The Last 6 Decades of AI — and What Comes Next | Ray Kurzweil | TED

356,264 views ・ 2024-06-27

TED


请双击下面的英文字幕来播放视频。

翻译人员: Alvin Lee 校对人员: Sue Lu
00:03
So we've heard a lot about artificial intelligence.
0
3833
3879
我们听到很多 有关人工智能(AI)的话题。
00:08
I've actually been involved with AI for 61 years, which is a record.
1
8421
6006
我干 AI 这行 61 年, 算是创纪录了。
00:15
And we've heard a lot about what people think about AI today.
2
15762
4463
我们已了解人们对 AI 的很多看法。
00:20
So I tried to figure out,
3
20767
3212
因此我想搞清楚,
00:23
what did we think about artificial intelligence
4
23979
2586
在 61 年前,我们是如何
00:26
61 years ago.
5
26565
1793
看待人工智能的。
00:29
So first of all, people asked, "What are you into?"
6
29109
2419
首先,人们问我,“你是做什么的?”
00:31
I'd say artificial intelligence.
7
31528
1918
我说人工智能。
00:33
And they'd say, "What's that?"
8
33488
1710
他们又问,“那是什么东西?”
00:35
So no one was really aware of it.
9
35240
2794
所以大家其实都不了解它。
00:40
I joined, in 1962,
10
40870
2962
我入行是在 1962 年,
00:43
1956 was the conference where artificial intelligence got its name.
11
43832
3920
“人工智能”在 1956 年 一次会议上得名。
00:47
So the views were quite different.
12
47752
4296
当时的观点很不一样。
00:53
People who were in computer science had heard of artificial intelligence.
13
53133
4296
从事计算机科学工作的人 才听说过人工智能。
00:57
Most people were quite skeptical.
14
57429
2127
大部分人对其持怀疑态度,
00:59
They thought it would never happen, or if they thought it would happen,
15
59598
3378
要么认为不可实现,要么认为即使实现,
01:02
maybe it would happen in a century or several centuries.
16
62976
4004
也还要等一个或几个世纪。
但那些参加了 1956 年 达特茅斯会议的人
01:07
But the people that actually came to that Dartmouth conference in 1956,
17
67022
4671
01:11
they were quite optimistic.
18
71693
1460
还是非常乐观的。
01:13
Some of them, including Minsky,
19
73194
2044
他们中有的人,包括明斯基在内,
01:15
thought it would take like, one semester to reach --
20
75238
2836
觉得再过一个学期……
01:18
(Laughter)
21
78074
1126
(笑声)
01:21
To reach the level of intelligence that humans had.
22
81745
4087
人工智能就能达到人类智力水平。
01:28
And in fact, that led to our first argument.
23
88543
2669
事实上这导致了我们的第一次争论。
01:31
He was my mentor for 50 years.
24
91254
2294
他当我的导师 50 年。
01:34
But we argued about that because I thought it would take decades,
25
94257
3128
我们争论是因为我认为还需要数十年,
01:37
but we would see it within our lifetime.
26
97385
2211
但在我们的有生之年是可以看到的。
01:40
So we're the only species
27
100597
2794
我们是唯一的物种
01:43
that actually creates tools that enhances our intelligence.
28
103433
4338
通过创造工具来增强自己的智能。
01:47
I mean, I'll bet almost everybody has one of these
29
107771
3128
我打赌,几乎每个人都拥有这些工具
01:50
that makes us more intelligent.
30
110940
1836
以变得更加智能。
01:52
This connects to the cloud.
31
112776
1751
这些工具与云端连接,
01:54
It gets more intelligent every year.
32
114527
2002
每年都会变得更智能。
01:57
Basically, the singularity is going to bring that into our minds.
33
117113
3128
基本上,奇点会将它带入我们的大脑,
02:00
We're going to become smarter.
34
120283
1919
我们会变得更聪明。
02:02
And there's two different things we have in our anatomy
35
122243
3129
从生理结构上看,我们有两样东西,
02:05
that enable us to do that.
