”ืœื›ืชื™ ืขืœ ื‘) 40 ืžื™ืœื™ืืจื“ ื˜ื•ืŸ.
05:18
Which isโ€ฆ the correct answer!
140
318126
1200
ืฉื–ื•... ื”ืชืฉื•ื‘ื” ื”ื ื›ื•ื ื”!
05:19
Well done, Sam!
141
319326
1520
ื›ืœ ื”ื›ื‘ื•ื“, ืกืื!
05:20
Wow โ€“ I guessed right โ€“ but all three
142
320846
2480
ื•ื•ืื• - ื ื™ื—ืฉืชื™ ื ื›ื•ืŸ - ืื‘ืœ ื›ืœ ืฉืœื•ืฉืช
05:23
of those numbers sound really high!
143
323326
2854
ื”ืžืกืคืจื™ื ื”ืืœื” ื ืฉืžืขื™ื ืžืžืฉ ื’ื‘ื•ื”ื™ื!
05:26
Letโ€™s recap the vocabulary from todayโ€™s
144
326180
1786
ื‘ื•ืื• ื ืกื›ื ืืช ืื•ืฆืจ ื”ืžื™ืœื™ื ืžื”ืชื•ื›ื ื™ืช ืฉืœ ื”ื™ื•ื
05:27
programme about smart tech and
145
327966
2000
ืขืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ื—ื›ืžื” ื•ืฉื™ื ื•ื™ื™
05:29
climate change, starting with
146
329966
2240
ืืงืœื™ื, ืžืชื—ื™ืœื™ื ืขื
05:32
dig something up โ€“ an informal expression
147
332206
3120
ืœื—ืคื•ืจ ืžืฉื”ื• - ื‘ื™ื˜ื•ื™ ืœื ืจืฉืžื™
05:35
which means to remove something from the ground.
148
335326
2960
ืฉืžืฉืžืขื•ืชื• ืœื”ืกื™ืจ ืžืฉื”ื• ืžื”ืงืจืงืข.
05:38
Intermittent is used to describe something
149
338286
2080
ืœืกื™ืจื•ื’ื™ืŸ ืžืฉืžืฉ ืœืชื™ืื•ืจ ืžืฉื”ื•
05:40
that is not continuous or steady.
150
340366
2960
ืฉืื™ื ื• ืจืฆื™ืฃ ืื• ื™ืฆื™ื‘.
05:43
Blackouts are periods of time without
151
343326
2560
ื”ืคืกืงื•ืช ื—ืฉืžืœ ื”ืŸ ืคืจืงื™ ื–ืžืŸ ืœืœื
05:45
energy, for example electricity.
152
345886
2320
ืื ืจื’ื™ื”, ืœืžืฉืœ ื—ืฉืžืœ.
05:48
In real time means without delay or live.
153
348206
3600
ื‘ื–ืžืŸ ืืžืช ืคื™ืจื•ืฉื• ืœืœื ื“ื™ื—ื•ื™ ืื• ื—ื™.
05:51
Machine learning is the process by which
154
351806
2480
ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื™ื ื”ืชื”ืœื™ืš ืฉื‘ื•
05:54
computers learn and change
155
354286
1840
ืžื—ืฉื‘ื™ื ืœื•ืžื“ื™ื ื•ืžืฉื ื™ื
05:56
behaviour based on data.
156
356126
2480
ื”ืชื ื”ื’ื•ืช ืขืœ ืกืžืš ื ืชื•ื ื™ื.
05:58
And finally, simulate means
157
358606
1760
ื•ืœื‘ืกื•ืฃ, ืœื“ืžื•ืช ืืžืฆืขื™ื
06:00
produce a computer model.
158
360366
2160
ืœื™ื™ืฆืจ ืžื•ื“ืœ ืžืžื•ื—ืฉื‘.
06:02
Thatโ€™s all for this programme.
159
362526
1520
ื–ื” ื”ื›ืœ ืขื‘ื•ืจ ื”ืชื•ื›ื ื™ืช ื”ื–ื•.
06:04
Bye for now!
160
364046
1520
ืœื”ืชืจืื•ืช ื‘ื™ื ืชื™ื™ื!
06:05
Goodbye!
161
365566
1220
ื”ึฑื™ื” ืฉืœื•ื!
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7