Need a new idea? Start at the edge of what is known | Vittorio Loreto

83,665 views ・ 2018-04-16

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: congmei Han
00:14
We have all probably wondered
0
14349
2867
我們可能都納悶過,
00:17
how great minds achieved what they achieved, right?
1
17240
4176
有才智的人如何達成 他們的成就,對吧?
00:21
And the more astonishing their achievements are,
2
21440
2656
他們的成就越是驚人,
00:24
the more we call them geniuses,
3
24120
2536
我們就越會稱他們為天才,
00:26
perhaps aliens
4
26680
1536
抑或外星人,
00:28
coming from a different planet,
5
28239
2097
來自不同星球的,
00:30
definitely not someone like us.
6
30360
2656
肯定不是像我們這樣的人。
00:33
But is that true?
7
33040
1776
但真的如此嗎?
00:34
So let me start with an example.
8
34840
1800
讓我從一個例子說起。
00:37
You all know the story of Newton's apple, right? OK.
9
37440
3816
你們都聽過牛頓的蘋果 這個故事,對吧?好。
00:41
Is that true? Probably not.
10
41280
2936
那是真的嗎?可能不是。
00:44
Still, it's difficult to think that no apple at all was there.
11
44240
5216
但,很難想像那裡根本沒有蘋果。
00:49
I mean some stepping stone, some specific conditions
12
49480
3616
我是指具備某些墊腳石, 某些特定條件,
00:53
that made universal gravitation not impossible to conceive.
13
53120
4016
才有可能讓萬有引力被構想出來。
00:57
And definitely this was not impossible,
14
57160
2376
這個肯定不是不可能的,
00:59
at least for Newton.
15
59560
1576
至少對牛頓而言。
01:01
It was possible,
16
61160
1256
它是可能的,
01:02
and for some reason, it was also there,
17
62440
3056
基於某種理由,它也在那裡,
01:05
available at some point, easy to pick as an apple.
18
65520
3776
在某個時點是可得的, 就像蘋果一樣容易摘取。
01:09
Here is the apple.
19
69320
1616
這裡有個蘋果。
01:10
And what about Einstein?
20
70960
2216
那愛因斯坦呢?
01:13
Was relativity theory another big leap in the history of ideas
21
73200
5296
相對論是想法史上的另一個大躍進,
01:18
no one else could even conceive?
22
78520
2656
沒有其他人能想出來?
01:21
Or rather, was it again something adjacent and possible,
23
81200
4456
或者同樣的,那是某種 有前後關聯、有可能的東西嗎?
01:25
to Einstein of course,
24
85680
2096
對愛因斯坦而言當然是如此,
01:27
and he got there by small steps and his very peculiar scientific path?
25
87800
4216
他靠著小步伐和他非常奇特的 科學路徑而到達那裡。
01:32
Of course we cannot conceive this path,
26
92040
2456
當然,我們無法設想出這條路徑,
01:34
but this doesn't mean that the path was not there.
27
94520
2480
但這並不表示路徑不在那裡。
01:38
So all of this seems very evocative,
28
98760
4856
這一切似乎都非常有感召力,
01:43
but I would say hardly concrete
29
103640
1536
但我會說,算不上實在,
01:45
if we really want to grasp the origin of great ideas
30
105200
3576
如果我們真的想要了解 偉大想法的源頭,
01:48
and more generally the way in which the new enters our lives.
31
108800
4016
或更一般化地去了解新想法 進入我們生活的方式。
01:52
As a physicist, as a scientist,
32
112840
1976
身為物理學家,身為科學家,
01:54
I have learned that posing the right questions
33
114840
2176
我學到一件事,問對問題,
01:57
is half of the solution.
34
117040
2016
就已經完成一半的解答了。
01:59
But I think now we start having a great conceptual framework
35
119080
4736
但我認為,現在我們開始 有很偉大的概念架構,
02:03
to conceive and address the right questions.
36
123840
3176
來設想並處理對的問題。
02:07
So let me drive you to the edge of what is known,
37
127040
3456
讓我帶各位到已知領域的邊緣,
02:10
or at least, what I know,
38
130520
2096
至少是我已知的領域,
02:12
and let me show you that what is known
39
132640
2056
讓我展示給各位看,已知事物
02:14
could be a powerful and fascinating starting point
40
134720
4576
可以是個非常強大且迷人的起始點,
02:19
to grasp the deep meaning of words like novelty, innovation,
41
139320
5096
來了解像是新穎、創新, 也許還有創意,這類字詞的
02:24
creativity perhaps.
42
144440
1560
深刻意義。
02:26
So we are discussing the "new,"
43
146880
3336
所以,我們要討論「新事物」,
02:30
and of course, the science behind it.
44
150240
2656
當然,還有它背後的科學。
02:32
The new can enter our lives in many different ways,
45
152920
2976
新事物可藉由許多不同 方式進入我們的生活,
02:35
can be very personal,
46
155920
1696
可能是非常個人化的,
02:37
like I meet a new person,
47
157640
1936
就像我新結識一個人,
02:39
I read a new book, or I listen to a new song.
48
159600
3296
我讀了一本新書, 或我聽了一首新歌。
02:42
Or it could be global,
49
162920
1256
也可能是全球性的,
02:44
I mean, something we call innovation.
50
164200
2056
我指的是我們所謂的創新。
02:46
It could be a new theory, a new technology,
51
166280
2176
可能是一個新理論、一種新技術,
02:48
but it could also be a new book if you're the writer,
52
168480
2576
但也可能是一本新書, 若你是作家的話,
02:51
or it could be a new song if you're the composer.
53
171080
2336
也可能是一首新歌, 若你是作曲家的話。
02:53
In all of these global cases, the new is for everyone,
54
173440
4296
在所有這些全球性的例子中, 新的事物是給所有人的,
02:57
but experiencing the new can be also frightening,
55
177760
3816
但體驗新的事物也可能很嚇人,
03:01
so the new can also frighten us.
56
181600
3736
所以新的事物也可能會嚇壞我們。
03:05
But still, experiencing the new means exploring a very peculiar space,
57
185360
4176
但,體驗新的事物仍然 意味著探索一個奇特的空間,
03:09
the space of what could be,
58
189560
2096
「可能是怎樣」的空間,
03:11
the space of the possible, the space of possibilities.
59
191680
3176
「可能之事物」的空間, 「可能性」的空間。
03:14
It's a very weird space, so I'll try to get you through this space.
60
194880
3456
它是個非常怪異的空間, 所以我會試著帶各位穿過它。
03:18
So it could be a physical space.
61
198360
2016
它可能是個實體空間。
03:20
So in this case, for instance,
62
200400
1616
比如,在這個例子中,
03:22
novelty could be climbing Machu Picchu for the first time,
63
202040
4056
「新穎」有可能是 初次爬上馬丘比丘,
03:26
as I did in 2016.
64
206120
1920
像我在 2016 年的體驗一樣。
03:28
It could be a conceptual space,
65
208960
1816
它也可能是個概念空間,
03:30
so acquiring new information, making sense of it, in a word, learning.
66
210800
4416
取得新資訊,從中找出道理, 一言以蔽之,就是學習。
03:35
It could be a biological space.
67
215240
1936
它有可能是個生物空間。
03:37
I mean, think about the never-ending fight of viruses and bacteria
68
217200
4096
想想看,我們的免疫系統 對抗病毒和細菌的戰爭,
03:41
with our immune system.
69
221320
1936
永無止境。
03:43
And now comes the bad news.
70
223280
1736
現在壞消息來了。
03:45
We are very, very bad at grasping this space.
71
225040
3296
我們非常非常不擅長了解這個空間。
03:48
Think of it. Let's make an experiment.
72
228360
2016
想想這一點。咱們來做個實驗。
03:50
Try to think about all the possible things you could do in the next, say, 24 hours.
73
230400
6880
比如,試想在接下來的 24 小時, 所有你有可能會做的事情。
03:58
Here the key word is "all."
74
238320
2656
這裡的關鍵字是「所有」。
04:01
Of course you can conceive a few options, like having a drink, writing a letter,
75
241000
4800
當然,你可以想出幾個可能選項, 比如喝杯酒、寫封信,
04:06
also sleeping during this boring talk,
76
246840
3176
或是在這場無聊的演講中睡一覺,
04:10
if you can.
77
250040
1696
如果你能的話。
04:11
But not all of them.
78
251760
1656
但你無法想出所有選項。
04:13
So think about an alien invasion, now, here, in Milan,
79
253440
3936
所以,想想外星人入侵, 現在,在這裡,在米蘭,
04:17
or me -- I stopped thinking for 15 minutes.
80
257400
3120
或是我──我停止思考 15 分鐘。
04:21
So it's very difficult to conceive this space,
81
261440
3136
所以,要想出這個空間 是非常困難的,
04:24
but actually we have an excuse.
82
264600
2176
但其實,我們有一個藉口。
04:26
So it's not so easy to conceive this space
83
266800
3496
所以,要想出這個空間並不很容易,
04:30
because we are trying to conceive the occurrence of something brand new,
84
270320
3495
因為我們在試著想出 全新事物的發生,
04:33
so something that never occurred before,
85
273839
1977
以前從來沒有發生過的事物,
04:35
so we don't have clues.
86
275840
1480
所以我們會沒頭緒。
04:38
A typical solution could be
87
278040
2896
典型的解決方案可能是,
04:40
looking at the future with the eyes of the past,
88
280960
3216
用過去的眼睛來看未來,
04:44
so relying on all the time series of past events
89
284200
3296
所以,仰賴所有 過去事件的時間序列,
04:47
and hoping that this is enough to predict the future.
90
287520
3496
希望這些資訊足以預測未來。
04:51
But we know this is not working.
91
291040
2176
但我們知道這行不通。
04:53
For instance, this was the first attempt for weather forecasts, and it failed.
92
293240
5216
比如,第一次天氣預測的 嘗試就失敗了。
04:58
And it failed because of the great complexity
93
298480
2416
之所以會失敗,是因為
這背後現象的複雜度太高。
05:00
of the underlying phenomenon.
94
300920
1936
05:02
So now we know that predictions had to be based on modeling,
95
302880
5616
所以,現在我們知道, 預測必須要立基在模型上,
05:08
which means creating a synthetic model of the system,
96
308520
3496
那就表示,創造出 一個系統的合成模型,
05:12
simulating this model and then projecting the system
97
312040
4136
模擬這個模型,接著把這個系統透過
05:16
into the future through this model.
98
316200
2536
這個模型投射到未來。
05:18
And now we can do this in a lot of cases
99
318760
2936
在許多情況下我們都能做到這一點,
05:21
with the help of a lot of data.
100
321720
1880
只要能有大量資料的幫忙。
05:25
Looking at the future with the eye of the past
101
325000
2896
用過去的眼睛看未來,
05:27
could be misleading also for machines.
102
327920
2736
對於機器來說也有可能會造成誤導。
05:30
Think about it.
103
330680
1216
想想這一點。
05:31
Now picture yourself for a second in the middle of the Australian Outback.
104
331920
4800
試想一下,你身處澳洲內陸中間。
05:37
You stand there under the sun.
105
337440
2720
你站在太陽底下。
05:40
So you see something weird happening.
106
340840
2216
你看到奇怪的事情發生。
05:43
The car suddenly stops
107
343080
2736
車突然停下來,
05:45
very, very far from a kangaroo crossing the street.
108
345840
3056
離正在過街的袋鼠非常非常遠。
05:48
You look closer
109
348920
1456
你靠近些看,
05:50
and you realize that the car has no driver.
110
350400
2416
你發現那台車沒有人駕駛。
05:52
It is not restarting, even after the kangaroo is not there anymore.
111
352840
4016
它沒有重新啟動, 即使袋鼠已經不在那裡了。
05:56
So for some reasons,
112
356880
1896
基於某些理由,
05:58
the algorithms driving the car cannot make sense
113
358800
2536
負責開車的演算法無法理解
06:01
of this strange beast jumping here and there on the street.
114
361360
3680
這隻奇怪的野獸在街上跳來跳去。
06:05
So it just stops.
115
365640
1200
所以它停下來了。
06:07
Now, I should tell you, this is a true story.
116
367720
2136
我可以告訴各位,這是真實故事。
06:09
It happened a few months ago to Volvo's self-driving cars
117
369880
2696
這是幾個月前富豪自動駕駛車
06:12
in the middle of the Australian Outback.
118
372600
1936
在澳洲內陸中碰到的狀況。
06:14
(Laughter)
119
374560
1696
(笑聲)
06:16
It is a general problem,
120
376280
1976
這是個一般性的問題,
06:18
and I guess this will affect more and more in the near future
121
378280
2976
我猜這對於未來的 人工智慧和機器學習
06:21
artificial intelligence and machine learning.
122
381280
2560
會有越來越多的影響。
06:24
It's also a very old problem, I would say 17th century,
123
384440
3976
這也是個很古老的問題, 我會說是 17 世紀,
06:28
but I guess now we have new tools and new clues to start solving it.
124
388440
5136
但我想現在我們有新的工具 和新的線索可以開始解決它。
06:33
So let me take a step back,
125
393600
2176
所以,讓我先退後一步,
06:35
five years back.
126
395800
2736
回到 5 年前。
06:38
Italy. Rome. Winter.
127
398560
2976
義大利。羅馬。冬天。
06:41
So the winter of 2012 was very special in Rome.
128
401560
3576
2012 年羅馬的冬天非常特別。
06:45
Rome witnessed one of the greatest snowfalls of its history.
129
405160
3560
那次降雪量在羅馬史上名列前茅。
06:49
That winter was special also for me and my colleagues,
130
409520
3696
那年冬天對我 和我同事而言也很特別,
06:53
because we had an insight about the possible mathematical scheme --
131
413240
3496
因為我們對於一項可能的 數學方法有了洞見──
06:56
again, possible, possible mathematical scheme,
132
416760
2976
同樣,只是「可能的」數學方法,
06:59
to conceive the occurrence of the new.
133
419760
1840
能構想出新事物的發生。
07:02
I remember that day because it was snowing,
134
422520
2416
我記得那天,是因為在下雪,
07:04
so due to the snowfall, we were blocked, stuck in my department,
135
424960
3776
因為降雪,我們被困在 我的系所裡,走不了,
07:08
and we couldn't go home,
136
428760
1416
我們無法回家,
07:10
so we got another coffee, we relaxed
137
430200
3056
所以我們再喝了一杯咖啡,放輕鬆,
07:13
and we kept discussing.
138
433280
1776
我們持續討論。
07:15
But at some point -- maybe not that date, precisely --
139
435080
3696
但在某個時點── 精確來說也許不是那天──
07:18
at some point we made the connection
140
438800
2896
在某個時點,我們建立了連結,
07:21
between the problem of the new
141
441720
2976
把新事物的問題連結到
07:24
and a beautiful concept proposed years before
142
444720
2416
幾年前提出的一個美麗概念,
07:27
by Stuart Kauffman,
143
447160
1776
由斯圖亞特考夫曼提出的
07:28
the adjacent possible.
144
448960
2040
「相鄰可能」。
07:31
So the adjacent possible consists of all those things.
145
451720
3056
相鄰可能包含了所有這些東西。
07:34
It could be ideas, it could be molecules, it could be technological products
146
454800
3736
可能是想法,可能是分子, 可能是技術產品,
07:38
that are one step away
147
458560
2936
它們都距離真正存在的事物
07:41
from what actually exists,
148
461520
1736
還有一步之差,
07:43
and you can achieve them through incremental modifications
149
463280
3536
你可以達成它們, 只要透過對既有素材做
07:46
and recombinations of the existing material.
150
466840
2560
漸增的修正以及重新組合。
07:50
So for instance, if I speak about the space of my friends,
151
470520
3896
比如,如果我說到我朋友的空間,
07:54
my adjacent possible would be the set of all friends of my friends
152
474440
3976
我的相鄰可能就是「我朋友的朋友中 還沒成為我朋友的那些人」
07:58
not already my friends.
153
478440
1400
所形成的集合。
08:00
I hope that's clear.
154
480240
1736
我希望這樣夠清楚。
08:02
But now if I meet a new person,
155
482000
1816
但若我新結識一個人,
08:03
say Briar,
156
483840
1696
比如布萊兒,
08:05
all her friends would immediately enter my adjacent possible,
157
485560
4056
她所有的朋友就馬上會 進入到我的相鄰可能,
08:09
pushing its boundaries further.
158
489640
1520
把其邊界進一步向外推。
08:12
So if you really want to look from the mathematical point of view --
159
492160
3216
所以,如果你想要從 數學的角度來看──
08:15
I'm sure you want --
160
495400
1400
我相信你們想──
08:18
you can actually look at this picture.
161
498200
1976
你們可以看看這張圖。
08:20
So suppose now this is your universe.
162
500200
1896
假設這是你的宇宙。
08:22
I know I'm asking a lot.
163
502120
1256
我知道我要求很多。
08:23
I mean, this is your universe. Now you are the red spot.
164
503400
2640
這是你的宇宙,你是那個紅點。
08:27
And the green spot is the adjacent possible for you,
165
507320
2616
綠點是你的相鄰可能,
08:29
so something you've never touched before.
166
509960
2096
它是你以前沒碰過的東西。
08:32
So you do your normal life.
167
512080
1336
你過著你的正常生活。
08:33
You move. You move in the space.
168
513440
1656
你移動,你在空間中移動。
08:35
You have a drink. You meet friends. You read a book.
169
515120
2656
你去喝杯酒。你去見朋友。 你讀一本書。
08:37
At some point, you end up on the green spot,
170
517800
2896
在某個時點,你會到達綠點,
08:40
so you meet Briar for the first time.
171
520720
2176
你會初次見到布萊兒。
08:42
And what happens?
172
522920
1336
會發生什麼事?
08:44
So what happens is there is a new part,
173
524280
2296
發生的事是,會有一個新的部分,
08:46
a brand new part of the space,
174
526600
2456
這空間會有一個全新的部分,
08:49
becoming possible for you in this very moment,
175
529080
4256
在此時刻變成是對你來說有可能的,
08:53
even without any possibility for you to foresee this
176
533360
3856
即使你在接觸這個點之前
08:57
before touching that point.
177
537240
2056
不可能預見此事。
08:59
And behind this there will be a huge set of points
178
539320
2696
這背後就是許多的點,
09:02
that could become possible at some later stages.
179
542040
3696
在後續某些階段就會成為可能。
09:05
So you see the space of the possible is very peculiar,
180
545760
2816
所以,可能性的空間是非常奇特的,
09:08
because it's not predefined.
181
548600
2216
因為它不是預先定義的。
09:10
It's not something we can predefine.
182
550840
2296
它不是能被預先定義的。
09:13
It's something that gets continuously shaped and reshaped
183
553160
3376
它是會因為我們的行為和選擇而不斷
09:16
by our actions and our choices.
184
556560
2600
持續形成和重塑的東西。
09:20
So we were so fascinated by these connections we made --
185
560120
3456
我們做的這些連結, 讓我們非常著迷──
09:23
scientists are like this.
186
563600
1896
科學家就像這樣。
09:25
And based on this,
187
565520
2296
根據這個,
09:27
we conceived our mathematical formulation for the adjacent possible,
188
567840
3216
我們想出了相鄰可能的數學方程式,
09:31
20 years after the original Kauffman proposals.
189
571080
3456
在考夫曼最初 提出這概念的 20 年後。
09:34
In our theory -- this is a key point --
190
574560
2136
在我們的理論中──這是一項關鍵──
09:36
I mean, it's crucially based on a complex interplay
191
576720
3536
很重要的是,它是立基在 複雜的相互影響上,
09:40
between the way in which this space of possibilities expands
192
580280
4776
可能性空間擴張和被重新架構的方式,
09:45
and gets restructured,
193
585080
1536
與我們探索它的方式,
09:46
and the way in which we explore it.
194
586640
2496
兩者間的相互影響。
09:49
After the epiphany of 2012,
195
589160
3856
在 2012 年的主顯節之後,
09:53
we got back to work, real work,
196
593040
1656
我們回到工作狀態,真正的工作,
09:54
because we had to work out this theory,
197
594720
1896
因為我們得發展出這理論,
09:56
and we came up with a certain number of predictions
198
596640
2416
我們做出了一些預測,
09:59
to be tested in real life.
199
599080
1256
在真實人生中測試。
10:00
Of course, we need a testable framework
200
600360
2896
當然,我們需要一個可測試的架構
10:03
to study innovation.
201
603280
1456
才能研究創新。
10:04
So let me drive you across a few predictions we made.
202
604760
4056
讓我帶各位看看我們做的幾個預測。
10:08
The first one concerns the pace of innovation,
203
608840
2896
第一個和創新的步調有關,
10:11
so the rate at which you observe novelties in very different systems.
204
611760
4896
也就是你觀察不同系統中 新奇之處的速度。
10:16
So our theory predicts that the rate of innovation
205
616680
2496
我們的理論預測,
創新率應該會遵循一種通用的曲線,
10:19
should follow a universal curve,
206
619200
1936
10:21
like this one.
207
621160
1320
像這種。
10:23
This is the rate of innovation versus time in very different conditions.
208
623240
3640
這是在不同情況下 隨時間變化的創新率。
10:27
And somehow, we predict that the rate of innovation
209
627720
2616
我們預測出的創新率
10:30
should decrease steadily over time.
210
630360
2696
會隨著時間穩定下降。
10:33
So somehow, innovation is predicted to become more difficult
211
633080
3096
所以我們預測,隨時間進展,
10:36
as your progress over time.
212
636200
1920
創新會變得越來越困難。
10:38
It's neat. It's interesting. It's beautiful. We were happy.
213
638960
3536
它很棒。它很有趣。 它很美好。我們很開心。
10:42
But the question is, is that true?
214
642520
2176
但問題是,那是真的嗎?
10:44
Of course we should check with reality.
215
644720
1880
當然,我們要確認現實狀況。
10:47
So we went back to reality
216
647600
2376
所以,我們回到現實,
10:50
and we collected a lot of data, terabytes of data,
217
650000
3136
我們收集了許多資料, 幾兆位元組的資料,
10:53
tracking innovation in Wikipedia, Twitter,
218
653160
3336
追蹤在維基百科、推特的創新,
10:56
the way in which we write free software,
219
656520
2216
我們撰寫免費軟體的方式,
10:58
even the way we listen to music.
220
658760
1640
甚至我們聽音樂的方式。
11:01
I cannot tell you, we were so amazed and pleased and thrilled
221
661160
3736
我無法告訴各位我們有 多麼驚訝、開心,和興奮,
11:04
to discover that the same predictions we made in the theory
222
664920
3496
因為我們發現, 我們在理論上做的預測,
11:08
were actually satisfied in real systems,
223
668440
2576
實際上也符合真實系統,
11:11
many different real systems.
224
671040
1536
許多不同的真實系統。
11:12
We were so excited.
225
672600
1496
我們好興奮。
11:14
Of course, apparently, we were on the right track,
226
674120
2816
當然,顯然,我們的方向是對的,
11:16
but of course, we couldn't stop,
227
676960
2496
但當然,我們無法停止,
11:19
so we didn't stop.
228
679480
1496
所以我們沒有停止。
11:21
So we kept going on,
229
681000
2096
我們持續下去,
11:23
and at some point we made another discovery
230
683120
2056
在某個時點,我們有了另一個發現,
11:25
that we dubbed "correlated novelties."
231
685200
3536
我們稱之為「相關新奇」。
11:28
It's very simple.
232
688760
1256
它非常簡單。
11:30
So I guess we all experience this.
233
690040
1896
我想我們都經歷過。
11:31
So you listen to "Suzanne" by Leonard Cohen,
234
691960
3560
如果你聽了李歐納柯恩的歌《蘇珊》,
11:36
and this experience triggers your passion for Cohen
235
696440
3656
這體驗觸發了你對柯恩的熱情,
11:40
so that you start frantically listening to his whole production.
236
700120
3816
所以你開始瘋狂地聽他的所有作品。
11:43
And then you realize that Fabrizio De André here
237
703960
2296
接著,你發現法布里奇奧德安德烈
11:46
recorded an Italian version of "Suzanne,"
238
706280
1976
錄製了《蘇珊》的義大利版本,
11:48
and so on and so forth.
239
708280
2016
諸如此類。
11:50
So somehow for some reason,
240
710320
1976
所以,基於某種原因,
11:52
the very notion of adjacent possible is already encoding the common belief
241
712320
3896
相鄰可能的概念已經被編寫在
11:56
that one thing leads to another
242
716240
2560
「一件事會導致另一件事」的 這個一般看法中,
11:59
in many different systems.
243
719720
1736
在許多不同系統中皆是如此。
12:01
But the reason why we were thrilled
244
721480
2296
但我們很興奮的原因,
12:03
is because actually we could give, for the first time,
245
723800
2524
是因為這是第一次,我們能夠賦予
12:06
a scientific substance to this intuition
246
726348
2068
這種直覺一個科學本質,
12:08
and start making predictions
247
728440
1656
並開始做出預測,
12:10
about the way in which we experience the new.
248
730120
2416
預測我們會如何體驗新事物。
12:12
So novelties are correlated.
249
732560
2320
所以,新奇的事物是相關聯的。
12:16
They are not occurring randomly.
250
736320
2056
它們不是隨機發生的。
12:18
And this is good news,
251
738400
1456
這是好消息,
12:19
because it implies that impossible missions
252
739880
4736
因為這意味著,不可能的任務
12:24
might not be so impossible after all,
253
744640
2376
歸根結底,也許不是那麼不可能,
12:27
if we are guided by our intuition,
254
747040
3096
如果我們讓直覺引導我們,
12:30
somehow leading us to trigger a positive chain reaction.
255
750160
3760
帶領我們去觸發 一種正向的連鎖反應。
12:34
But there is a third consequence of the existence of the adjacent possible
256
754840
3496
但相鄰可能的存在 會有第三項後果,
12:38
that we named "waves of novelties."
257
758360
3536
我們稱之為「新奇波浪」。
12:41
So just to make this simple, so in music,
258
761920
2696
簡單來說,在音樂方面,
12:44
without waves of novelties,
259
764640
1376
若沒有新奇波浪,
12:46
we would still be listening all the time to Mozart or Beethoven,
260
766040
6056
我們都還會一直在聽 莫札特和貝多芬,
12:52
which is great,
261
772120
1496
他們的音樂很棒,
12:53
but we don't do this all the time.
262
773640
1656
但我們不會一直聽。
12:55
We also listen to the Pet Shop Boys or Justin Bieber -- well, some of us do.
263
775320
5016
我們也會聽寵物店男孩 或小賈斯汀──嗯,有些人會。
13:00
(Laughter)
264
780360
2176
(笑聲)
13:02
So we could see very clearly all of these patterns
265
782560
3896
我們可以在我們收集 並分析的大量資料中,
13:06
in the huge amounts of data we collected and analyzed.
266
786480
3736
清楚看到所有這些模式。
13:10
For instance, we discovered that popular hits in music
267
790240
3656
比如,我們發現, 音樂中的流行熱門歌曲
13:13
are continuously born, you know that,
268
793920
1896
不斷產生出來,你們知道這點,
13:15
and then they disappear, still leaving room for evergreens.
269
795840
3440
接著它們就消失了,留下空間 給不褪流行的長青歌曲。
13:20
So somehow waves of novelties ebb and flow
270
800120
3096
所以,新奇波浪會退潮和流動,
13:23
while the tides always hold the classics.
271
803240
2576
而潮流會一直留住經典。
13:25
There is this coexistence between evergreens and new hits.
272
805840
3960
長青歌曲和新熱門曲之間 有這種共存現象。
13:31
Not only our theory predicts these waves of novelties.
273
811920
2696
我們的理論不只是 預測這些新奇波浪。
13:34
This would be trivial.
274
814640
1456
這沒什麼。
13:36
But it also explains why they are there,
275
816120
2896
而是它也解釋了為什麼它們會出現,
13:39
and they are there for a specific reason,
276
819040
1976
它們的出現是有特殊理由的,
13:41
because we as humans display different strategies
277
821040
3216
因為我們人類在可能性的空間中
13:44
in the space of the possible.
278
824280
1856
展現出不同的策略。
13:46
So some of us tend to retrace already known paths.
279
826160
5136
我們有些人會傾向折返已知的路徑。
13:51
So we say they exploit.
280
831320
2320
我們說他們是在「利用」。
13:54
Some of us always launch into new adventures.
281
834360
2856
有些人總是要展開新的冒險。
13:57
We say they explore.
282
837240
1696
我們說他們是在「探索」。
13:58
And what we discovered is all the systems we investigated
283
838960
3296
我們發現,所有被我們研究的系統,
14:02
are right at the edge between these two strategies,
284
842280
3176
都在這兩項策略間的邊緣上,
14:05
something like 80 percent exploiting, 20 percent exploring,
285
845480
3536
比如 80% 的利用,20% 的探索,
14:09
something like blade runners of innovation.
286
849040
2680
像是創新的「銀翼殺手」(電影)。
14:12
So it seems that the wise balance, you could also say a conservative balance,
287
852720
5216
似乎,明智的平衡, 你也可以說是保守的平衡,
14:17
between past and future, between exploitation and exploration,
288
857960
4976
在過去和未來間、 在利用和探索間的平衡,
14:22
is already in place and perhaps needed in our system.
289
862960
3416
已經就位了, 且是我們的系統所需要的。
14:26
But again the good news is now we have scientific tools
290
866400
3616
但同樣的,好消息是 我們現在有科學工具
14:30
to investigate this equilibrium,
291
870040
1736
在研究這種均衡,
14:31
perhaps pushing it further in the near future.
292
871800
3280
也許能將它再推展到不遠的將來。
14:37
So as you can imagine,
293
877360
2256
不難想像,
14:39
I was really fascinated by all this.
294
879640
4160
我深深著迷於這一切。
14:44
Our mathematical scheme is already providing cues and hints
295
884920
3136
我們的數學方法已經 在提供提示和暗示,
14:48
to investigate the space of possibilities
296
888080
2056
來探究可能性空間,
14:50
and the way in which all of us create it and explore it.
297
890160
4016
以及我們所有人創造它、 探索它的方式。
14:54
But there is more.
298
894200
1336
但不只如此。
14:55
This, I guess, is a starting point of something that has the potential
299
895560
3376
我想,這只是個起始點,它還有潛力
14:58
to become a wonderful journey for a scientific investigation of the new,
300
898960
4616
能變成美好的旅程, 對於新事物做科學的研究,
15:03
but also I would say a personal investigation of the new.
301
903600
3280
還有對於新事物做個人的研究。
15:09
And I guess this can have a lot of consequences
302
909320
2896
我想,這可能會有很多後果,
15:12
and a huge impact in key activities
303
912240
2136
在關鍵活動中也會有重大影響,
15:14
like learning, education, research, business.
304
914400
5320
比如學習、教育、研究、商業。
15:20
So for instance, if you think about artificial intelligence,
305
920680
2896
舉例來說,想想人工智慧,
15:23
I am sure -- I mean, artificial intelligence,
306
923600
2136
我很確定──我是說,人工智慧,
15:25
we need to rely in the near future
307
925760
1816
在不遠的將來,我們會
15:27
more and more on the structure of the adjacent possible,
308
927600
3816
越來越需要依賴相鄰可能的結構,
15:31
to restructure it, to change it,
309
931440
1936
來重新架構它、改變它,
15:33
but also to cope with the unknowns of the future.
310
933400
2320
同時也要應對未來的未知。
15:36
In parallel, we have a lot of tools,
311
936400
1856
同樣的,我們有很多工具,
15:38
new tools now, to investigate how creativity works
312
938280
3496
新工具,可用來探究 創意是如何運作的,
15:41
and what triggers innovation.
313
941800
1600
以及是什麼觸發了創新。
15:44
And the aim of all this is to raise a generation of people
314
944080
3176
這一切的目標, 是要提升一個世代的人,
15:47
able to come up with new ideas to face the challenges in front of us.
315
947280
3616
讓他們能提出新的點子, 來面對我們眼前的挑戰。
15:50
We all know.
316
950920
1216
我們都知道。
15:52
I think it's a long way to go,
317
952160
2096
我認為還有很長的路要走,
15:54
but the questions, and the tools,
318
954280
3056
但問題以及工具都具備了,
15:57
are now there, adjacent and possible.
319
957360
3560
是相鄰的,也是可能的。
16:01
Thank you.
320
961720
1216
謝謝。
16:02
(Applause)
321
962960
4880
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7