36
125413
1335
保证我们能做到这一点。
02:06
One is our brain,
37
126748
1585
第一个是我们的大脑,
02:08
but we're not the only species that has a brain
38
128333
2210
但其他物种也有大脑,
02:10
or even a comparable brain.
39
130585
1752
哪怕仅仅是相似的大脑。
02:12
Elephants and whales actually have a brain that's larger than [ours].
40
132337
4171
大象和鲸的大脑比我们的还大。
02:16
But there's another aspect of their anatomy that they don't have
41
136549
3754
但在生理结构上,它们缺一样东西,
02:20
and that no one else has aside from humans
42
140303
3337
这东西只有人类有,
02:23
which is our thumb.
43
143682
3086
那就是大拇指。
02:27
So I can look at a tree and I can imagine, yeah,
44
147352
2294
因此我可以看着一棵树,心里想象着,
02:29
I could take those poles and create a tool
45
149688
2627
我可以用这些树枝做一个工具,
02:32
and then I can actually do it.
46
152357
2002
然后我真的可以做出来。
02:34
Now, monkeys, if you look at them they have a thumb,
47
154693
2585
而猴子,你观察一下,它们也有大拇指,
02:37
but it doesn't really work very well,
48
157320
1919
但不是很好用,
02:39
it's actually an inch down.
49
159239
1960
短了一英寸。
02:41
They can grab things without much force.
50
161199
6173
它们能不费吹灰之力就抓住东西,
02:48
They can create a first generation of tools,
51
168206
3170
它们可以制造第一代工具,
02:51
but they can't use that tool to create another set of tools.
52
171376
3462
但它们无法用其制造另一组工具。
02:54
So they really can't create a whole set of tools
53
174879
5005
因此,它们无法创造一整套工具
02:59
that will enhance their intelligence.
54
179926
2711
来增强它们的智能。
03:02
We're the only species that does that.
55
182637
2461
我们是唯一可以这么做的物种。
03:05
And that's what artificial intelligence is doing.
56
185140
3003
这就是人工智能在做的事情。
03:08
From the very first hominid
57
188184
1835
从最开始的人类祖先,
03:10
that created a very primitive tool
58
190061
3671
创造出非常原始的工具,
03:13
to Gemini and GPT-4 today,
59
193773
3587
到今天的 Gemini 和 GPT-4,
03:17
we create tools that make us smarter.
60
197402
2544
我们一直在创造让我们更加聪明的工具。
03:20
And so I've been actually monitoring
61
200363
6131
其实我一直在监测
03:26
the growth of computation,
62
206536
3795
算力的增长,
03:30
which is right here.
63
210373
1794
就是这张表。
03:32
I spent like, 45 years on this.
64
212167
2586
我花了大概 45 年时间在这上面。
03:36
And as you go up the chart, it represents exponential growth.
65
216463
3753
沿着表格往上看,是指数级的增长。
03:40
You might think that someone was in charge of this.
66
220633
2586
你也许会想,有人在控制这个。
03:43
Gee, we've done this much,
67
223219
1293
天哪,我们已经做到这个程度了,
03:44
it's in a straight line,
68
224554
1293
进展呈直线增长,
03:45
let's get our next computer to be right here.
69
225889
4045
让下一台电脑达到那个水平吧。
03:49
But no one was aware of it.
70
229976
1335
但没有人意识到这一点。
03:51
No one even knew that this was happening for the first 40 years.
71
231311
3378
在最初 40 年里, 没人预料到这种增长。
03:55
I discovered this 45 years ago.
72
235023
2919
我在 45 年前就发现了这点,
03:58
I had various reasons to feel it would continue at this pace.
73
238651
3337
我有很多理由相信它会如此增长。
04:02
In 1939
74
242405
2753
在 1939 年,
04:05
that represents
75
245200
1710
图表显示
04:06
0.000007
76
246951
5422
每恒定美元
04:12
calculations per second per constant dollar.
77
252373
2837
每秒可进行 0.000007 次计算。
04:15
At the upper right hand corner, you've got a Google computer,
78
255251
5381
在右上角是谷歌计算机,
04:20
which was 130 billion calculations per second.
79
260673
5714
每秒能进行 1300 亿次计算。
04:26
And recently Nvidia just came out with a chip
80
266846
2252
最近 英伟达(Nvidia)新出一款芯片,
04:29
which is half a trillion calculations per second.
81
269098
2837
每秒能计算 5000 亿次。
04:31
So this little chart represents a growth
82
271976
4505
所以这个小图表代表了
04:36
of 75 quadrillion-fold increase.
83
276523
3670
75 兆亿倍的增长。
04:40
That's why we didn't have large language models in 1939
84
280235
4337
这就是为什么我们在 1939 年 没有大型语言模型,
04:44
or even three years ago.
85
284572
1502
甚至在 3 年前都没有。
04:46
We did have something called large language models.
86
286074
2502
当时那个叫做大型语言模型的东西,
04:48
They didn't work very well three years ago,
87
288618
2920
在 3 年前并不好用,
04:51
began to work two years ago.
88
291579
1877
2 年前才开始能用了,
04:53
We've seen a tremendous progress that's happened in the last two years.
89
293498
3962
过去 2 年里出现了巨大进展。
04:58
In 1999, I was asked to make a prediction of when would we see AGI,
90
298628
6465
在 1999 年,有人让我预测 AGI,
05:05
artificial general intelligence.
91
305134
2586
即“通用人工智能”,何时能实现。
05:08
And so I figured that this chart would continue, which it has.
92
308096
5422
我指出进展将如图表所示,
05:13
And I figured we'd need about a trillion calculations per second to do AGI.
93
313560
5797
并且算力需要达到 1 万亿次每秒。
05:19
So I estimated 2029.
94
319357
2794
我预测 AGI 将在 2029 年实现,
05:23
That was met with a lot of skepticism.
95
323903
6298
这遭到了很多怀疑。
05:31
Stanford had actually been monitoring my predictions.
96
331160
3212
斯坦福大学一直在监测我的预测,
05:34
They called an international conference to talk about my prediction.
97
334372
3545
还为此召开了国际会议进行讨论。
05:37
And hundreds of AI scientists came from around the world.
98
337959
4421
几百名全球 AI 科学家齐聚一堂,
05:44
And they agreed that it would happen.
99
344173
1877
一致认为我的预测会实现,
05:46
We would achieve AGI, but not within 30 years.
100
346092
3837
AGI 会实现,但不是在 30 年内,
05:49
The estimate was 100 years.
101
349971
1919
他们的估计是 100 年。
05:52
And I've talked actually to some of the people who were there
102
352640
2920
我其实和部分与会科学家讨论过,
05:55
who said 100 years then
103
355560
1626
他们在会议中认为要 100 年,
05:57
and they're basically agreeing it's going to happen very soon.
104
357228
2961
但现在基本同意这一天会很快到来。
06:00
Musk says it's going to happen in two years.
105
360189
2461
马斯克说 2 年内就会实现,
06:02
It's not an unreasonable position.
106
362650
2336
这不是毫无理由的。
06:04
Other people saying three or four years,
107
364986
2210
还有人说 3 至 4 年,
06:07
I'm sticking with five years.
108
367238
1960
我还是坚持说 5 年,
06:09
But it could happen soon.
109
369198
2211
但有可能更快。
06:11
But everybody agrees now, AGI is very soon.
110
371451
4337
现在大家都同意 AGI 会很快到来。
06:16
So I have another book coming out,
111
376831
3253
于是我写了另一本书,
06:20
"The Singularity is Nearer."
112
380126
2711
《奇点临近》。
06:23
(Laughter)
113
383171
2335
(笑声)
06:25
And I've got about 50 graphs in there.
114
385506
3170
书里有大概 50 张图表。
06:30
I can't explain it right now, but if you talk to me later,
115
390511
3504
现在没时间细讲,如果过后你来找我,
06:34
I can explain these charts,
116
394057
2127
我可以解释这些图表,
06:36
but it basically shows that artificial intelligence
117
396225
4588
它们讲的基本就是 AI
06:40
is going to take over everything.
