Need a new idea? Start at the edge of what is known | Vittorio Loreto

83,925 views ・ 2018-04-16

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yu HAN 校对人员: Wei Wu
00:14
We have all probably wondered
0
14349
2867
我们可能都曾好奇过,
00:17
how great minds achieved what they achieved, right?
1
17240
4176
聪明人是怎样有所成就的,对吗?
00:21
And the more astonishing their achievements are,
2
21440
2656
并且他们的所作所为越令人惊叹,
00:24
the more we call them geniuses,
3
24120
2536
我们越习惯于叫他们天才,
00:26
perhaps aliens
4
26680
1536
或者是“外星人”,
来自另外的星球,
00:28
coming from a different planet,
5
28239
2097
00:30
definitely not someone like us.
6
30360
2656
反正绝对不像我们这样普通。
但是,真的是这样吗?
00:33
But is that true?
7
33040
1776
00:34
So let me start with an example.
8
34840
1800
让我来举个例子说明。
00:37
You all know the story of Newton's apple, right? OK.
9
37440
3816
我们都知道牛顿的苹果。
00:41
Is that true? Probably not.
10
41280
2936
那个故事真的发生过吗? 可能没有。
00:44
Still, it's difficult to think that no apple at all was there.
11
44240
5216
当然,我们很难想象传说中的 苹果其实并不存在。
00:49
I mean some stepping stone, some specific conditions
12
49480
3616
我的意思是,宇宙万有引力定律的发现
00:53
that made universal gravitation not impossible to conceive.
13
53120
4016
是基于特定环境或媒介的铺垫。
00:57
And definitely this was not impossible,
14
57160
2376
这种说法有一定道理,
00:59
at least for Newton.
15
59560
1576
至少对于牛顿来说是这样。
01:01
It was possible,
16
61160
1256
这是可能的,
01:02
and for some reason, it was also there,
17
62440
3056
因为一些原因,它就在那里,
01:05
available at some point, easy to pick as an apple.
18
65520
3776
像够到那个苹果一样容易,
01:09
Here is the apple.
19
69320
1616
触手可及。
01:10
And what about Einstein?
20
70960
2216
那么对于爱因斯坦呢?
01:13
Was relativity theory another big leap in the history of ideas
21
73200
5296
相对论是历史上又一大 新思想的飞跃。
01:18
no one else could even conceive?
22
78520
2656
除了爱因斯坦, 就没人可以提出了吗?
01:21
Or rather, was it again something adjacent and possible,
23
81200
4456
或者说,相对论当时 就在我们身边,
01:25
to Einstein of course,
24
85680
2096
对于爱因斯坦也是一样,
01:27
and he got there by small steps and his very peculiar scientific path?
25
87800
4216
他一步步走在自己的科学发现之路上, 最终发现了相对论。
01:32
Of course we cannot conceive this path,
26
92040
2456
当然我们无从知道 这是一条怎样的路,
01:34
but this doesn't mean that the path was not there.
27
94520
2480
但这不能否认那条路的存在。
01:38
So all of this seems very evocative,
28
98760
4856
这两个例子好像暗示了
01:43
but I would say hardly concrete
29
103640
1536
一些什么,却又不具象,
01:45
if we really want to grasp the origin of great ideas
30
105200
3576
尤其当我们真的希望 找到变得更优秀的源头,
01:48
and more generally the way in which the new enters our lives.
31
108800
4016
或通俗一点说,我们怎样 在生活中发现新鲜事物的时候。
01:52
As a physicist, as a scientist,
32
112840
1976
作为一个物理学家,科学家,
01:54
I have learned that posing the right questions
33
114840
2176
我知道,提出正确的问题,
01:57
is half of the solution.
34
117040
2016
问题就解决了一半。
01:59
But I think now we start having a great conceptual framework
35
119080
4736
而我想,我们现在已经拥有了 很棒的概念性的框架
02:03
to conceive and address the right questions.
