Are Insect Brains the Secret to Great AI? | Frances S. Chance | TED

72,255 views ・ 2023-01-02

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yeyun Deng 校对人员: JENNY SUN
00:05
Creating intelligence on a computer.
0
5210
2377
在计算机上创建智能。
00:08
This has been the Holy Grail for artificial intelligence
1
8129
2837
很长一段时间以来,这一直是
00:11
for quite some time.
2
11007
1377
人工智能的圣杯。
00:12
But how do we get there?
3
12968
1668
但我们如何到达那里?
00:15
So we view ourselves as highly intelligent beings.
4
15679
3128
我们认为自己是高度智慧的人。
00:18
So it's logical to study our own brains,
5
18848
2795
因此,研究我们自己的大脑,
00:21
the substrate of our cognition, for creating artificial intelligence.
6
21685
4212
我们认知的基础, 来创造人工智能是合乎逻辑的。
00:27
Imagine if we could replicate how our own brains work on a computer.
7
27148
4130
想象一下,如果我们可以在计算机上 复制我们自己的大脑是如何工作的。
00:32
But now consider the journey that would be required.
8
32612
2503
但现在考虑一下所需的过程。
00:37
The human brain contains 86 billion neurons.
9
37367
3712
人类大脑包含 860 亿个神经元。
00:42
Each is constantly communicating with thousands of others,
10
42289
3628
每个人都在不断地 与成千上万的人交流,
00:45
and each has individual characteristics of its own.
11
45959
3045
每个人都有自己的特点。
00:49
Capturing the human brain on a computer
12
49879
2378
在计算机上捕获人脑智慧
00:52
may simply be too big and too complex a problem
13
52299
3670
可能的确是一个太大、 太复杂的问题,
00:56
to tackle with the technology and the knowledge that we have today.
14
56011
3795
无法用我们今天的技术和知识来解决。
01:01
I believe that we can capture a brain on a computer,
15
61266
2878
我相信我们可以在计算机上捕获智慧,
01:04
but we have to start smaller.
16
64144
2461
但我们必须从更小的地方开始。
01:07
Much smaller.
17
67230
1168
小得多。
01:10
These insects have three of the most fascinating brains in the world to me.
18
70734
4713
对我来说,这些昆虫有三个 世界上最迷人的大脑。
01:16
While they do not possess human-level intelligence,
19
76448
2836
虽然它们不具备人类水平的智力,
01:19
each is remarkable at a particular task.
20
79326
3169
但每一个都在特定活动中表现出色。
01:22
Think of them as highly trained specialists.
21
82954
2544
将他们视为训练有素的专家。
01:26
African dung beetles are really good at rolling large balls in straight lines.
22
86750
5088
非洲屎壳郎真的很擅长 在直线上滚动大球。
01:31
(Laughter)
23
91880
1710
(笑声)
01:33
Now, if you've ever made a snowman,
24
93632
1710
如果你曾经堆过雪人,
01:35
you know that rolling a large ball is not easy.
25
95342
2460
你就知道滚一个大球并不容易。
01:39
Now picture trying to make that snowman
26
99095
2211
现在想象一下堆雪人
01:41
when the ball of snow is as big as you are
27
101348
2377
当雪球和你一样大时,
01:43
and you're standing on your head.
28
103725
1835
你倒立着。
01:45
(Laughter)
29
105602
1168
(笑声)
01:47
Sahara desert ants are navigation specialists.
30
107228
3796
撒哈拉沙漠蚂蚁是导航专家。
01:51
They might have to wander a considerable distance to forage for food.
31
111775
3753
他们可能要走很远的路才能觅食。
01:55
But once they do find sustenance,
32
115862
1752
但一旦他们找到了食物,
01:57
they know how to calculate the straightest path home.
33
117656
2585
他们就知道如何计算回家的最直路径。
02:01
And the dragonfly is a hunting specialist.
34
121910
2919
而蜻蜓是狩猎专家。
02:05
In the wild, dragonflies capture approximately 95 percent
35
125205
3587
在野外,蜻蜓捕获了大约 95% 的
02:08
of the prey they choose to go after.
36
128833
1752
它们选择的猎物。
02:11
These insects are so good at their specialties
37
131336
3003
这些昆虫非常擅长它们的专业,
02:14
that neuroscientists such as myself study them as model systems
38
134381
4337
以至于像我这样的神经科学家 将它们作为模型系统来研究,
02:18
to understand how animal nervous systems solve particular problems.
39
138760
4046
以了解动物神经系统 是如何解决特定的问题。
02:23
And in my own research, I study brains to bring these solutions,
40
143973
3879
在我的研究中, 我研究大脑,
02:27
the best that biology has to offer, to computers.
41
147894
3337
以将这些生物所能提供的 最好的解决方案引入计算机。
02:31
So consider the dragonfly brain.
42
151272
1877
想一下蜻蜓的大脑。
02:33
It has only on the order of one million neurons.
43
153900
3003
它只有大约 100 万个神经元。
02:37
Now, it's still not easy to unravel a circuit of even one million neurons.
44
157570
4672
现在,要解开一个哪怕有一百万个 神经元的回路仍然不容易。
02:42
But given the choice
45
162701
1167
但是如果要在
02:43
between trying to tease apart the one-million-neuron brain
46
163910
3003
尝试梳理 100 万个神经元大脑
02:46
versus the 86-billion-neuron brain,
47
166955
2586
和 860 亿个神经元大脑之间做出选择,
02:49
which would you choose to try first?
48
169541
2169
你会选择先尝试哪一个?
02:51
(Laughter)
49
171710
1167
(笑声)
02:53
When studying these smaller insect brains,
50
173837
2586
当研究这些较小的昆虫大脑时,
02:56
the immediate goal is not human intelligence.
51
176464
2461
当前的目标不是人类的智力。
02:59
We study these brains for what the insects do well.
52
179551
3461
我们研究这些大脑是为了 了解昆虫做得好的地方。
03:03
And in the case of the dragonfly, that's interception.
53
183805
2878
就蜻蜓而言,那就是拦截。
03:07
So when dragonflies are hunting,
54
187559
1543
因此,当蜻蜓捕食时,
03:09
they do more than just fly straight at the prey.
55
189144
2502
它们所做的不仅仅是直接飞向猎物。
03:12
They fly in such a way that they will intercept it.
56
192021
2503
它们以这样的方式飞行,以拦截它。
03:14
They aim for where the prey is going to be.
57
194566
2460
它们瞄准猎物将要到达的地方。
03:17
Much like a soccer player, running to intercept a pass.
58
197402
3003
就像足球运动员, 跑去拦截传球。
03:21
To do this correctly,
59
201865
1459
为了正确地做到这一点,
03:23
dragonflies need to perform what is known as a coordinate transformation,
60
203366
3879
蜻蜓需要进行所谓的坐标变换,
03:27
going from the eye’s frame of reference, or what the dragonfly sees,
61
207245
3504
从眼睛的参照系或蜻蜓看到的东西,
03:30
to the body's frame of reference,
62
210790
1585
到身体的参照系,
03:32
or how the dragonfly needs to turn its body to intercept.
63
212375
2836
或者蜻蜓需要如何转动身体进行拦截。
03:36
Coordinate transformations are a basic calculation
64
216004
3044
坐标变换是动物
03:39
that animals need to perform to interact with the world.
65
219048
3713
与世界互动所需要进行的基本计算。
03:43
We do them instinctively every time we reach for something.
66
223261
3086
我们每次伸手拿东西的时候 都会本能地做这些计算。
03:47
When I reach for an object straight in front of me,
67
227098
2878
当我伸手去拿我面前的一个物体时,
03:50
my arm takes a very different trajectory than if I turn my head,
68
230018
3545
我的手臂的运动轨迹
03:53
look at that same object when it is off to one side
69
233605
2460
和我转头看向一边的同一物体时
03:56
and reach for it there.
70
236107
1335
完全不同。
03:58
In both cases, my eyes see the same image of that object,
71
238109
3712
在这两种情况下,我的眼睛 看到的都是同一物体的图像,
04:01
but my brain is sending my arm on a very different trajectory
72
241821
3712
但我的大脑根据我脖子的位置 将我的手臂送上一个
04:05
based on the position of my neck.
73
245575
1919
非常不同的轨迹。
04:12
And dragonflies are fast.
74
252624
1960
蜻蜓很快。
04:15
This means they calculate fast.
75
255293
2085
这意味着他们计算得很快。
04:18
The latency, or the time it takes for a dragonfly to respond
76
258046
4004
延迟,即蜻蜓在看到猎物转向后
04:22
once it sees the prey turn,
77
262091
1752
做出反应所需的时间,
04:23
is about 50 milliseconds.
78
263885
1960
大约是 50 毫秒。
04:27
This latency is remarkable.
79
267180
2044
这种延迟是很了不起的。
04:30
For one thing, it's only half the time of a human eye blink.
80
270016
3378
一方面,这只是人类眨眼时间的一半。
04:34
But for another thing,
81
274020
1668
但另一方面,
04:35
it suggests that dragonflies capture how to intercept
82
275688
3003
它表明蜻蜓仅通过相对的
04:38
in only relatively or surprisingly few computational steps.
83
278733
4755
或惊人的极少计算步骤 即可体现出如何进行拦截。
04:44
So in the brain,
84
284364
1376
所以在大脑中,
04:45
a computational step is a single neuron
85
285782
2878
计算步骤是单个神经元
04:48
or a layer of neurons working in parallel.
86
288660
2460
或一层神经元并行工作。
04:51
It takes a single neuron about 10 milliseconds
87
291996
3087
单个神经元需要大约 10 毫秒
04:55
to add up all its inputs and respond.
88
295124
2336
才能将其所有输入相加并做出反应。
04:58
The 50-millisecond response time
89
298169
2336
50毫秒的响应时间意味着,
05:00
means that once the dragonfly sees its prey turn,
90
300547
3503
一旦蜻蜓看到它的猎物转向,
05:04
there's only time for maybe four of these computational steps
91
304092
3336
可能只有四个计算步骤
05:07
or four layers of neurons, working in sequence, one after the other,
92
307470
3837
或四层神经元依次工作的时间, 一个接一个,
05:11
to calculate how the dragonfly needs to turn.
93
311349
2377
来计算蜻蜓需要如何转向。
05:14
In other words, if I want to study
94
314811
2085
换句话说,如果我想研究
05:16
how the dragonfly does coordinate transformations,
95
316896
4213
蜻蜓如何进行坐标变换,
05:21
the neural circuit that I need to understand,
96
321109
2753
我需要了解神经回路,
05:23
the neural circuit that I need to study,
97
323903
2252
我需要研究神经回路,
05:26
can have at most four layers of neurons.
98
326197
2670
最多可以有四层神经元。
05:29
Each layer may have many neurons,
99
329784
2377
每一层可能有许多神经元,
05:32
but this is a small neural circuit.
100
332203
2127
但这是一个小的神经回路。
05:34
Small enough that we can identify it
101
334789
2002
小到我们可以用
05:36
and study it with the tools that are available today.
102
336833
2669
今天的工具来识别它和研究它。
05:40
And this is what I'm trying to do.
103
340670
1835
这就是我要做的。
05:43
I have built a model of what I believe is the neural circuit
104
343298
3044
我已经建立了一个我认为是计算
05:46
that calculates how the dragonfly should turn.
105
346384
2544
蜻蜓应该如何转向的神经回路的模型。
05:49
And here is the cool result.
106
349596
1584
这是一个很酷的结果。
05:51
In the model,
107
351222
1627
在该模型中,
05:52
dragonflies do coordinate transformations in only one computational step,
108
352891
4713
蜻蜓只用一个计算步骤, 即一个神经元层
05:57
one layer of neurons.
109
357645
1627
来做坐标转换。
05:59
This is something we can test and understand.
110
359898
2877
这是我们可以测试和理解的。
06:03
In a computer simulation,
111
363651
1502
在计算机模拟中,
06:05
I can predict the activities of individual neurons
112
365194
3170
我可以预测蜻蜓狩猎时
06:08
while the dragonfly is hunting.
113
368364
1669
单个神经元的活动。
06:11
For example, here I am predicting the action potentials, or the spikes,
114
371367
4338
例如,我在这里预测 当蜻蜓看到猎物移动时,
06:15
that are fired by one of these neurons
115
375747
1835
其中一个神经元
06:17
when the dragonfly sees the prey move.
116
377582
2627
发射了动作电位或脉冲。
06:22
To test the model, my collaborators and I
117
382545
2169
为了测试这个模型, 我和我的合作者
06:24
are now comparing these predicted neural responses
118
384756
2836
现在正在将这些预测的神经反应 与活体蜻蜓大脑中
06:27
with responses of neurons recorded in living dragonfly brains.
119
387592
3837
记录的神经元反应进行比较。
06:33
These are ongoing experiments
120
393431
1668
这些是正在进行的实验,
06:35
in which we put living dragonflies in virtual reality.
121
395099
3796
我们将活体蜻蜓放在虚拟现实中。
06:40
(Laughter)
122
400188
1918
(笑声)
06:42
Now, it's not practical to put VR goggles on a dragonfly.
123
402148
3754
现在,给蜻蜓戴上 VR 护目镜是不现实的。
06:47
So instead, we show movies of moving targets to the dragonfly,
124
407070
4588
因此,我们改为向蜻蜓 播放移动目标的电影,
06:51
while an electrode records activity patterns of individual neurons
125
411658
3670
同时电极记录大脑中单个神经元的
06:55
in the brain.
126
415328
1251
活动模式。
06:58
Yeah, he likes the movies.
127
418331
1335
是的,他喜欢电影。
07:01
If the responses that we record in the brain
128
421167
2628
如果我们在大脑中记录的反应
07:03
match those predicted by the model,
129
423836
2128
与模型预测的反应相匹配,
07:06
we will have identified which neurons are responsible
130
426005
2711
我们就会确定哪些神经元
07:08
for coordinate transformations.
131
428758
1543
负责坐标转换。
07:11
The next step will be to understand the specifics
132
431010
2294
下一步将是了解这些神经元
07:13
of how these neurons work together to do the calculation.
133
433346
3337
如何协同工作进行计算的细节。
07:16
But this is how we begin to understand how brains do basic
134
436724
3462
但这就是我们开始了解大脑 是如何进行基本
07:20
or primitive calculations.
135
440186
1627
或原始的计算。
07:22
Calculations that I regard as building blocks for more complex functions,
136
442188
4880
计算,我将其视为更复杂功能的构件,
07:27
not only for interception but also for cognition.
137
447110
3086
不仅用于拦截, 还用于认知。
07:32
The way that these neurons compute may be different from anything
138
452156
3170
这些神经元的计算方式可能不同于
07:35
that exists on a computer today.
139
455368
1877
当今计算机上存在的任何东西。
07:37
And the goal of this work is to do more than just write code
140
457870
3587
这项工作的目标不仅仅是
07:41
that replicates the activity patterns of neurons.
141
461457
2419
编写复制神经元活动模式的代码。
07:44
We aim to build a computer chip
142
464293
1794
我们的目标是制造一种计算机芯片,
07:46
that not only does the same things as biological brains
143
466129
2794
它不仅可以做 与生物大脑相同的事情,
07:48
but does them in the same way as biological brains.
144
468965
2711
而且可以用与生物大脑同样的方式 来做这些事情。
07:52
This could lead to drones driven by computers
145
472885
3254
这可能会导致由计算机驱动的无人机,
07:56
the same size of the dragonfly's brain
146
476139
2002
其大小与蜻蜓的大脑相同,
07:58
that captures some targets and avoid others.
147
478182
2837
捕获一些目标并避开其他目标。
08:01
Personally, I'm hoping for a small army of these
148
481853
2586
就我个人而言, 我希望有一小群这样的无人机
08:04
to defend my backyard from mosquitoes in the summer.
149
484480
2461
在夏天保护我的后院不受蚊子骚扰。
08:06
(Laughter)
150
486983
1460
(笑声)
08:09
The GPS on your phone could be replaced by a new navigation device
151
489027
4170
你手机上的 GPS 可能会被一种
08:13
based on dung beetles or ants
152
493239
1710
基于蜣螂或蚂蚁的新型导航设备所取代,
08:14
that could guide you to the straight or the easy path home.
153
494991
3045
它可以引导你走直路或容易回家的路。
08:18
And what would the power requirements of these devices be like?
154
498953
3378
那么这些设备的功率要求是怎样的呢?
08:23
As small as it is --
155
503458
1501
尽管它很小,
08:25
Or, sorry -- as large as it is,
156
505001
1877
或者说,对不起,尽管它很大,
08:26
the human brain is estimated to have the same power requirements
157
506878
3628
据估计,人脑的功率需求
08:30
as a 20-watt light bulb.
158
510548
2044
与 20 瓦的灯泡相同。
08:32
Imagine if all brain-inspired computers
159
512633
2211
想象一下, 如果所有受大脑启发的计算机
08:34
had the same extremely low-power requirements.
160
514844
2669
都具有相同的极低功耗要求。
08:38
Your smartphone or your smartwatch probably needs charging every day.
161
518431
3837
你的智能手机或智能手表 可能每天都需要充电。
08:42
Your new brain-inspired device might only need charging every few months,
162
522268
3587
你的新大脑启发设备 可能只需要每隔几个月,
08:45
or maybe even every few years.
163
525897
1668
甚至几年充电一次。
08:49
The famous physicist, Richard Feynman, once said,
164
529275
3670
著名物理学家理查德·费曼曾说:
08:52
"What I cannot create, I do not understand."
165
532945
2878
“我不能创造的东西,我就不了解。”
08:56
What I see in insect nervous systems
166
536783
2085
我在昆虫神经系统中看到的
08:58
is an opportunity to understand brains
167
538868
2169
是一个通过创造
09:01
through the creation of computers that work as brains do.
168
541079
3003
与大脑一样工作的计算机 来了解大脑的机会。
09:05
And creation of these computers will not just be for knowledge.
169
545083
3712
而这些计算机的创造 将不仅仅是为了认知。
09:08
There's potential for real impact on your devices, your vehicles,
170
548795
4254
有可能对你的设备、车辆
09:13
maybe even artificial intelligences.
171
553091
2210
甚至是人工智能产生真正的影响。
09:16
So next time you see an insect,
172
556177
2419
所以,下次你看到一只昆虫时,
09:18
consider that these tiny brains can lead to remarkable computers.
173
558638
4045
想想看,这些微小的大脑 可以发展出卓越的计算机。
09:23
And think of the potential that they offer us for the future.
174
563518
3211
想想它们为我们的未来提供的潜力。
09:27
Thank you.
175
567271
1126
谢谢。
09:28
(Applause)
176
568439
3379
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7