118
400813
2044
会接管一切。
06:44
The amount of --
119
404817
1168
数量……
06:45
(Laughter)
120
405985
1585
(笑声)
06:47
The amount of money that we make right now
121
407612
2919
我们今天创造的财富数量
06:50
is ten times greater in constant dollars
122
410531
2294
用恒定美元计算的话,
06:52
than it was 100 years ago.
123
412867
1627
比 100 年前的 10 倍还多。
06:54
We were very, very poor 100 years ago,
124
414535
2545
100 年前我们非常穷,
06:57
there was no government programs.
125
417121
1961
政府没有开展这些项目。
06:59
So we're much richer than we were then.
126
419791
2586
我们现在比那时候富有多了。
07:02
And the movement,
127
422710
3337
论及发展,
07:06
not only of computation,
128
426089
1167
不仅仅是在算力方面,
07:07
but every single technology,
129
427256
3003
也体现在每一项技术上,
07:10
is done by creating,
130
430301
2044
其产生都是以
07:12
taking the latest thing we've created and making the next one.
131
432387
4754
最新技术为基础而开发出来的。
07:17
We take the latest chip
132
437141
1502
比如,我们利用最新的芯片
07:18
and we use that to create the next one.
133
438685
2460
来开发下一代芯片。
07:23
We have greater wealth, as I said, that leads to better education,
134
443314
4129
我们有了更多财富,可以提供更好教育,
07:27
leads to better doctors,
135
447485
1835
更好的医生,
07:29
leads to healthy people,
136
449362
1793
更健康的人民,
07:31
leads to more global wealth.
137
451155
1919
并创造更多全球财富。
07:33
All of these things work together.
138
453074
2127
所有这些都是相互协作的,
07:35
AI supercharges everything.
139
455243
2502
而 AI 会加强这一切。
07:38
So I could talk about each thing
140
458746
3170
我可以讲述每一件
07:41
as being actually revolutionized.
141
461958
2085
被实际革新的事。
07:44
I think the most interesting thing is actually medicine.
142
464085
3545
我认为最有趣的就是医药。
07:47
There are a lot of people who are experts in AI who are against what's happening,
143
467630
4421
有很多 AI 专家反对目前的发展,
07:52
and they're very nervous about it, and they think it's going to wipe us out.
144
472051
3629
他们非常紧张,觉得 AI 会消灭我们。
07:56
But people tend to get diseases which are threatening to them.
145
476848
4921
但人会生病,疾病也是个威胁。
08:02
And what's going to happen?
146
482478
2378
接下来会发生什么呢?
08:04
People are going to get diseases and AI is going to come up with a cure,
147
484897
4505
人会生病,而 AI 会提供治疗方案,
08:09
very soon, which will lead to a great deal of appreciation.
148
489402
4755
这很快就能实现了, 到时我们就会感激 AI 的帮助。
08:16
People say that AI is not creative.
149
496576
2127
有人说 AI 不够有创意。
08:18
It's very creative.
150
498745
1626
但实际它很有创意。
08:20
You can actually put together possibilities that might work.
151
500371
4922
你可以尝试很多可能性。
08:25
For example, Moderna was trying to create their COVID vaccine.
152
505334
4088
比如,莫德纳公司尝试研制新冠疫苗,
08:29
They actually put together a list of different mRNA sequences.
153
509422
3837
列出了一系列不同的 mRNA 序列。
08:33
Now, what would we do in the past?
154
513259
1710
过去没有 AI 时,我们会怎么做?
有人会说,“好,这儿有几十亿种选择,
08:35
Someone would come in and say, "OK, there's several billion.
155
515011
2836
08:37
Let's try this one."
156
517847
1168
让我们来试试这一种。”
08:39
Or maybe they'd pick three.
157
519057
1418
或者他们可能挑选三种。
08:40
You can't ...
158
520516
1126
但你不可能……
08:43
do a clinical test on billions of different possibilities.
159
523770
3837
对数十亿种可能性进行临床测试。
08:47
But that's exactly what they did by simulating the reaction.
160
527648
3712
但现在他们就这么做了,通过模拟反应,
08:51
And that took two days.
161
531402
1627
仅仅花了两天时间。
08:53
So in two days, they created the Moderna vaccine.
162
533071
3378
两天内,他们就开发出了莫德纳疫苗。
08:57
And that is still on the market.
163
537617
2419
目前,这种疫苗依然在销售,
09:00
It's been the best vaccine.
164
540078
1835
是最好的疫苗。
09:01
It was done in two days.
165
541954
2503
而开发它只用了两天。
09:04
And we're going to do that with every other thing.
166
544499
2502
我们也可以这么来开发其他的。
09:07
There's some very promising cancer cures that are out there, which AI produced,
167
547043
5630
目前有些很有前景的癌症疗法, 由 AI 生成的,
09:12
and they're looking very promising.
168
552673
2169
看起来很有希望。
09:14
The next few years is going to be remarkable for medicine.
169
554884
3545
对于医药领域而言, 接下来几年将非比寻常。
09:18
We had 190,000 proteins done by people in 2022.
170
558471
5756
在 2022 年, 人工解析了19 万蛋白质。
09:24
2023, AlphaFold 2 did 200 million,
171
564268
4713
而在 2023 年, AlphaFold 2 解析了 2 亿个,
基本涵盖所有蛋白质及其折叠方式,
09:29
basically every protein and how they fold.
172
569023
3337
09:34
Every protein that's used in humans
173
574403
1836
涵盖人类和地球上所有其他物种
09:36
and every other species on Earth
174
576239
2878
使用的每一种蛋白质。
09:39
done in a few months.
175
579117
1668
这一切仅花了几个月时间。
09:41
And we're going to be able to go through
176
581536
3169
我们将以同样的速度
09:44
cures for diseases at the same rate.
177
584747
2586
找到疾病的治疗方法。
09:49
So we're going to simulate trials digitally.
178
589710
4255
我们将用数字的方式进行模拟,
09:54
It'll be much safer.
179
594715
1335
这样会更安全,
09:56
It'll be a million times faster.
180
596050
2252
并快上百万倍。
10:00
And by the end of this decade, as we go into the 2030s,
181
600096
3754
在我们进入 2030 年代时,
10:03
we're going to achieve a new milestone.
182
603891
2336
我们将达到新的里程碑,
10:06
It's called longevity escape velocity.
183
606644
3712
称为“寿命逃逸速度”。
10:11
Let me say that again,
184
611440
1210
我再重复一遍,
10:12
because you're going to be hearing a lot about that.
185
612692
2461
因为你们将会听到很多这方面的信息。
寿命逃逸速度。
10:15
Longevity escape velocity.
186
615153
2460
10:17
Right now you go through a year
187
617655
2211
现在你度过一年,
10:19
and you use up a year of your longevity.
188
619907
2753
就减寿一年。
10:22
However, scientific progress is also progressing,
189
622702
3336
但是,随着科学的进步,
10:26
which is actually bringing us back.
190
626038
1710
它将带我们返老还童。
10:27
It's giving us cures for diseases, new forms of treatment.
191
627790
4421
科学提供治愈疾病的新疗法。
10:32
So right now you're getting back about four months.
192
632253
3003
现在你能得到约 4 个月的返还;
10:35
So you lose a year, you get back four months,
193
635256
2252
度过 1 年,返还 4 个月,
10:37
so you're losing eight months.
194
637550
2169
所以你只失去了 8 个月。
10:39
However, the scientific progress is on an exponential.
195
639760
3796
但是,科学进程是呈指数增长的,
10:43
It's going to get faster and faster.
196
643556
1835
会越来越快。
10:45
And as we get to the early 2030s,
197
645433
2669
到了 2030 年代初期,
10:48
let's say between 2029 and 2035,
198
648144
2794
也就是 2029 年到 2035 年间,
10:50
depending on how diligent you are,
199
650938
3003
具体时间取决于你们多勤奋,
10:53
you're going to get back a full year.
200
653983
2294
你将得到一整年的返还。
10:56
So you lose a year, you get back a year.
201
656319
2878
即度过一年,就被返还一年。
10:59
As we actually go past that point,
202
659197
1626
当我们逾越那个临界点后,
11:00
you'll actually get back more than a year and you'll go backwards in time,
203
660865
5005
被返还时间甚至会超过一年, 你将返老还童,
11:05
which would be cool.
204
665912
1418
这会很酷。
11:07
(Laughter)
205
667872
1168
(笑声)
11:12
Now some people are concerned we’re going to run out of resources.
206
672376
3420
有些人担心资源会耗尽。
11:17
And actually, if we just went ahead and didn't make any new resources,
207
677048
4004
的确,如果我们只是一味发展, 而不创造新的资源,
11:21
we would run out of resources like energy, for example.
208
681093
4046
资源确实会耗尽,比如能源。
11:25
But this is not happening in a vacuum.
209
685806
2336
但一切并非发生在真空中。
11:29
AI is revolutionizing everything.
210
689060
3044
AI 正在革新一切。
11:32
For example, we only have to connect one part in 10,000
211
692104
6132
例如,我们只需要利用万分之一
11:38
of the sunlight that falls on the Earth to meet all of our energy needs.
212
698236
3420
照射在地球上的太阳光, 就可以满足所有能源需求。
11:41
It's plenty of headroom and that's growing exponentially
213
701697
4171
空间还很大,增长速度也很快,
11:45
and will achieve that within ten years.
214
705910
2377
在 10 年内就可以做到。
11:48
And that's also growing exponentially.
215
708287
2711
增长确实很快。
11:52
So ...
216
712083
2043
因此,
11:54
We will have plenty of resources.
217
714168
2377
我们将会拥有充足的资源。
11:58
And when we get to the 2030s,
218
718589
3128
到 2030 年代,
12:01
nanobots will connect our brains to the cloud
219
721759
4254
纳米机器人将会连接我们的大脑和云端,
就像你的手机一样。
12:06
just the way your phone does.
220
726013
1961
12:07
It'll expand intelligence a million-fold by 2045.
221
727974
4921
到 2045 年,智能将提升一百万倍。
12:13
That is the singularity.
222
733396
2794
这就是奇点。
12:16
We will be funnier.
223
736941
3170
我们会变得更有趣、
12:20
(Laughter)
224
740111
1668
(笑声)
12:21
Sexier, smarter, more creative,
225
741821
3712
更性感、更聪明、更有创造力,
12:25
free from biological limitations.
226
745574
2169
摆脱生物学上的限制。
12:28
We'll be able to choose our appearance.
227
748160
2920
我们将可以选择自己的外貌,
12:31
We'll be able to do things we can't do today,
228
751414
2252
做今天无法做到的事,
12:33
like visualize objects in 11 dimensions.
229
753708
2961
比如将 11 个维度中的物体可视化。
12:36
We can speak all languages.
230
756669
1877
我们会讲所有的语言,
12:38
We'll be able to expand consciousness in ways we can barely imagine.
231
758546
4546
以想象不到的方式扩展我们的意识,
12:43
We will experience richer culture with our extra years.
232
763509
5005
利用延长的生命去感受更丰富的文化。
12:49
So I've recently become a grandfather
233
769098
2878
最近我当爷爷了,
我很期待,
12:52
I'm very much looking forward to that,
234
772018
3211
12:55
spending more time with family, friends,
235
775271
2461
与我的家人和朋友度过更多时光,
12:57
loving and being loved,
236
777773
2461
爱和被爱,
13:00
all enhanced by AI.
237
780234
2419
借助 AI,一切都将更加美好。
13:02
I believe this gives life its greatest meaning.
238
782695
2753
我相信这才是生命最重要的意义。
13:05
Thank you very much.
239
785448
1293
非常感谢各位。
13:06
(Applause)
240
786782
4088
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7