36
123840
3176
来发现和解决问题。
02:07
So let me drive you to the edge of what is known,
37
127040
3456
那么现在,让我带大家 进入身边所熟悉的领域,
02:10
or at least, what I know,
38
130520
2096
或至少,是我熟悉的。
02:12
and let me show you that what is known
39
132640
2056
让我来说明一下,从熟悉的领域开始
02:14
could be a powerful and fascinating starting point
40
134720
4576
去感知新奇,创新,或者创造
02:19
to grasp the deep meaning of words like novelty, innovation,
41
139320
5096
这类词语更深层的含义,
02:24
creativity perhaps.
42
144440
1560
是一个多么好的起点。
02:26
So we are discussing the "new,"
43
146880
3336
我们在讨论“新”,
02:30
and of course, the science behind it.
44
150240
2656
同时还有它背后的科学。
02:32
The new can enter our lives in many different ways,
45
152920
2976
“新”可以由不同的方式 进入我们的生活,
02:35
can be very personal,
46
155920
1696
可以是很私人的,
02:37
like I meet a new person,
47
157640
1936
比如,我认识了一个新朋友,
02:39
I read a new book, or I listen to a new song.
48
159600
3296
读了一本新书或者听了一首新歌;
02:42
Or it could be global,
49
162920
1256
也可以是普遍化的,
02:44
I mean, something we call innovation.
50
164200
2056
比如,我们所说的创新,
02:46
It could be a new theory, a new technology,
51
166280
2176
可以是新理论,新技术,
02:48
but it could also be a new book if you're the writer,
52
168480
2576
同样也可以是一本新书, 前提是你是个作家,
02:51
or it could be a new song if you're the composer.
53
171080
2336
也可以是一首新歌, 如果你是个作曲家。
02:53
In all of these global cases, the new is for everyone,
54
173440
4296
这所有的例子里的“新”, 是每个人都有机会接触发现的。
02:57
but experiencing the new can be also frightening,
55
177760
3816
但体验“新”却也常常令人担忧,
03:01
so the new can also frighten us.
56
181600
3736
因为我们面对“新”,会有畏惧感。
03:05
But still, experiencing the new means exploring a very peculiar space,
57
185360
4176
同时,体验“新”意味着 我们在探索一段奇特的领域,
03:09
the space of what could be,
58
189560
2096
它具有任意性,
03:11
the space of the possible, the space of possibilities.
59
191680
3176
还有可能性。
03:14
It's a very weird space, so I'll try to get you through this space.
60
194880
3456
这是个很神奇的领域, 不过我会尝试带大家领略一下。
03:18
So it could be a physical space.
61
198360
2016
它可以是某个物理空间。
03:20
So in this case, for instance,
62
200400
1616
比如,
03:22
novelty could be climbing Machu Picchu for the first time,
63
202040
4056
我在2016年第一次爬上
03:26
as I did in 2016.
64
206120
1920
马丘比丘(古代印加城遗址, 在今秘鲁中南部)。
03:28
It could be a conceptual space,
65
208960
1816
也可以是理论上的空间,
03:30
so acquiring new information, making sense of it, in a word, learning.
66
210800
4416
如获取新的信息, 简而言之,就是学习。
03:35
It could be a biological space.
67
215240
1936
它还可以是生物层次的。
03:37
I mean, think about the never-ending fight of viruses and bacteria
68
217200
4096
想想我们的免疫系统 与病毒及细菌之间
永不停歇的对抗。
03:41
with our immune system.
69
221320
1936
03:43
And now comes the bad news.
70
223280
1736
但是先别忙着乐观,
03:45
We are very, very bad at grasping this space.
71
225040
3296
我们非常不擅于察觉到“新”的存在。
03:48
Think of it. Let's make an experiment.
72
228360
2016
想一想是不是这样, 我们来做个实验。
03:50
Try to think about all the possible things you could do in the next, say, 24 hours.
73
230400
6880
尝试思考在未来的24小时内, 你可以做的所有可能的事情。
03:58
Here the key word is "all."
74
238320
2656
记住,关键词是“所有”。
04:01
Of course you can conceive a few options, like having a drink, writing a letter,
75
241000
4800
下意识地,你会有几个选择, 比如喝一杯饮料,写封信,
04:06
also sleeping during this boring talk,
76
246840
3176
或者在我无聊的陈述中打个小盹,
04:10
if you can.
77
250040
1696
如果你们想的话。
04:11
But not all of them.
78
251760
1656
但这不是所有我们要做的事情。
04:13
So think about an alien invasion, now, here, in Milan,
79
253440
3936
想一想外星人入侵, 对,就是现在,在米兰,
04:17
or me -- I stopped thinking for 15 minutes.
80
257400
3120
或者是我,在接下来的 15分钟内停下来不去思考。
04:21
So it's very difficult to conceive this space,
81
261440
3136
所以,要察觉到 所有可能发生的事情并不容易。
04:24
but actually we have an excuse.
82
264600
2176
但这可以理解。
04:26
So it's not so easy to conceive this space
83
266800
3496
不容易实现的原因是
04:30
because we are trying to conceive the occurrence of something brand new,
84
270320
3495
我们都尝试着 去发现一些绝对的“新”,
04:33
so something that never occurred before,
85
273839
1977
一些以前从未发生的事情,
04:35
so we don't have clues.
86
275840
1480
所以我们找不到任何线索。
04:38
A typical solution could be
87
278040
2896
那么有什么解决办法吗?
04:40
looking at the future with the eyes of the past,
88
280960
3216
用目睹了过去的眼睛看未来,
04:44
so relying on all the time series of past events
89
284200
3296
就是凭借着在过去发生的事,
04:47
and hoping that this is enough to predict the future.
90
287520
3496
这些经历能支持我们预测未来。
04:51
But we know this is not working.
91
291040
2176
但实际上,这种方法的效果差强人意。
04:53
For instance, this was the first attempt for weather forecasts, and it failed.
92
293240
5216
就跟首次播报天气失败了一样。
04:58
And it failed because of the great complexity
93
298480
2416
因为事情多发生在表面,
05:00
of the underlying phenomenon.
94
300920
1936
而内部的复杂性却被忽略了。
05:02
So now we know that predictions had to be based on modeling,
95
302880
5616
所以,我们会通过建模来帮助预测,
05:08
which means creating a synthetic model of the system,
96
308520
3496
就是建立一个系统的综合模型,
05:12
simulating this model and then projecting the system
97
312040
4136
通过模型模拟,预测系统的
未来发展。
05:16
into the future through this model.
98
316200
2536
05:18
And now we can do this in a lot of cases
99
318760
2936
在很多情况下,基于大量数据,
05:21
with the help of a lot of data.
100
321720
1880
我们都可以建模。
05:25
Looking at the future with the eye of the past
101
325000
2896
但用过去的眼睛(数据) 预测未来(系统),
05:27
could be misleading also for machines.
102
327920
2736
也可能会出错, 对计算机来说也是一样。
05:30
Think about it.
103
330680
1216
设想一个画面,
05:31
Now picture yourself for a second in the middle of the Australian Outback.
104
331920
4800
你在澳大利亚内陆地区,
05:37
You stand there under the sun.
105
337440
2720
站在太阳底下,
05:40
So you see something weird happening.
106
340840
2216
看到了一些奇怪的事情。
05:43
The car suddenly stops
107
343080
2736
远远地,一辆车突然停住了,
05:45
very, very far from a kangaroo crossing the street.
108
345840
3056
在它前面很远处 有一只袋鼠在过马路。
05:48
You look closer
109
348920
1456
你仔细一看,
05:50
and you realize that the car has no driver.
110
350400
2416
发现车里竟没有司机。
05:52
It is not restarting, even after the kangaroo is not there anymore.
111
352840
4016
袋鼠过完马路后, 汽车也没有重新启动。
05:56
So for some reasons,
112
356880
1896
因为一些原因,
05:58
the algorithms driving the car cannot make sense
113
358800
2536
这辆无人驾驶汽车内置的算法 并不能理解这种现象,
06:01
of this strange beast jumping here and there on the street.
114
361360
3680
一只奇怪的庞然大物 在街上蹦来蹦去。
06:05
So it just stops.
115
365640
1200
于是它就停下了。
06:07
Now, I should tell you, this is a true story.
116
367720
2136
这是个真实的故事。
06:09
It happened a few months ago to Volvo's self-driving cars
117
369880
2696
几个月前,沃尔沃的 无人驾驶汽车就这样
停在了澳洲内陆中部地区。
06:12
in the middle of the Australian Outback.
118
372600
1936
06:14
(Laughter)
119
374560
1696
(笑声)
06:16
It is a general problem,
120
376280
1976
这个问题很普遍,
06:18
and I guess this will affect more and more in the near future
121
378280
2976
我想在不久的将来, 人工智能和机器学习
06:21
artificial intelligence and machine learning.
122
381280
2560
会在方方面面产生影响。
06:24
It's also a very old problem, I would say 17th century,
123
384440
3976
这个问题存在很久了, 17世纪就出现了。
06:28
but I guess now we have new tools and new clues to start solving it.
124
388440
5136
但我相信,现在的我们拥有 更多的新工具和方法去解决它。
06:33
So let me take a step back,
125
393600
2176
让我们暂时回到过去,
06:35
five years back.
126
395800
2736
五年前,
06:38
Italy. Rome. Winter.
127
398560
2976
意大利,罗马,冬天。
06:41
So the winter of 2012 was very special in Rome.
128
401560
3576
2012的冬天, 对罗马来说是很特别的,
06:45
Rome witnessed one of the greatest snowfalls of its history.
129
405160
3560
因为一场史无前例, 美不胜收的飘雪。
06:49
That winter was special also for me and my colleagues,
130
409520
3696
这个冬天对我和我的同事们 来说也有着特殊的意义,
06:53
because we had an insight about the possible mathematical scheme --
131
413240
3496
因为我们理解了一种 近乎合理的数学模型——
06:56
again, possible, possible mathematical scheme,
132
416760
2976
强调一下,只是可能,
06:59
to conceive the occurrence of the new.
133
419760
1840
用来帮助发现“新”。
07:02
I remember that day because it was snowing,
134
422520
2416
我记得那天在下雪,
07:04
so due to the snowfall, we were blocked, stuck in my department,
135
424960
3776
也正是因为这场雪, 我们被困在了办公室,
07:08
and we couldn't go home,
136
428760
1416
无法回家,
07:10
so we got another coffee, we relaxed
137
430200
3056
所以我们决定喝杯咖啡,放松一下,
07:13
and we kept discussing.
138
433280
1776
同时继续讨论我们的研究,
07:15
But at some point -- maybe not that date, precisely --
139
435080
3696
忽然之间——准确地说, 可能并不在那段小憩的时间——
07:18
at some point we made the connection
140
438800
2896
在某个时间点,我们在
07:21
between the problem of the new
141
441720
2976
发现“新”,与斯图亚特 · 考夫曼
07:24
and a beautiful concept proposed years before
142
444720
2416
曾经提出的一个美妙的
07:27
by Stuart Kauffman,
143
447160
1776
理论之间建立起了一种联系,
07:28
the adjacent possible.
144
448960
2040
即临界的可能性。
07:31
So the adjacent possible consists of all those things.
145
451720
3056
临界的可能性可以包含很多东西,
07:34
It could be ideas, it could be molecules, it could be technological products
146
454800
3736
比如新点子,新分子, 或者新科技产品。
07:38
that are one step away
147
458560
2936
我们距离这些实际存在的“新”,
07:41
from what actually exists,
148
461520
1736
只有一步之遥。
07:43
and you can achieve them through incremental modifications
149
463280
3536
我们可以通过改变身边存在的事物,
07:46
and recombinations of the existing material.
150
466840
2560
或对其加以重组来发现“新”。
07:50
So for instance, if I speak about the space of my friends,
151
470520
3896
举个例子,比如我身边有一群朋友,
07:54
my adjacent possible would be the set of all friends of my friends
152
474440
3976
那么身边可能的“新”, 可以是一群我朋友的朋友,
07:58
not already my friends.
153
478440
1400
他们目前还不是我的朋友。
08:00
I hope that's clear.
154
480240
1736
希望我说的够清楚。
08:02
But now if I meet a new person,
155
482000
1816
如果我现在认识一个新朋友,
08:03
say Briar,
156
483840
1696
比如布莱尔,
08:05
all her friends would immediately enter my adjacent possible,
157
485560
4056
那么她的朋友们就会 立即成为我的“新”朋友的备选人,
08:09
pushing its boundaries further.
158
489640
1520
这样我的人脉就会越来越多。
08:12
So if you really want to look from the mathematical point of view --
159
492160
3216
如果你们想用数学角度 来看待这件事——
08:15
I'm sure you want --
160
495400
1400
我确信你们有这个想法——
08:18
you can actually look at this picture.
161
498200
1976
我们可以来看一眼这张图。
08:20
So suppose now this is your universe.
162
500200
1896
这就是你的世界。
08:22
I know I'm asking a lot.
163
502120
1256
我知道我要求有点多。
08:23
I mean, this is your universe. Now you are the red spot.
164
503400
2640
麻烦大家把自己置身于这张图,这个 红点,就是我们现在所处的位置。
08:27
And the green spot is the adjacent possible for you,
165
507320
2616
绿点便是我们身边可能的“新”,
08:29
so something you've never touched before.
166
509960
2096
即我们从未踏入的领域。
08:32
So you do your normal life.
167
512080
1336
我们过着正常的生活,
08:33
You move. You move in the space.
168
513440
1656
在自己的世界中一步一步走,
08:35
You have a drink. You meet friends. You read a book.
169
515120
2656
喝杯水,见个朋友,读本书,
08:37
At some point, you end up on the green spot,
170
517800
2896
在某个时间点, 我们就走到了这个绿点,
08:40
so you meet Briar for the first time.
171
520720
2176
比如,我们在这里 第一次见到了布莱尔,
08:42
And what happens?
172
522920
1336
然后呢?
08:44
So what happens is there is a new part,
173
524280
2296
在这个特殊时刻,
我们会涉足一个崭新的领域,
08:46
a brand new part of the space,
174
526600
2456
08:49
becoming possible for you in this very moment,
175
529080
4256
我们从未投身的领域,
08:53
even without any possibility for you to foresee this
176
533360
3856
即使我们从未预想能走到
08:57
before touching that point.
177
537240
2056
这片未知的领域。
08:59
And behind this there will be a huge set of points
178
539320
2696
在踏入这片新区域后, 会有更多新领域,
09:02
that could become possible at some later stages.
179
542040
3696
在未来的某个时段可能被我们开启。
09:05
So you see the space of the possible is very peculiar,
180
545760
2816
所以我们看到了, 身边可能的未知领域是很神奇的,
09:08
because it's not predefined.
181
548600
2216
因为它的不可预知。
09:10
It's not something we can predefine.
182
550840
2296
我们没有办法提前得知,
09:13
It's something that gets continuously shaped and reshaped
183
553160
3376
这片区域是随着我们的行动和选择
09:16
by our actions and our choices.
184
556560
2600
被随时塑造的。
09:20
So we were so fascinated by these connections we made --
185
560120
3456
当时发现这一点联系时, 我们非常高兴——
09:23
scientists are like this.
186
563600
1896
科学家就是这样。
09:25
And based on this,
187
565520
2296
基于这一点,
09:27
we conceived our mathematical formulation for the adjacent possible,
188
567840
3216
我们发现了可以计算 临界可能性的数学公式,
09:31
20 years after the original Kauffman proposals.
189
571080
3456
在考夫曼理论提出的20年后。
09:34
In our theory -- this is a key point --
190
574560
2136
在我们的理论中,有一个关键点。
09:36
I mean, it's crucially based on a complex interplay
191
576720
3536
这个公式依赖于“新”区域的拓展
09:40
between the way in which this space of possibilities expands
192
580280
4776
及其重建之间复杂的相互影响,
09:45
and gets restructured,
193
585080
1536
以及我们自身探索
09:46
and the way in which we explore it.
194
586640
2496
“新”的方式。
09:49
After the epiphany of 2012,
195
589160
3856
在2012年的顿悟后,
09:53
we got back to work, real work,
196
593040
1656
我们回到工作中,进行实地考察,
09:54
because we had to work out this theory,
197
594720
1896
因为要将理论应用于实践。
09:56
and we came up with a certain number of predictions
198
596640
2416
我们提出了几个需要用实际生活
来检验的预测。
09:59
to be tested in real life.
199
599080
1256
10:00
Of course, we need a testable framework
200
600360
2896
当然,我们需要一个测试体系,
10:03
to study innovation.
201
603280
1456
来研究这个新方法。
10:04
So let me drive you across a few predictions we made.
202
604760
4056
让我简单介绍一下 我们所做的预测。
10:08
The first one concerns the pace of innovation,
203
608840
2896
第一个是创新的步调,
10:11
so the rate at which you observe novelties in very different systems.
204
611760
4896
即不同的体系中 发现“新”的速度。
10:16
So our theory predicts that the rate of innovation
205
616680
2496
我们的理论预测出这种速度
10:19
should follow a universal curve,
206
619200
1936
应该遵循通用曲线,
10:21
like this one.
207
621160
1320
比如这张图。
10:23
This is the rate of innovation versus time in very different conditions.
208
623240
3640
这是不同条件下新方法的 速率与时间的比值。
10:27
And somehow, we predict that the rate of innovation
209
627720
2616
通常,我们预测发现“新”的速率
10:30
should decrease steadily over time.
210
630360
2696
随着时间变长稳定降低,
10:33
So somehow, innovation is predicted to become more difficult
211
633080
3096
由于某些限制,随着我们行动的增加
10:36
as your progress over time.
212
636200
1920
发现“新”会变得更加困难。
10:38
It's neat. It's interesting. It's beautiful. We were happy.
213
638960
3536
这个系统很巧妙, 有趣且迷人,我们都很高兴。
10:42
But the question is, is that true?
214
642520
2176
但问题是,这是真的吗?
10:44
Of course we should check with reality.
215
644720
1880
当然我们会根据现实情况校准。
10:47
So we went back to reality
216
647600
2376
所以我们回到现实中来,
10:50
and we collected a lot of data, terabytes of data,
217
650000
3136
收集了很多数据,多达万亿字节。
10:53
tracking innovation in Wikipedia, Twitter,
218
653160
3336
从维基百科,到推特记录,
10:56
the way in which we write free software,
219
656520
2216
记录我们写新程序的方式,
10:58
even the way we listen to music.
220
658760
1640
甚至听音乐的方式。
11:01
I cannot tell you, we were so amazed and pleased and thrilled
221
661160
3736
我绝对不会跟你们说, 我们是多么激动,雀跃地发现,
11:04
to discover that the same predictions we made in the theory
222
664920
3496
在许多不同实际的体系中,
11:08
were actually satisfied in real systems,
223
668440
2576
我们的预测与真实情况
11:11
many different real systems.
224
671040
1536
几乎没有差别。
11:12
We were so excited.
225
672600
1496
我们太激动了。
11:14
Of course, apparently, we were on the right track,
226
674120
2816
很明显,我们走在一条正确的路上,
11:16
but of course, we couldn't stop,
227
676960
2496
当然,我们不愿意就此停下,
11:19
so we didn't stop.
228
679480
1496
也没有停下。
11:21
So we kept going on,
229
681000
2096
我们一直努力着,
11:23
and at some point we made another discovery
230
683120
2056
直到某个时候, 我们发现了另外的新理论,
11:25
that we dubbed "correlated novelties."
231
685200
3536
我们把它叫做“关联性创新”。
11:28
It's very simple.
232
688760
1256
很简单,
11:30
So I guess we all experience this.
233
690040
1896
我想我们都经历过。
11:31
So you listen to "Suzanne" by Leonard Cohen,
234
691960
3560
当我们听到莱昂纳德 · 科恩的 《苏珊》(歌曲)时,
11:36
and this experience triggers your passion for Cohen
235
696440
3656
这会激起你对科恩的热情,
11:40
so that you start frantically listening to his whole production.
236
700120
3816
然后你就会迫不及待地 去听他所有的作品,
11:43
And then you realize that Fabrizio De André here
237
703960
2296
然后你会看到一个名字, 法布里奇奥 · 德 · 安德雷,
11:46
recorded an Italian version of "Suzanne,"
238
706280
1976
翻唱了苏珊的意大利语版本,
11:48
and so on and so forth.
239
708280
2016
等等类似的例子。
11:50
So somehow for some reason,
240
710320
1976
不知怎么的,
11:52
the very notion of adjacent possible is already encoding the common belief
241
712320
3896
这个临界可能性的概念就会 根植于我们的信念中,
11:56
that one thing leads to another
242
716240
2560
即在很多不同的体系中,
11:59
in many different systems.
243
719720
1736
“新”的发现具有连续性。
12:01
But the reason why we were thrilled
244
721480
2296
那么我们为什么那么高兴呢,
12:03
is because actually we could give, for the first time,
245
723800
2524
因为第一次,我们可以把这种直觉
12:06
a scientific substance to this intuition
246
726348
2068
科学地实体化,
12:08
and start making predictions
247
728440
1656
并且开始对
12:10
about the way in which we experience the new.
248
730120
2416
体验“新”的方式进行预测。
12:12
So novelties are correlated.
249
732560
2320
创新是互相联系的,
12:16
They are not occurring randomly.
250
736320
2056
并不会随意地发生。
12:18
And this is good news,
251
738400
1456
这是一个好消息,
12:19
because it implies that impossible missions
252
739880
4736
这意味着,有些看起来 不可能的任务
12:24
might not be so impossible after all,
253
744640
2376
其实是可行的,
12:27
if we are guided by our intuition,
254
747040
3096
只要我们跟着直觉走,
12:30
somehow leading us to trigger a positive chain reaction.
255
750160
3760
它会带领我们走上一条 积极正面的连锁反应链。
12:34
But there is a third consequence of the existence of the adjacent possible
256
754840
3496
但是,关于临界可能性, 还存在第三种结果,
12:38
that we named "waves of novelties."
257
758360
3536
我们叫它创新的浪潮。
12:41
So just to make this simple, so in music,
258
761920
2696
简单来说,在音乐中,
12:44
without waves of novelties,
259
764640
1376
如果没有创新的浪潮,
12:46
we would still be listening all the time to Mozart or Beethoven,
260
766040
6056
我们可能还在继续听着 莫扎特或贝多芬。
12:52
which is great,
261
772120
1496
好像听起来还行,
12:53
but we don't do this all the time.
262
773640
1656
但是我们不能一直这样下去。
12:55
We also listen to the Pet Shop Boys or Justin Bieber -- well, some of us do.
263
775320
5016
我们同样会听宠物店男孩(乐队) 或贾斯汀 · 比伯——起码部分人会听。
13:00
(Laughter)
264
780360
2176
(笑声)
13:02
So we could see very clearly all of these patterns
265
782560
3896
所以我们可以从收集和 分析的庞大的数据中
13:06
in the huge amounts of data we collected and analyzed.
266
786480
3736
很清楚地看到这些例子。
13:10
For instance, we discovered that popular hits in music
267
790240
3656
比如,我们发现流行撞上音乐,
13:13
are continuously born, you know that,
268
793920
1896
产生的是什么,你们知道的。
13:15
and then they disappear, still leaving room for evergreens.
269
795840
3440
然后这些会消失,依然留有空间 给“常青树”(指经典音乐)。
13:20
So somehow waves of novelties ebb and flow
270
800120
3096
创新经历着潮起潮落,
13:23
while the tides always hold the classics.
271
803240
2576
而经典却永不消逝。
13:25
There is this coexistence between evergreens and new hits.
272
805840
3960
经典音乐和新流行可以共存。
13:31
Not only our theory predicts these waves of novelties.
273
811920
2696
不仅仅是我们的理论预测到了 创新浪潮的存在,
13:34
This would be trivial.
274
814640
1456
这不重要。
13:36
But it also explains why they are there,
275
816120
2896
重要的是,为什它们在那里,
13:39
and they are there for a specific reason,
276
819040
1976
基于某种特殊的原因,
因为我们是人类, 会在充满可能性空间中
13:41
because we as humans display different strategies
277
821040
3216
13:44
in the space of the possible.
278
824280
1856
展现不同的策略。
13:46
So some of us tend to retrace already known paths.
279
826160
5136
我们中的有些人倾向 去走已经走过的路,
13:51
So we say they exploit.
280
831320
2320
我们称之为开拓。
13:54
Some of us always launch into new adventures.
281
834360
2856
有的人愿意去做新的探险,
13:57
We say they explore.
282
837240
1696
这是探索。
13:58
And what we discovered is all the systems we investigated
283
838960
3296
我们发现的自己探究的东西,
14:02
are right at the edge between these two strategies,
284
842280
3176
就在开拓和探索的边缘,
14:05
something like 80 percent exploiting, 20 percent exploring,
285
845480
3536
就像80%是开发,20%是探索。
14:09
something like blade runners of innovation.
286
849040
2680
像是叶片式螺旋的创新。
14:12
So it seems that the wise balance, you could also say a conservative balance,
287
852720
5216
看上去,保持在过去和未来之间, 开发与探索之间的
14:17
between past and future, between exploitation and exploration,
288
857960
4976
智慧的平衡, 或称为保守的平衡,
14:22
is already in place and perhaps needed in our system.
289
862960
3416
已经就位,并且被 我们的自身所需要。
14:26
But again the good news is now we have scientific tools
290
866400
3616
好消息是,现在我们有科学工具
14:30
to investigate this equilibrium,
291
870040
1736
来研究这种均衡,
14:31
perhaps pushing it further in the near future.
292
871800
3280
或许在不久的将来 可以推广这种平衡。
14:37
So as you can imagine,
293
877360
2256
你们能想象到,
14:39
I was really fascinated by all this.
294
879640
4160
我是多么的深陷其中。
14:44
Our mathematical scheme is already providing cues and hints
295
884920
3136
我们的数学模型已经 提供了线索和暗示,
14:48
to investigate the space of possibilities
296
888080
2056
去寻找可能行的空间,
14:50
and the way in which all of us create it and explore it.
297
890160
4016
以及我们所有人创造并探索的方式。
14:54
But there is more.
298
894200
1336
不仅如此,
14:55
This, I guess, is a starting point of something that has the potential
299
895560
3376
这是一段关于“新”的
14:58
to become a wonderful journey for a scientific investigation of the new,
300
898960
4616
奇妙科学探索之路的起点,
15:03
but also I would say a personal investigation of the new.
301
903600
3280
同样也是个人自我发现的起点。
15:09
And I guess this can have a lot of consequences
302
909320
2896
我猜这个过程会卓有成效,
15:12
and a huge impact in key activities
303
912240
2136
并对主要活动产生巨大影响,
15:14
like learning, education, research, business.
304
914400
5320
比如学习,教育,研究,商务。
15:20
So for instance, if you think about artificial intelligence,
305
920680
2896
比如,想一下人工智能,
15:23
I am sure -- I mean, artificial intelligence,
306
923600
2136
我确信——在不久的将来,
15:25
we need to rely in the near future
307
925760
1816
我们会越来越依附
15:27
more and more on the structure of the adjacent possible,
308
927600
3816
发现临界可能性的这样一种结构,
15:31
to restructure it, to change it,
309
931440
1936
人工智能会去帮助重建这个结构,
15:33
but also to cope with the unknowns of the future.
310
933400
2320
去改变,去应对未知。
15:36
In parallel, we have a lot of tools,
311
936400
1856
同时,我们也有很多工具,
15:38
new tools now, to investigate how creativity works
312
938280
3496
崭新的现代工具, 去探究创新力是怎样产生,
15:41
and what triggers innovation.
313
941800
1600
是什么使创新应运而生。
15:44
And the aim of all this is to raise a generation of people
314
944080
3176
这所有一切的目的 便是去扶持一代人,
15:47
able to come up with new ideas to face the challenges in front of us.
315
947280
3616
一代能有新想法, 有能力面对挑战的人
15:50
We all know.
316
950920
1216
我们都知道。
15:52
I think it's a long way to go,
317
952160
2096
还有很长的路要走,
15:54
but the questions, and the tools,
318
954280
3056
但现在已有的问题,工具,
15:57
are now there, adjacent and possible.
319
957360
3560
就在身边,甚至唾手可得。
16:01
Thank you.
320
961720
1216
谢谢大家!
16:02
(Applause)
321
962960
4880
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog