Are Insect Brains the Secret to Great AI? | Frances S. Chance | TED

73,363 views ・ 2023-01-02

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yeyun Deng 校对人员: JENNY SUN
00:05
Creating intelligence on a computer.
0
5210
2377
在计算机上创建智能。
00:08
This has been the Holy Grail for artificial intelligence
1
8129
2837
很长一段时间以来,这一直是
00:11
for quite some time.
2
11007
1377
人工智能的圣杯。
00:12
But how do we get there?
3
12968
1668
但我们如何到达那里?
00:15
So we view ourselves as highly intelligent beings.
4
15679
3128
我们认为自己是高度智慧的人。
00:18
So it's logical to study our own brains,
5
18848
2795
因此,研究我们自己的大脑,
00:21
the substrate of our cognition, for creating artificial intelligence.
6
21685
4212
我们认知的基础, 来创造人工智能是合乎逻辑的。
00:27
Imagine if we could replicate how our own brains work on a computer.
7
27148
4130
想象一下,如果我们可以在计算机上 复制我们自己的大脑是如何工作的。
00:32
But now consider the journey that would be required.
8
32612
2503
但现在考虑一下所需的过程。
00:37
The human brain contains 86 billion neurons.
9
37367
3712
人类大脑包含 860 亿个神经元。
00:42
Each is constantly communicating with thousands of others,
10
42289
3628
每个人都在不断地 与成千上万的人交流,
00:45
and each has individual characteristics of its own.
11
45959
3045
每个人都有自己的特点。
00:49
Capturing the human brain on a computer
12
49879
2378
在计算机上捕获人脑智慧
00:52
may simply be too big and too complex a problem
13
52299
3670
可能的确是一个太大、 太复杂的问题,
00:56
to tackle with the technology and the knowledge that we have today.
14
56011
3795
无法用我们今天的技术和知识来解决。
01:01
I believe that we can capture a brain on a computer,
15
61266
2878
我相信我们可以在计算机上捕获智慧,
01:04
but we have to start smaller.
16
64144
2461
但我们必须从更小的地方开始。
01:07
Much smaller.
17
67230
1168
小得多。
01:10
These insects have three of the most fascinating brains in the world to me.
18
70734
4713
对我来说,这些昆虫有三个 世界上最迷人的大脑。
01:16
While they do not possess human-level intelligence,
19
76448
2836
虽然它们不具备人类水平的智力,
01:19
each is remarkable at a particular task.
20
79326
3169
但每一个都在特定活动中表现出色。
01:22
Think of them as highly trained specialists.
21
82954
2544
将他们视为训练有素的专家。
01:26
African dung beetles are really good at rolling large balls in straight lines.
22
86750
5088
非洲屎壳郎真的很擅长 在直线上滚动大球。
01:31
(Laughter)
23
91880
1710
(笑声)
01:33
Now, if you've ever made a snowman,
24
93632
1710
如果你曾经堆过雪人,
01:35
you know that rolling a large ball is not easy.
25
95342
2460
你就知道滚一个大球并不容易。
01:39
Now picture trying to make that snowman
26
99095
2211
现在想象一下堆雪人
01:41
when the ball of snow is as big as you are
27
101348
2377
当雪球和你一样大时,
01:43
and you're standing on your head.
28
103725
1835
你倒立着。
01:45
(Laughter)
29
105602
1168
(笑声)
01:47
Sahara desert ants are navigation specialists.
30
107228
3796
撒哈拉沙漠蚂蚁是导航专家。
01:51
They might have to wander a considerable distance to forage for food.
31
111775
3753
他们可能要走很远的路才能觅食。
01:55
But once they do find sustenance,
32
115862
1752
但一旦他们找到了食物,
01:57
they know how to calculate the straightest path home.
33
117656
2585
他们就知道如何计算回家的最直路径。
02:01
And the dragonfly is a hunting specialist.
34
121910
2919
而蜻蜓是狩猎专家。
02:05
In the wild, dragonflies capture approximately 95 percent
35
125205
3587
在野外,蜻蜓捕获了大约 95% 的
02:08
of the prey they choose to go after.
36
128833
1752
它们选择的猎物。
02:11
These insects are so good at their specialties
37
131336
3003
这些昆虫非常擅长它们的专业,
02:14
that neuroscientists such as myself study them as model systems
38
134381
4337
以至于像我这样的神经科学家 将它们作为模型系统来研究,
02:18
to understand how animal nervous systems solve particular problems.
39
138760
4046
以了解动物神经系统 是如何解决特定的问题。
02:23
And in my own research, I study brains to bring these solutions,
40
143973
3879
在我的研究中, 我研究大脑,
02:27
the best that biology has to offer, to computers.
41
147894
3337
以将这些生物所能提供的 最好的解决方案引入计算机。
02:31
So consider the dragonfly brain.
