Are Insect Brains the Secret to Great AI? | Frances S. Chance | TED

73,363 views ・ 2023-01-02

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:05
Creating intelligence on a computer.
0
5210
2377
在電腦上創造智慧。
00:08
This has been the Holy Grail for artificial intelligence
1
8129
2837
從好一段時間之前,這就 一直是人工智慧的聖杯。
00:11
for quite some time.
2
11007
1377
00:12
But how do we get there?
3
12968
1668
但我們要如何做到?
00:15
So we view ourselves as highly intelligent beings.
4
15679
3128
我們自認是具有高度智慧的生物。
00:18
So it's logical to study our own brains,
5
18848
2795
所以很合邏輯的做法 就是研究我們自己的大腦,
00:21
the substrate of our cognition, for creating artificial intelligence.
6
21685
4212
我們認知的基質,
來創造人工智慧。
00:27
Imagine if we could replicate how our own brains work on a computer.
7
27148
4130
想像一下如果我們能把我們 大腦運作的方式複製到電腦上。
00:32
But now consider the journey that would be required.
8
32612
2503
但,再想想會需要 什麼樣的過程才能達成。
00:37
The human brain contains 86 billion neurons.
9
37367
3712
人類的大腦有八百六十億個神經元。
00:42
Each is constantly communicating with thousands of others,
10
42289
3628
每個神經元都經常在 和數千個其他神經元溝通,
00:45
and each has individual characteristics of its own.
11
45959
3045
每個神經元也都有它自己的特徵。
00:49
Capturing the human brain on a computer
12
49879
2378
把人類大腦放到 電腦上,簡單來說就是
00:52
may simply be too big and too complex a problem
13
52299
3670
太大、太複雜的問題,
00:56
to tackle with the technology and the knowledge that we have today.
14
56011
3795
用現今的科技和知識無法辦到。
01:01
I believe that we can capture a brain on a computer,
15
61266
2878
我相信我們可以把大腦放到電腦上,
01:04
but we have to start smaller.
16
64144
2461
但我們得從比較小的大腦著手。
01:07
Much smaller.
17
67230
1168
小很多。
01:10
These insects have three of the most fascinating brains in the world to me.
18
70734
4713
對我來說,這三種昆蟲 有世界上最炫的三種大腦。
01:16
While they do not possess human-level intelligence,
19
76448
2836
雖然牠們沒有人類等級的智慧,
01:19
each is remarkable at a particular task.
20
79326
3169
但每一種都非常擅長 一項特定的工作任務。
01:22
Think of them as highly trained specialists.
21
82954
2544
把牠們想成受過高度訓練的專家。
01:26
African dung beetles are really good at rolling large balls in straight lines.
22
86750
5088
非洲蜣螂非常擅長沿直線滾出大球。
01:31
(Laughter)
23
91880
1710
(笑聲)
01:33
Now, if you've ever made a snowman,
24
93632
1710
如果你曾經做過雪人,
01:35
you know that rolling a large ball is not easy.
25
95342
2460
就會知道要滾出大球並不容易。
01:39
Now picture trying to make that snowman
26
99095
2211
想像一下,你要用跟你 一樣大的雪球來做的雪人,
01:41
when the ball of snow is as big as you are
27
101348
2377
01:43
and you're standing on your head.
28
103725
1835
你還呈倒立狀態。
01:45
(Laughter)
29
105602
1168
(笑聲)
01:47
Sahara desert ants are navigation specialists.
30
107228
3796
撒哈拉銀蟻是導航專家。
01:51
They might have to wander a considerable distance to forage for food.
31
111775
3753
牠們可能得要四處遊走 相當遠的距離去找食物。
01:55
But once they do find sustenance,
32
115862
1752
但,一旦找到食物,
01:57
they know how to calculate the straightest path home.
33
117656
2585
牠們知道如何計算出 回到家最直的路線。
02:01
And the dragonfly is a hunting specialist.
34
121910
2919
而蜻蜓則是打獵專家。
02:05
In the wild, dragonflies capture approximately 95 percent
35
125205
3587
在野外,被蜻蜓選中的獵物 有近 95% 會被牠們捉到。
02:08
of the prey they choose to go after.
36
128833
1752
02:11
These insects are so good at their specialties
37
131336
3003
這些昆蟲在牠們專長的領域很出色,
02:14
that neuroscientists such as myself study them as model systems
38
134381
4337
因此像我這樣的神經科學家
會把牠們當作模範系統來研究,
02:18
to understand how animal nervous systems solve particular problems.
39
138760
4046
以了解動物的神經系統 如何解決特定的問題。
02:23
And in my own research, I study brains to bring these solutions,
40
143973
3879
在我自己的研究中,我鑽研大腦,
將生物學所能提供 最棒的解決方案帶給電腦。
02:27
the best that biology has to offer, to computers.
41
147894
3337
02:31
So consider the dragonfly brain.
42
151272
1877
以蜻蜓的大腦為例。
02:33
It has only on the order of one million neurons.
43
153900
3003
它只有大約一百萬個神經元。
02:37
Now, it's still not easy to unravel a circuit of even one million neurons.
44
157570
4672
就算只有一百萬個神經元, 也仍然不容易搞懂一個迴路。
02:42
But given the choice
45
162701
1167
但如果要選擇去試著破解
02:43
between trying to tease apart the one-million-neuron brain
46
163910
3003
一百萬個神經元的大腦, 或八百六十億個神經元的大腦,
02:46
versus the 86-billion-neuron brain,
47
166955
2586
02:49
which would you choose to try first?
48
169541
2169
你會選擇先試哪一個?
02:51
(Laughter)
49
171710
1167
(笑聲)
02:53
When studying these smaller insect brains,
50
173837
2586
研究這些較小的昆蟲大腦時,
02:56
the immediate goal is not human intelligence.
51
176464
2461
當前的目標並不是人類智慧。
02:59
We study these brains for what the insects do well.
52
179551
3461
我們針對這些昆蟲的專長 來研究這些大腦。
03:03
And in the case of the dragonfly, that's interception.
53
183805
2878
以蜻蜓來說,專長就是攔截。
03:07
So when dragonflies are hunting,
54
187559
1543
蜻蜓在打獵時,
03:09
they do more than just fly straight at the prey.
55
189144
2502
牠們不會只是直直飛向獵物。
03:12
They fly in such a way that they will intercept it.
56
192021
2503
牠們的飛行方式 讓牠們能攔截該獵物。
03:14
They aim for where the prey is going to be.
57
194566
2460
牠們會瞄準該獵物將會到達的地方。
03:17
Much like a soccer player, running to intercept a pass.
58
197402
3003
很像是足球員跑去攔截對手傳球。
03:21
To do this correctly,
59
201865
1459
要正確做好攔截,
03:23
dragonflies need to perform what is known as a coordinate transformation,
60
203366
3879
蜻蜓需要做我們所知的座標轉換,
03:27
going from the eye’s frame of reference, or what the dragonfly sees,
61
207245
3504
從眼睛的參照座標系, 也就是蜻蜓看見的,
03:30
to the body's frame of reference,
62
210790
1585
轉到身體的參照座標系,
03:32
or how the dragonfly needs to turn its body to intercept.
63
212375
2836
即蜻蜓要怎麼做才能 把身體轉對方向去做攔截。
03:36
Coordinate transformations are a basic calculation
64
216004
3044
動物必須要會座標轉換 這種基本計算,
03:39
that animals need to perform to interact with the world.
65
219048
3713
才能夠跟世界互動。
03:43
We do them instinctively every time we reach for something.
66
223261
3086
每當我們伸手拿東西時 就是直覺地在做座標轉換。
03:47
When I reach for an object straight in front of me,
67
227098
2878
當我伸手去拿我前面的物體時,
03:50
my arm takes a very different trajectory than if I turn my head,
68
230018
3545
我的手臂移動的軌跡 完全不同於我轉動我的頭
03:53
look at that same object when it is off to one side
69
233605
2460
去看在旁邊的同一個物體
03:56
and reach for it there.
70
236107
1335
並伸手去拿它的軌跡。
03:58
In both cases, my eyes see the same image of that object,
71
238109
3712
在這兩個例子中,我的眼睛 都看到同樣的物體影像。
04:01
but my brain is sending my arm on a very different trajectory
72
241821
3712
但我的大腦會指示我的手臂 沿不同的軌跡移動,
04:05
based on the position of my neck.
73
245575
1919
其依據是脖子的位置。
04:12
And dragonflies are fast.
74
252624
1960
蜻蜓的速度很快。
04:15
This means they calculate fast.
75
255293
2085
這就表示牠們的計算很快。
04:18
The latency, or the time it takes for a dragonfly to respond
76
258046
4004
「延遲時間」,也就是 蜻蜓看到獵物轉彎之後
04:22
once it sees the prey turn,
77
262091
1752
做出反應需要的時間,
04:23
is about 50 milliseconds.
78
263885
1960
是大約五十毫秒。
04:27
This latency is remarkable.
79
267180
2044
這延遲時間短得不可思議。
04:30
For one thing, it's only half the time of a human eye blink.
80
270016
3378
一則,它僅是人類眨眼一次 所需要的時間的一半。
04:34
But for another thing,
81
274020
1668
但,二則,
04:35
it suggests that dragonflies capture how to intercept
82
275688
3003
這也表示蜻蜓要知道 如何攔截,只需要用
04:38
in only relatively or surprisingly few computational steps.
83
278733
4755
相對比較少的計算步驟, 而且少得驚人。
04:44
So in the brain,
84
284364
1376
在大腦中,
04:45
a computational step is a single neuron
85
285782
2878
一個計算步驟就是單一個神經元
04:48
or a layer of neurons working in parallel.
86
288660
2460
或者是一層神經元平行運作。
04:51
It takes a single neuron about 10 milliseconds
87
291996
3087
一個神經元需要大約十毫秒
04:55
to add up all its inputs and respond.
88
295124
2336
把所有的輸入資訊 加總起來做出反應。
04:58
The 50-millisecond response time
89
298169
2336
反應時間只要五十毫秒,
05:00
means that once the dragonfly sees its prey turn,
90
300547
3503
意味著一旦蜻蜓看到牠的獵物轉向,
05:04
there's only time for maybe four of these computational steps
91
304092
3336
也許時間只夠進行 四個這種計算步驟,
05:07
or four layers of neurons, working in sequence, one after the other,
92
307470
3837
或者四層神經元, 依序運作,一層接著一層,
05:11
to calculate how the dragonfly needs to turn.
93
311349
2377
來計算蜻蜓需要如何轉向。
05:14
In other words, if I want to study
94
314811
2085
換言之,如果我想要研究蜻蜓如何做
05:16
how the dragonfly does coordinate transformations,
95
316896
4213
座標轉換,
05:21
the neural circuit that I need to understand,
96
321109
2753
我需要了解的神經迴路,
05:23
the neural circuit that I need to study,
97
323903
2252
我需要研究的神經迴路,
05:26
can have at most four layers of neurons.
98
326197
2670
最多只有四層神經元。
05:29
Each layer may have many neurons,
99
329784
2377
一層當中可能有許多神經元,
05:32
but this is a small neural circuit.
100
332203
2127
這算是很小的神經迴路。
05:34
Small enough that we can identify it
101
334789
2002
小到我們可以用現今 既有的工具來辨識、研究它。
05:36
and study it with the tools that are available today.
102
336833
2669
05:40
And this is what I'm trying to do.
103
340670
1835
這就是我在試圖做的事。
05:43
I have built a model of what I believe is the neural circuit
104
343298
3044
我建立了一個模型, 我相信它就是用來計算
05:46
that calculates how the dragonfly should turn.
105
346384
2544
蜻蜓應該如何轉向的神經迴路。
05:49
And here is the cool result.
106
349596
1584
很酷的結果如下。
05:51
In the model,
107
351222
1627
在模型中,
05:52
dragonflies do coordinate transformations in only one computational step,
108
352891
4713
蜻蜓只用一個計算步驟 就完成座標轉換,
05:57
one layer of neurons.
109
357645
1627
只用一層神經元。
05:59
This is something we can test and understand.
110
359898
2877
這是我們能測試並了解的現象。
06:03
In a computer simulation,
111
363651
1502
在電腦模擬中,
06:05
I can predict the activities of individual neurons
112
365194
3170
我可以預測蜻蜓在打獵時, 每個個別神經元的活動。
06:08
while the dragonfly is hunting.
113
368364
1669
06:11
For example, here I am predicting the action potentials, or the spikes,
114
371367
4338
比如,在這裡我可以預測 當蜻蜓看到獵物移動時,
06:15
that are fired by one of these neurons
115
375747
1835
這些神經元的任何一個會 產生的動作電位,或峰電位。
06:17
when the dragonfly sees the prey move.
116
377582
2627
06:22
To test the model, my collaborators and I
117
382545
2169
為了測試這個模型, 我和我的合作夥伴現在
06:24
are now comparing these predicted neural responses
118
384756
2836
正在將這些預測的神經反應拿來比對
06:27
with responses of neurons recorded in living dragonfly brains.
119
387592
3837
從活的蜻蜓大腦 所記錄下來的神經元反應。
06:33
These are ongoing experiments
120
393431
1668
這些實驗還在進行中,
06:35
in which we put living dragonflies in virtual reality.
121
395099
3796
在實驗中,我們將活的 蜻蜓放到虛擬實境中。
06:40
(Laughter)
122
400188
1918
(笑聲)
06:42
Now, it's not practical to put VR goggles on a dragonfly.
123
402148
3754
讓蜻蜓戴 VR 頭戴式 顯示器不太實際。
06:47
So instead, we show movies of moving targets to the dragonfly,
124
407070
4588
所以,我們改成讓蜻蜓 看有移動目標的電影,
06:51
while an electrode records activity patterns of individual neurons
125
411658
3670
同時用電極來記錄大腦中 個別神經元的活動模式。
06:55
in the brain.
126
415328
1251
06:58
Yeah, he likes the movies.
127
418331
1335
是的,牠喜歡看電影。
07:01
If the responses that we record in the brain
128
421167
2628
如果我們從大腦中記錄到的反應
07:03
match those predicted by the model,
129
423836
2128
符合模型所做的預測,
07:06
we will have identified which neurons are responsible
130
426005
2711
就表示我們找出了哪些神經元 負責做座標轉換的工作。
07:08
for coordinate transformations.
131
428758
1543
07:11
The next step will be to understand the specifics
132
431010
2294
下一步是要去了解明確細節,
07:13
of how these neurons work together to do the calculation.
133
433346
3337
搞懂這些神經元如何合作來做計算。
07:16
But this is how we begin to understand how brains do basic
134
436724
3462
但,我們就是用這種方式 開始了解大腦如何做基本
07:20
or primitive calculations.
135
440186
1627
或原始的計算。
07:22
Calculations that I regard as building blocks for more complex functions,
136
442188
4880
我把這些計算視為 是更複雜計算的積木,
07:27
not only for interception but also for cognition.
137
447110
3086
不只用在攔截上,也用在認知上。
07:32
The way that these neurons compute may be different from anything
138
452156
3170
這些神經元計算的方式 可能和電腦上現有的方法不同。
07:35
that exists on a computer today.
139
455368
1877
07:37
And the goal of this work is to do more than just write code
140
457870
3587
而這項研究的目標不只是要
撰寫程式來複製神經元的活動模式。
07:41
that replicates the activity patterns of neurons.
141
461457
2419
07:44
We aim to build a computer chip
142
464293
1794
我們想要打造一種電腦晶片,
07:46
that not only does the same things as biological brains
143
466129
2794
它不只能做到生物大腦會做的事,
07:48
but does them in the same way as biological brains.
144
468965
2711
連做的方式也和生物大腦一樣。
07:52
This could lead to drones driven by computers
145
472885
3254
可能可以發明出一種無人機,
控制它的電腦只有 蜻蜓的大腦那麼大,
07:56
the same size of the dragonfly's brain
146
476139
2002
07:58
that captures some targets and avoid others.
147
478182
2837
這種無人機能捕捉某些 目標物,避開其他的。
08:01
Personally, I'm hoping for a small army of these
148
481853
2586
我個人希望有一支 這種無人機的小軍隊,
08:04
to defend my backyard from mosquitoes in the summer.
149
484480
2461
在夏天時守衛我的後院,對抗蚊子。
08:06
(Laughter)
150
486983
1460
(笑聲)
08:09
The GPS on your phone could be replaced by a new navigation device
151
489027
4170
你手機中的全球定位系統也可以換成
根據蜣螂或螞蟻 做出的新的導航裝置,
08:13
based on dung beetles or ants
152
493239
1710
08:14
that could guide you to the straight or the easy path home.
153
494991
3045
能幫你找到最直或最簡單的回家路。
08:18
And what would the power requirements of these devices be like?
154
498953
3378
這些裝置的電源需求有多大?
08:23
As small as it is --
155
503458
1501
以大腦這麼小——喔, 抱歉——以它這麼大的尺寸,
08:25
Or, sorry -- as large as it is,
156
505001
1877
08:26
the human brain is estimated to have the same power requirements
157
506878
3628
估計電力需求會等同於
08:30
as a 20-watt light bulb.
158
510548
2044
一個二十瓦的燈泡。
08:32
Imagine if all brain-inspired computers
159
512633
2211
想像一下,如果所有 靈感取自大腦的電腦
08:34
had the same extremely low-power requirements.
160
514844
2669
對於電力的需求 都同樣低到這種程度。
08:38
Your smartphone or your smartwatch probably needs charging every day.
161
518431
3837
你的智慧手機或智慧手錶 可能每天都需要充電。
08:42
Your new brain-inspired device might only need charging every few months,
162
522268
3587
靈感來自大腦的裝置可能 幾個月充電一次就夠了,
08:45
or maybe even every few years.
163
525897
1668
甚至幾年充電一次。
08:49
The famous physicist, Richard Feynman, once said,
164
529275
3670
知名的物理學家 理查‧費曼曾經說過:
08:52
"What I cannot create, I do not understand."
165
532945
2878
「我創造不出來的東西, 就表示我不了解它。」
08:56
What I see in insect nervous systems
166
536783
2085
我在昆蟲的神經系統中看到的,
08:58
is an opportunity to understand brains
167
538868
2169
是一個了解大腦的機會,
09:01
through the creation of computers that work as brains do.
168
541079
3003
透過創造模仿大腦運作方式的 電腦來了解大腦 。
09:05
And creation of these computers will not just be for knowledge.
169
545083
3712
創造這些電腦的目的 不只是為了知識。
09:08
There's potential for real impact on your devices, your vehicles,
170
548795
4254
有可能可以造成真實的影響, 改變你的裝置、你的車,
09:13
maybe even artificial intelligences.
171
553091
2210
可能甚至人工智慧。
09:16
So next time you see an insect,
172
556177
2419
所以,下次當你看到昆蟲,
09:18
consider that these tiny brains can lead to remarkable computers.
173
558638
4045
想想這些微小的大腦 能夠促成非凡的電腦。
09:23
And think of the potential that they offer us for the future.
174
563518
3211
也想想它們為我們的未來 提供的可能性。
09:27
Thank you.
175
567271
1126
謝謝。
09:28
(Applause)
176
568439
3379
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog