Are Insect Brains the Secret to Great AI? | Frances S. Chance | TED

72,255 views ・ 2023-01-02

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: Helen Chang
00:05
Creating intelligence on a computer.
0
5210
2377
在電腦上創造智慧。
00:08
This has been the Holy Grail for artificial intelligence
1
8129
2837
從好一段時間之前,這就 一直是人工智慧的聖杯。
00:11
for quite some time.
2
11007
1377
00:12
But how do we get there?
3
12968
1668
但我們要如何做到?
00:15
So we view ourselves as highly intelligent beings.
4
15679
3128
我們自認是具有高度智慧的生物。
00:18
So it's logical to study our own brains,
5
18848
2795
所以很合邏輯的做法 就是研究我們自己的大腦,
00:21
the substrate of our cognition, for creating artificial intelligence.
6
21685
4212
我們認知的基質,
來創造人工智慧。
00:27
Imagine if we could replicate how our own brains work on a computer.
7
27148
4130
想像一下如果我們能把我們 大腦運作的方式複製到電腦上。
00:32
But now consider the journey that would be required.
8
32612
2503
但,再想想會需要 什麼樣的過程才能達成。
00:37
The human brain contains 86 billion neurons.
9
37367
3712
人類的大腦有八百六十億個神經元。
00:42
Each is constantly communicating with thousands of others,
10
42289
3628
每個神經元都經常在 和數千個其他神經元溝通,
00:45
and each has individual characteristics of its own.
11
45959
3045
每個神經元也都有它自己的特徵。
00:49
Capturing the human brain on a computer
12
49879
2378
把人類大腦放到 電腦上,簡單來說就是
00:52
may simply be too big and too complex a problem
13
52299
3670
太大、太複雜的問題,
00:56
to tackle with the technology and the knowledge that we have today.
14
56011
3795
用現今的科技和知識無法辦到。
01:01
I believe that we can capture a brain on a computer,
15
61266
2878
我相信我們可以把大腦放到電腦上,
01:04
but we have to start smaller.
16
64144
2461
但我們得從比較小的大腦著手。
01:07
Much smaller.
17
67230
1168
小很多。
01:10
These insects have three of the most fascinating brains in the world to me.
18
70734
4713
對我來說,這三種昆蟲 有世界上最炫的三種大腦。
01:16
While they do not possess human-level intelligence,
19
76448
2836
雖然牠們沒有人類等級的智慧,
01:19
each is remarkable at a particular task.
20
79326
3169
但每一種都非常擅長 一項特定的工作任務。
01:22
Think of them as highly trained specialists.
21
82954
2544
把牠們想成受過高度訓練的專家。
01:26
African dung beetles are really good at rolling large balls in straight lines.
22
86750
5088
非洲蜣螂非常擅長沿直線滾出大球。
01:31
(Laughter)
23
91880
1710
(笑聲)
01:33
Now, if you've ever made a snowman,
24
93632
1710
如果你曾經做過雪人,
01:35
you know that rolling a large ball is not easy.
25
95342
2460
就會知道要滾出大球並不容易。
01:39
Now picture trying to make that snowman
26
99095
2211
想像一下,你要用跟你 一樣大的雪球來做的雪人,
01:41
when the ball of snow is as big as you are
27
101348
2377
01:43
and you're standing on your head.
28
103725
1835
你還呈倒立狀態。
01:45
(Laughter)
29
105602
1168
(笑聲)
01:47
Sahara desert ants are navigation specialists.
30
107228
3796
撒哈拉銀蟻是導航專家。
01:51
They might have to wander a considerable distance to forage for food.
31
111775
3753
牠們可能得要四處遊走 相當遠的距離去找食物。
01:55
But once they do find sustenance,
32
115862
1752
但,一旦找到食物,
01:57
they know how to calculate the straightest path home.
33
117656
2585
牠們知道如何計算出 回到家最直的路線。
02:01
And the dragonfly is a hunting specialist.
34
121910
2919
而蜻蜓則是打獵專家。
02:05
In the wild, dragonflies capture approximately 95 percent
35
125205
3587
在野外,被蜻蜓選中的獵物 有近 95% 會被牠們捉到。
02:08
of the prey they choose to go after.
36
128833
1752
02:11
These insects are so good at their specialties
37
131336
3003
這些昆蟲在牠們專長的領域很出色,
02:14
that neuroscientists such as myself study them as model systems
38
134381
4337
因此像我這樣的神經科學家
會把牠們當作模範系統來研究,
02:18
to understand how animal nervous systems solve particular problems.
39
138760
4046
以了解動物的神經系統 如何解決特定的問題。
02:23
And in my own research, I study brains to bring these solutions,
40
143973
3879
在我自己的研究中,我鑽研大腦,
將生物學所能提供 最棒的解決方案帶給電腦。
02:27
the best that biology has to offer, to computers.
41
147894
3337
02:31
So consider the dragonfly brain.
42
151272
1877
以蜻蜓的大腦為例。
02:33
It has only on the order of one million neurons.
43
153900
3003
它只有大約一百萬個神經元。
02:37
Now, it's still not easy to unravel a circuit of even one million neurons.
44
157570
4672
就算只有一百萬個神經元, 也仍然不容易搞懂一個迴路。
02:42
But given the choice
45
162701
1167
但如果要選擇去試著破解
02:43
between trying to tease apart the one-million-neuron brain
46
163910
3003
一百萬個神經元的大腦, 或八百六十億個神經元的大腦,
02:46
versus the 86-billion-neuron brain,
47
166955
2586
02:49
which would you choose to try first?
48
169541
2169
你會選擇先試哪一個?
02:51
(Laughter)
49
171710
1167
(笑聲)
02:53
When studying these smaller insect brains,
50
173837
2586
研究這些較小的昆蟲大腦時,
02:56
the immediate goal is not human intelligence.
51
176464
2461
當前的目標並不是人類智慧。
02:59
We study these brains for what the insects do well.
52
179551
3461
我們針對這些昆蟲的專長 來研究這些大腦。
03:03
And in the case of the dragonfly, that's interception.
53
183805
2878
以蜻蜓來說,專長就是攔截。
03:07
So when dragonflies are hunting,
54
187559
1543
蜻蜓在打獵時,
03:09
they do more than just fly straight at the prey.
55
189144
2502
牠們不會只是直直飛向獵物。
03:12
They fly in such a way that they will intercept it.
56
192021
2503
牠們的飛行方式 讓牠們能攔截該獵物。
03:14
They aim for where the prey is going to be.
57
194566
2460
牠們會瞄準該獵物將會到達的地方。
03:17
Much like a soccer player, running to intercept a pass.
58
197402
3003
很像是足球員跑去攔截對手傳球。
03:21
To do this correctly,
59
201865
1459
要正確做好攔截,
03:23
dragonflies need to perform what is known as a coordinate transformation,
60
203366
3879
蜻蜓需要做我們所知的座標轉換,
03:27
going from the eye’s frame of reference, or what the dragonfly sees,
61
207245
3504
從眼睛的參照座標系, 也就是蜻蜓看見的,
03:30
to the body's frame of reference,
62
210790
1585
轉到身體的參照座標系,
03:32
or how the dragonfly needs to turn its body to intercept.
63
212375
2836
即蜻蜓要怎麼做才能 把身體轉對方向去做攔截。
03:36
Coordinate transformations are a basic calculation
64
216004
3044
動物必須要會座標轉換 這種基本計算,
03:39
that animals need to perform to interact with the world.
65
219048
3713
才能夠跟世界互動。
03:43
We do them instinctively every time we reach for something.
66
223261
3086
每當我們伸手拿東西時 就是直覺地在做座標轉換。
03:47
When I reach for an object straight in front of me,
67
227098
2878
當我伸手去拿我前面的物體時,
03:50
my arm takes a very different trajectory than if I turn my head,
68
230018
3545
我的手臂移動的軌跡 完全不同於我轉動我的頭
03:53
look at that same object when it is off to one side
69
233605
2460
去看在旁邊的同一個物體
03:56
and reach for it there.
70
236107
1335
並伸手去拿它的軌跡。
03:58
In both cases, my eyes see the same image of that object,
71
238109
3712
在這兩個例子中,我的眼睛 都看到同樣的物體影像。
04:01
but my brain is sending my arm on a very different trajectory
72
241821
3712
但我的大腦會指示我的手臂 沿不同的軌跡移動,
04:05
based on the position of my neck.
73
245575
1919
其依據是脖子的位置。
04:12
And dragonflies are fast.
74
252624
1960
蜻蜓的速度很快。
04:15
This means they calculate fast.
75
255293
2085
這就表示牠們的計算很快。
04:18
The latency, or the time it takes for a dragonfly to respond
76
258046
4004
「延遲時間」,也就是 蜻蜓看到獵物轉彎之後
04:22
once it sees the prey turn,
77
262091
1752
做出反應需要的時間,
04:23
is about 50 milliseconds.
78
263885
1960
是大約五十毫秒。
04:27
This latency is remarkable.
79
267180
2044
這延遲時間短得不可思議。
04:30
For one thing, it's only half the time of a human eye blink.
80
270016
3378
一則,它僅是人類眨眼一次 所需要的時間的一半。
04:34
But for another thing,
81
274020
1668
但,二則,
04:35
it suggests that dragonflies capture how to intercept
82
275688
3003
這也表示蜻蜓要知道 如何攔截,只需要用
04:38
in only relatively or surprisingly few computational steps.
83
278733
4755
相對比較少的計算步驟, 而且少得驚人。
04:44
So in the brain,
84
284364
1376
在大腦中,
04:45
a computational step is a single neuron
85
285782
2878
一個計算步驟就是單一個神經元
04:48
or a layer of neurons working in parallel.
86
288660
2460
或者是一層神經元平行運作。
04:51
It takes a single neuron about 10 milliseconds
87
291996
3087
一個神經元需要大約十毫秒
04:55
to add up all its inputs and respond.
88
295124
2336
把所有的輸入資訊 加總起來做出反應。
04:58
The 50-millisecond response time
89
298169
2336
反應時間只要五十毫秒,
05:00
means that once the dragonfly sees its prey turn,
90
300547
3503
意味著一旦蜻蜓看到牠的獵物轉向,
05:04
there's only time for maybe four of these computational steps
91
304092
3336
也許時間只夠進行 四個這種計算步驟,
05:07
or four layers of neurons, working in sequence, one after the other,
92
307470
3837
或者四層神經元, 依序運作,一層接著一層,
05:11
to calculate how the dragonfly needs to turn.
93
311349
2377
來計算蜻蜓需要如何轉向。
05:14
In other words, if I want to study
94
314811
2085
換言之,如果我想要研究蜻蜓如何做
05:16
how the dragonfly does coordinate transformations,
95
316896
4213
座標轉換,
05:21
the neural circuit that I need to understand,
96
321109
2753
我需要了解的神經迴路,
05:23
the neural circuit that I need to study,
97
323903
2252
我需要研究的神經迴路,
05:26
can have at most four layers of neurons.
98
326197
2670
最多只有四層神經元。
05:29
Each layer may have many neurons,
99
329784
2377
一層當中可能有許多神經元,
05:32
but this is a small neural circuit.
100
332203
2127
這算是很小的神經迴路。
05:34
Small enough that we can identify it
101
334789
2002
小到我們可以用現今 既有的工具來辨識、研究它。
05:36
and study it with the tools that are available today.
102
336833
2669
05:40
And this is what I'm trying to do.
103
340670
1835
這就是我在試圖做的事。
05:43
I have built a model of what I believe is the neural circuit
104
343298
3044
我建立了一個模型, 我相信它就是用來計算
05:46
that calculates how the dragonfly should turn.
105
346384
2544
蜻蜓應該如何轉向的神經迴路。
05:49
And here is the cool result.
106
349596
1584
很酷的結果如下。
05:51
In the model,
107
351222
1627
在模型中,
05:52
dragonflies do coordinate transformations in only one computational step,
108
352891
4713
蜻蜓只用一個計算步驟 就完成座標轉換,
05:57
one layer of neurons.
109
357645
1627
只用一層神經元。
05:59
This is something we can test and understand.
110
359898
2877
這是我們能測試並了解的現象。
06:03
In a computer simulation,
111
363651
1502
在電腦模擬中,
06:05
I can predict the activities of individual neurons
112
365194
3170
我可以預測蜻蜓在打獵時, 每個個別神經元的活動。
06:08
while the dragonfly is hunting.
113
368364
1669
06:11
For example, here I am predicting the action potentials, or the spikes,
114
371367
4338
比如,在這裡我可以預測 當蜻蜓看到獵物移動時,
06:15
that are fired by one of these neurons
115
375747
1835
這些神經元的任何一個會 產生的動作電位,或峰電位。
06:17
when the dragonfly sees the prey move.
116
377582
2627
06:22
To test the model, my collaborators and I
117
382545
2169
為了測試這個模型, 我和我的合作夥伴現在
06:24
are now comparing these predicted neural responses
118
384756
2836
正在將這些預測的神經反應拿來比對
06:27
with responses of neurons recorded in living dragonfly brains.
119
387592
3837
從活的蜻蜓大腦 所記錄下來的神經元反應。
06:33
These are ongoing experiments
120
393431
1668
這些實驗還在進行中,
06:35
in which we put living dragonflies in virtual reality.
121
395099
3796
在實驗中,我們將活的 蜻蜓放到虛擬實境中。
06:40
(Laughter)
122
400188
1918
(笑聲)
06:42
Now, it's not practical to put VR goggles on a dragonfly.
123
402148
3754
讓蜻蜓戴 VR 頭戴式 顯示器不太實際。
06:47
So instead, we show movies of moving targets to the dragonfly,
124
407070
4588
所以,我們改成讓蜻蜓 看有移動目標的電影,
06:51
while an electrode records activity patterns of individual neurons
125
411658
3670
同時用電極來記錄大腦中 個別神經元的活動模式。
06:55
in the brain.
126
415328
1251
06:58
Yeah, he likes the movies.
127
418331
1335
是的,牠喜歡看電影。
07:01
If the responses that we record in the brain
128
421167
2628
如果我們從大腦中記錄到的反應
07:03
match those predicted by the model,
129
423836
2128
符合模型所做的預測,
07:06
we will have identified which neurons are responsible
130
426005
2711
就表示我們找出了哪些神經元 負責做座標轉換的工作。
07:08
for coordinate transformations.
131
428758
1543
07:11
The next step will be to understand the specifics
132
431010
2294
下一步是要去了解明確細節,
07:13
of how these neurons work together to do the calculation.
133
433346
3337
搞懂這些神經元如何合作來做計算。
07:16
But this is how we begin to understand how brains do basic
134
436724
3462
但,我們就是用這種方式 開始了解大腦如何做基本
07:20
or primitive calculations.
135
440186
1627
或原始的計算。
07:22
Calculations that I regard as building blocks for more complex functions,
136
442188
4880
我把這些計算視為 是更複雜計算的積木,
07:27
not only for interception but also for cognition.
137
447110
3086
不只用在攔截上,也用在認知上。
07:32
The way that these neurons compute may be different from anything
138
452156
3170
這些神經元計算的方式 可能和電腦上現有的方法不同。
07:35
that exists on a computer today.
139
455368
1877
07:37
And the goal of this work is to do more than just write code
140
457870
3587
而這項研究的目標不只是要
撰寫程式來複製神經元的活動模式。
07:41
that replicates the activity patterns of neurons.
141
461457
2419
07:44
We aim to build a computer chip
142
464293
1794
我們想要打造一種電腦晶片,
07:46
that not only does the same things as biological brains
143
466129
2794
它不只能做到生物大腦會做的事,
07:48
but does them in the same way as biological brains.
144
468965
2711
連做的方式也和生物大腦一樣。
07:52
This could lead to drones driven by computers
145
472885
3254
可能可以發明出一種無人機,
控制它的電腦只有 蜻蜓的大腦那麼大,
07:56
the same size of the dragonfly's brain
146
476139
2002
07:58
that captures some targets and avoid others.
147
478182
2837
這種無人機能捕捉某些 目標物,避開其他的。
08:01
Personally, I'm hoping for a small army of these
148
481853
2586
我個人希望有一支 這種無人機的小軍隊,
08:04
to defend my backyard from mosquitoes in the summer.
149
484480
2461
在夏天時守衛我的後院,對抗蚊子。
08:06
(Laughter)
150
486983
1460
(笑聲)
08:09
The GPS on your phone could be replaced by a new navigation device
151
489027
4170
你手機中的全球定位系統也可以換成
根據蜣螂或螞蟻 做出的新的導航裝置,
08:13
based on dung beetles or ants
152
493239
1710
08:14
that could guide you to the straight or the easy path home.
153
494991
3045
能幫你找到最直或最簡單的回家路。
08:18
And what would the power requirements of these devices be like?
154
498953
3378
這些裝置的電源需求有多大?
08:23
As small as it is --
155
503458
1501
以大腦這麼小——喔, 抱歉——以它這麼大的尺寸,
08:25
Or, sorry -- as large as it is,
156
505001
1877
08:26
the human brain is estimated to have the same power requirements
157
506878
3628
估計電力需求會等同於
08:30
as a 20-watt light bulb.
158
510548
2044
一個二十瓦的燈泡。
08:32
Imagine if all brain-inspired computers
159
512633
2211
想像一下,如果所有 靈感取自大腦的電腦
08:34
had the same extremely low-power requirements.
160
514844
2669
對於電力的需求 都同樣低到這種程度。
08:38
Your smartphone or your smartwatch probably needs charging every day.
161
518431
3837
你的智慧手機或智慧手錶 可能每天都需要充電。
08:42
Your new brain-inspired device might only need charging every few months,
162
522268
3587
靈感來自大腦的裝置可能 幾個月充電一次就夠了,
08:45
or maybe even every few years.
163
525897
1668
甚至幾年充電一次。
08:49
The famous physicist, Richard Feynman, once said,
164
529275
3670
知名的物理學家 理查‧費曼曾經說過:
08:52
"What I cannot create, I do not understand."
165
532945
2878
「我創造不出來的東西, 就表示我不了解它。」
08:56
What I see in insect nervous systems
166
536783
2085
我在昆蟲的神經系統中看到的,
08:58
is an opportunity to understand brains
167
538868
2169
是一個了解大腦的機會,
09:01
through the creation of computers that work as brains do.
168
541079
3003
透過創造模仿大腦運作方式的 電腦來了解大腦 。
09:05
And creation of these computers will not just be for knowledge.
169
545083
3712
創造這些電腦的目的 不只是為了知識。
09:08
There's potential for real impact on your devices, your vehicles,
170
548795
4254
有可能可以造成真實的影響, 改變你的裝置、你的車,
09:13
maybe even artificial intelligences.
171
553091
2210
可能甚至人工智慧。
09:16
So next time you see an insect,
172
556177
2419
所以,下次當你看到昆蟲,
09:18
consider that these tiny brains can lead to remarkable computers.
173
558638
4045
想想這些微小的大腦 能夠促成非凡的電腦。
09:23
And think of the potential that they offer us for the future.
174
563518
3211
也想想它們為我們的未來 提供的可能性。
09:27
Thank you.
175
567271
1126
謝謝。
09:28
(Applause)
176
568439
3379
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7