42
151272
1877
想一下蜻蜓的大脑。
02:33
It has only on the order of one million neurons.
43
153900
3003
它只有大约 100 万个神经元。
02:37
Now, it's still not easy to unravel a circuit of even one million neurons.
44
157570
4672
现在,要解开一个哪怕有一百万个 神经元的回路仍然不容易。
02:42
But given the choice
45
162701
1167
但是如果要在
02:43
between trying to tease apart the one-million-neuron brain
46
163910
3003
尝试梳理 100 万个神经元大脑
02:46
versus the 86-billion-neuron brain,
47
166955
2586
和 860 亿个神经元大脑之间做出选择,
02:49
which would you choose to try first?
48
169541
2169
你会选择先尝试哪一个?
02:51
(Laughter)
49
171710
1167
(笑声)
02:53
When studying these smaller insect brains,
50
173837
2586
当研究这些较小的昆虫大脑时,
02:56
the immediate goal is not human intelligence.
51
176464
2461
当前的目标不是人类的智力。
02:59
We study these brains for what the insects do well.
52
179551
3461
我们研究这些大脑是为了 了解昆虫做得好的地方。
03:03
And in the case of the dragonfly, that's interception.
53
183805
2878
就蜻蜓而言,那就是拦截。
03:07
So when dragonflies are hunting,
54
187559
1543
因此,当蜻蜓捕食时,
03:09
they do more than just fly straight at the prey.
55
189144
2502
它们所做的不仅仅是直接飞向猎物。
03:12
They fly in such a way that they will intercept it.
56
192021
2503
它们以这样的方式飞行,以拦截它。
03:14
They aim for where the prey is going to be.
57
194566
2460
它们瞄准猎物将要到达的地方。
03:17
Much like a soccer player, running to intercept a pass.
58
197402
3003
就像足球运动员, 跑去拦截传球。
03:21
To do this correctly,
59
201865
1459
为了正确地做到这一点,
03:23
dragonflies need to perform what is known as a coordinate transformation,
60
203366
3879
蜻蜓需要进行所谓的坐标变换,
03:27
going from the eye’s frame of reference, or what the dragonfly sees,
61
207245
3504
从眼睛的参照系或蜻蜓看到的东西,
03:30
to the body's frame of reference,
62
210790
1585
到身体的参照系,
03:32
or how the dragonfly needs to turn its body to intercept.
63
212375
2836
或者蜻蜓需要如何转动身体进行拦截。
03:36
Coordinate transformations are a basic calculation
64
216004
3044
坐标变换是动物
03:39
that animals need to perform to interact with the world.
65
219048
3713
与世界互动所需要进行的基本计算。
03:43
We do them instinctively every time we reach for something.
66
223261
3086
我们每次伸手拿东西的时候 都会本能地做这些计算。
03:47
When I reach for an object straight in front of me,
67
227098
2878
当我伸手去拿我面前的一个物体时,
03:50
my arm takes a very different trajectory than if I turn my head,
68
230018
3545
我的手臂的运动轨迹
03:53
look at that same object when it is off to one side
69
233605
2460
和我转头看向一边的同一物体时
03:56
and reach for it there.
70
236107
1335
完全不同。
03:58
In both cases, my eyes see the same image of that object,
71
238109
3712
在这两种情况下,我的眼睛 看到的都是同一物体的图像,
04:01
but my brain is sending my arm on a very different trajectory
72
241821
3712
但我的大脑根据我脖子的位置 将我的手臂送上一个
04:05
based on the position of my neck.
73
245575
1919
非常不同的轨迹。
04:12
And dragonflies are fast.
74
252624
1960
蜻蜓很快。
04:15
This means they calculate fast.
75
255293
2085
这意味着他们计算得很快。
04:18
The latency, or the time it takes for a dragonfly to respond
76
258046
4004
延迟,即蜻蜓在看到猎物转向后
04:22
once it sees the prey turn,
77
262091
1752
做出反应所需的时间,
04:23
is about 50 milliseconds.
78
263885
1960
大约是 50 毫秒。
04:27
This latency is remarkable.
79
267180
2044
这种延迟是很了不起的。
04:30
For one thing, it's only half the time of a human eye blink.
80
270016
3378
一方面,这只是人类眨眼时间的一半。
04:34
But for another thing,
81
274020
1668
但另一方面,
04:35
it suggests that dragonflies capture how to intercept
82
275688
3003
它表明蜻蜓仅通过相对的
04:38
in only relatively or surprisingly few computational steps.
83
278733
4755
或惊人的极少计算步骤 即可体现出如何进行拦截。
04:44
So in the brain,
84
284364
1376
所以在大脑中,
04:45
a computational step is a single neuron
85
285782
2878
计算步骤是单个神经元
04:48
or a layer of neurons working in parallel.
86
288660
2460
或一层神经元并行工作。
04:51
It takes a single neuron about 10 milliseconds
87
291996
3087
单个神经元需要大约 10 毫秒
04:55
to add up all its inputs and respond.
88
295124
2336
才能将其所有输入相加并做出反应。
04:58
The 50-millisecond response time
89
298169
2336
50毫秒的响应时间意味着,
05:00
means that once the dragonfly sees its prey turn,
90
300547
3503
一旦蜻蜓看到它的猎物转向,
05:04
there's only time for maybe four of these computational steps
91
304092
3336
可能只有四个计算步骤
05:07
or four layers of neurons, working in sequence, one after the other,
92
307470
3837
或四层神经元依次工作的时间, 一个接一个,
05:11
to calculate how the dragonfly needs to turn.
93
311349
2377
来计算蜻蜓需要如何转向。
05:14
In other words, if I want to study
94
314811
2085
换句话说,如果我想研究
05:16
how the dragonfly does coordinate transformations,
95
316896
4213
蜻蜓如何进行坐标变换,
05:21
the neural circuit that I need to understand,
96
321109
2753
我需要了解神经回路,
05:23
the neural circuit that I need to study,
97
323903
2252
我需要研究神经回路,
05:26
can have at most four layers of neurons.
98
326197
2670
最多可以有四层神经元。
05:29
Each layer may have many neurons,
99
329784
2377
每一层可能有许多神经元,
05:32
but this is a small neural circuit.
100
332203
2127
但这是一个小的神经回路。
05:34
Small enough that we can identify it
101
334789
2002
小到我们可以用
05:36
and study it with the tools that are available today.
102
336833
2669
今天的工具来识别它和研究它。
05:40
And this is what I'm trying to do.
103
340670
1835
这就是我要做的。
05:43
I have built a model of what I believe is the neural circuit
104
343298
3044
我已经建立了一个我认为是计算
05:46
that calculates how the dragonfly should turn.
105
346384
2544
蜻蜓应该如何转向的神经回路的模型。
05:49
And here is the cool result.
106
349596
1584
这是一个很酷的结果。
05:51
In the model,
107
351222
1627
在该模型中,
05:52
dragonflies do coordinate transformations in only one computational step,
108
352891
4713
蜻蜓只用一个计算步骤, 即一个神经元层
05:57
one layer of neurons.
109
357645
1627
来做坐标转换。
05:59
This is something we can test and understand.
110
359898
2877
这是我们可以测试和理解的。
06:03
In a computer simulation,
111
363651
1502
在计算机模拟中,
06:05
I can predict the activities of individual neurons
112
365194
3170
我可以预测蜻蜓狩猎时
06:08
while the dragonfly is hunting.
113
368364
1669
单个神经元的活动。
06:11
For example, here I am predicting the action potentials, or the spikes,
114
371367
4338
例如,我在这里预测 当蜻蜓看到猎物移动时,
06:15
that are fired by one of these neurons
115
375747
1835
其中一个神经元
06:17
when the dragonfly sees the prey move.
116
377582
2627
发射了动作电位或脉冲。
06:22
To test the model, my collaborators and I
117
382545
2169
为了测试这个模型, 我和我的合作者
06:24
are now comparing these predicted neural responses
118
384756
2836
现在正在将这些预测的神经反应 与活体蜻蜓大脑中
06:27
with responses of neurons recorded in living dragonfly brains.
119
387592
3837
记录的神经元反应进行比较。
06:33
These are ongoing experiments
120
393431
1668
这些是正在进行的实验,
06:35
in which we put living dragonflies in virtual reality.
121
395099
3796
我们将活体蜻蜓放在虚拟现实中。
06:40
(Laughter)
122
400188
1918
(笑声)
06:42
Now, it's not practical to put VR goggles on a dragonfly.
123
402148
3754
现在,给蜻蜓戴上 VR 护目镜是不现实的。
06:47
So instead, we show movies of moving targets to the dragonfly,
124
407070
4588
因此,我们改为向蜻蜓 播放移动目标的电影,
06:51
while an electrode records activity patterns of individual neurons
125
411658
3670
同时电极记录大脑中单个神经元的
06:55
in the brain.
126
415328
1251
活动模式。
06:58
Yeah, he likes the movies.
127
418331
1335
是的,他喜欢电影。
07:01
If the responses that we record in the brain
128
421167
2628
如果我们在大脑中记录的反应
07:03
match those predicted by the model,
129
423836
2128
与模型预测的反应相匹配,
07:06
we will have identified which neurons are responsible
130
426005
2711
我们就会确定哪些神经元
07:08
for coordinate transformations.
131
428758
1543
负责坐标转换。
07:11
The next step will be to understand the specifics
132
431010
2294
下一步将是了解这些神经元
07:13
of how these neurons work together to do the calculation.
133
433346
3337
如何协同工作进行计算的细节。
07:16
But this is how we begin to understand how brains do basic
134
436724
3462
但这就是我们开始了解大脑 是如何进行基本
07:20
or primitive calculations.
135
440186
1627
或原始的计算。
07:22
Calculations that I regard as building blocks for more complex functions,
136
442188
4880
计算,我将其视为更复杂功能的构件,
07:27
not only for interception but also for cognition.
137
447110
3086
不仅用于拦截, 还用于认知。
07:32
The way that these neurons compute may be different from anything
138
452156
3170
这些神经元的计算方式可能不同于
07:35
that exists on a computer today.
139
455368
1877
当今计算机上存在的任何东西。
07:37
And the goal of this work is to do more than just write code
140
457870
3587
这项工作的目标不仅仅是
07:41
that replicates the activity patterns of neurons.
141
461457
2419
编写复制神经元活动模式的代码。
07:44
We aim to build a computer chip
142
464293
1794
我们的目标是制造一种计算机芯片,
07:46
that not only does the same things as biological brains
143
466129
2794
它不仅可以做 与生物大脑相同的事情,
07:48
but does them in the same way as biological brains.
144
468965
2711
而且可以用与生物大脑同样的方式 来做这些事情。
07:52
This could lead to drones driven by computers
145
472885
3254
这可能会导致由计算机驱动的无人机,
07:56
the same size of the dragonfly's brain
146
476139
2002
其大小与蜻蜓的大脑相同,
07:58
that captures some targets and avoid others.
147
478182
2837
捕获一些目标并避开其他目标。
08:01
Personally, I'm hoping for a small army of these
148
481853
2586
就我个人而言, 我希望有一小群这样的无人机
08:04
to defend my backyard from mosquitoes in the summer.
149
484480
2461
在夏天保护我的后院不受蚊子骚扰。
08:06
(Laughter)
150
486983
1460
(笑声)
08:09
The GPS on your phone could be replaced by a new navigation device
151
489027
4170
你手机上的 GPS 可能会被一种
08:13
based on dung beetles or ants
152
493239
1710
基于蜣螂或蚂蚁的新型导航设备所取代,
08:14
that could guide you to the straight or the easy path home.
153
494991
3045
它可以引导你走直路或容易回家的路。
08:18
And what would the power requirements of these devices be like?
154
498953
3378
那么这些设备的功率要求是怎样的呢?
08:23
As small as it is --
155
503458
1501
尽管它很小,
08:25
Or, sorry -- as large as it is,
156
505001
1877
或者说,对不起,尽管它很大,
08:26
the human brain is estimated to have the same power requirements
157
506878
3628
据估计,人脑的功率需求
08:30
as a 20-watt light bulb.
158
510548
2044
与 20 瓦的灯泡相同。
08:32
Imagine if all brain-inspired computers
159
512633
2211
想象一下, 如果所有受大脑启发的计算机
08:34
had the same extremely low-power requirements.
160
514844
2669
都具有相同的极低功耗要求。
08:38
Your smartphone or your smartwatch probably needs charging every day.
161
518431
3837
你的智能手机或智能手表 可能每天都需要充电。
08:42
Your new brain-inspired device might only need charging every few months,
162
522268
3587
你的新大脑启发设备 可能只需要每隔几个月,
08:45
or maybe even every few years.
163
525897
1668
甚至几年充电一次。
08:49
The famous physicist, Richard Feynman, once said,
164
529275
3670
著名物理学家理查德·费曼曾说:
08:52
"What I cannot create, I do not understand."
165
532945
2878
“我不能创造的东西,我就不了解。”
08:56
What I see in insect nervous systems
166
536783
2085
我在昆虫神经系统中看到的
08:58
is an opportunity to understand brains
167
538868
2169
是一个通过创造
09:01
through the creation of computers that work as brains do.
168
541079
3003
与大脑一样工作的计算机 来了解大脑的机会。
09:05
And creation of these computers will not just be for knowledge.
169
545083
3712
而这些计算机的创造 将不仅仅是为了认知。
09:08
There's potential for real impact on your devices, your vehicles,
170
548795
4254
有可能对你的设备、车辆
09:13
maybe even artificial intelligences.
171
553091
2210
甚至是人工智能产生真正的影响。
09:16
So next time you see an insect,
172
556177
2419
所以,下次你看到一只昆虫时,
09:18
consider that these tiny brains can lead to remarkable computers.
173
558638
4045
想想看,这些微小的大脑 可以发展出卓越的计算机。
09:23
And think of the potential that they offer us for the future.
174
563518
3211
想想它们为我们的未来提供的潜力。
09:27
Thank you.
175
567271
1126
谢谢。
09:28
(Applause)
176
568439
3379
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog