Need a new idea? Start at the edge of what is known | Vittorio Loreto

83,925 views ・ 2018-04-16

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: congmei Han
00:14
We have all probably wondered
0
14349
2867
我們可能都納悶過,
00:17
how great minds achieved what they achieved, right?
1
17240
4176
有才智的人如何達成 他們的成就,對吧?
00:21
And the more astonishing their achievements are,
2
21440
2656
他們的成就越是驚人,
00:24
the more we call them geniuses,
3
24120
2536
我們就越會稱他們為天才,
00:26
perhaps aliens
4
26680
1536
抑或外星人,
00:28
coming from a different planet,
5
28239
2097
來自不同星球的,
00:30
definitely not someone like us.
6
30360
2656
肯定不是像我們這樣的人。
00:33
But is that true?
7
33040
1776
但真的如此嗎?
00:34
So let me start with an example.
8
34840
1800
讓我從一個例子說起。
00:37
You all know the story of Newton's apple, right? OK.
9
37440
3816
你們都聽過牛頓的蘋果 這個故事,對吧?好。
00:41
Is that true? Probably not.
10
41280
2936
那是真的嗎?可能不是。
00:44
Still, it's difficult to think that no apple at all was there.
11
44240
5216
但,很難想像那裡根本沒有蘋果。
00:49
I mean some stepping stone, some specific conditions
12
49480
3616
我是指具備某些墊腳石, 某些特定條件,
00:53
that made universal gravitation not impossible to conceive.
13
53120
4016
才有可能讓萬有引力被構想出來。
00:57
And definitely this was not impossible,
14
57160
2376
這個肯定不是不可能的,
00:59
at least for Newton.
15
59560
1576
至少對牛頓而言。
01:01
It was possible,
16
61160
1256
它是可能的,
01:02
and for some reason, it was also there,
17
62440
3056
基於某種理由,它也在那裡,
01:05
available at some point, easy to pick as an apple.
18
65520
3776
在某個時點是可得的, 就像蘋果一樣容易摘取。
01:09
Here is the apple.
19
69320
1616
這裡有個蘋果。
01:10
And what about Einstein?
20
70960
2216
那愛因斯坦呢?
01:13
Was relativity theory another big leap in the history of ideas
21
73200
5296
相對論是想法史上的另一個大躍進,
01:18
no one else could even conceive?
22
78520
2656
沒有其他人能想出來?
01:21
Or rather, was it again something adjacent and possible,
23
81200
4456
或者同樣的,那是某種 有前後關聯、有可能的東西嗎?
01:25
to Einstein of course,
24
85680
2096
對愛因斯坦而言當然是如此,
01:27
and he got there by small steps and his very peculiar scientific path?
25
87800
4216
他靠著小步伐和他非常奇特的 科學路徑而到達那裡。
01:32
Of course we cannot conceive this path,
26
92040
2456
當然,我們無法設想出這條路徑,
01:34
but this doesn't mean that the path was not there.
27
94520
2480
但這並不表示路徑不在那裡。
01:38
So all of this seems very evocative,
28
98760
4856
這一切似乎都非常有感召力,
01:43
but I would say hardly concrete
29
103640
1536
但我會說,算不上實在,
01:45
if we really want to grasp the origin of great ideas
30
105200
3576
如果我們真的想要了解 偉大想法的源頭,
01:48
and more generally the way in which the new enters our lives.
31
108800
4016
或更一般化地去了解新想法 進入我們生活的方式。
01:52
As a physicist, as a scientist,
32
112840
1976
身為物理學家,身為科學家,
01:54
I have learned that posing the right questions
33
114840
2176
我學到一件事,問對問題,
01:57
is half of the solution.
34
117040
2016
就已經完成一半的解答了。
01:59
But I think now we start having a great conceptual framework
35
119080
4736
但我認為,現在我們開始 有很偉大的概念架構,
02:03
to conceive and address the right questions.
36
123840
3176
來設想並處理對的問題。
02:07
So let me drive you to the edge of what is known,
37
127040
3456
讓我帶各位到已知領域的邊緣,
02:10
or at least, what I know,
38
130520
2096
至少是我已知的領域,
02:12
and let me show you that what is known
39
132640
2056
讓我展示給各位看,已知事物
02:14
could be a powerful and fascinating starting point
40
134720
4576
可以是個非常強大且迷人的起始點,
02:19
to grasp the deep meaning of words like novelty, innovation,
41
139320
5096
來了解像是新穎、創新, 也許還有創意,這類字詞的
02:24
creativity perhaps.
42
144440
1560
深刻意義。
02:26
So we are discussing the "new,"
43
146880
3336
所以,我們要討論「新事物」,
02:30
and of course, the science behind it.
44
150240
2656
當然,還有它背後的科學。
02:32
The new can enter our lives in many different ways,
45
152920
2976
新事物可藉由許多不同 方式進入我們的生活,
02:35
can be very personal,
46
155920
1696
可能是非常個人化的,
02:37
like I meet a new person,
47
157640
1936
就像我新結識一個人,
02:39
I read a new book, or I listen to a new song.
48
159600
3296
我讀了一本新書, 或我聽了一首新歌。
02:42
Or it could be global,
49
162920
1256
也可能是全球性的,
02:44
I mean, something we call innovation.
50
164200
2056
我指的是我們所謂的創新。
02:46
It could be a new theory, a new technology,
51
166280
2176
可能是一個新理論、一種新技術,
02:48
but it could also be a new book if you're the writer,
52
168480
2576
但也可能是一本新書, 若你是作家的話,
02:51
or it could be a new song if you're the composer.
53
171080
2336
也可能是一首新歌, 若你是作曲家的話。
02:53
In all of these global cases, the new is for everyone,
54
173440
4296
在所有這些全球性的例子中, 新的事物是給所有人的,
02:57
but experiencing the new can be also frightening,
55
177760
3816
但體驗新的事物也可能很嚇人,
03:01
so the new can also frighten us.
56
181600
3736
所以新的事物也可能會嚇壞我們。
03:05
But still, experiencing the new means exploring a very peculiar space,
57
185360
4176
但,體驗新的事物仍然 意味著探索一個奇特的空間,
03:09
the space of what could be,
58
189560
2096
「可能是怎樣」的空間,
03:11
the space of the possible, the space of possibilities.
59
191680
3176
「可能之事物」的空間, 「可能性」的空間。
03:14
It's a very weird space, so I'll try to get you through this space.
60
194880
3456
它是個非常怪異的空間, 所以我會試著帶各位穿過它。
03:18
So it could be a physical space.
61
198360
2016
它可能是個實體空間。
03:20
So in this case, for instance,
62
200400
1616
比如,在這個例子中,
03:22
novelty could be climbing Machu Picchu for the first time,
63
202040
4056
「新穎」有可能是 初次爬上馬丘比丘,
03:26
as I did in 2016.
64
206120
1920
像我在 2016 年的體驗一樣。
03:28
It could be a conceptual space,
65
208960
1816
它也可能是個概念空間,
03:30
so acquiring new information, making sense of it, in a word, learning.
66
210800
4416
取得新資訊,從中找出道理, 一言以蔽之,就是學習。
03:35
It could be a biological space.
67
215240
1936
它有可能是個生物空間。
03:37
I mean, think about the never-ending fight of viruses and bacteria
68
217200
4096
想想看,我們的免疫系統 對抗病毒和細菌的戰爭,
03:41
with our immune system.
69
221320
1936
永無止境。
03:43
And now comes the bad news.
70
223280
1736
現在壞消息來了。
03:45
We are very, very bad at grasping this space.
71
225040
3296
我們非常非常不擅長了解這個空間。
03:48
Think of it. Let's make an experiment.
72
228360
2016
想想這一點。咱們來做個實驗。
03:50
Try to think about all the possible things you could do in the next, say, 24 hours.
73
230400
6880
比如,試想在接下來的 24 小時, 所有你有可能會做的事情。
03:58
Here the key word is "all."
74
238320
2656
這裡的關鍵字是「所有」。
04:01
Of course you can conceive a few options, like having a drink, writing a letter,
75
241000
4800
當然,你可以想出幾個可能選項, 比如喝杯酒、寫封信,
04:06
also sleeping during this boring talk,
76
246840
3176
或是在這場無聊的演講中睡一覺,
04:10
if you can.
77
250040
1696
如果你能的話。
04:11
But not all of them.
78
251760
1656
但你無法想出所有選項。
04:13
So think about an alien invasion, now, here, in Milan,
79
253440
3936
所以,想想外星人入侵, 現在,在這裡,在米蘭,
04:17
or me -- I stopped thinking for 15 minutes.
80
257400
3120
或是我──我停止思考 15 分鐘。
04:21
So it's very difficult to conceive this space,
81
261440
3136
所以,要想出這個空間 是非常困難的,
04:24
but actually we have an excuse.
82
264600
2176
但其實,我們有一個藉口。
04:26
So it's not so easy to conceive this space
83
266800
3496
所以,要想出這個空間並不很容易,
04:30
because we are trying to conceive the occurrence of something brand new,
84
270320
3495
因為我們在試著想出 全新事物的發生,
04:33
so something that never occurred before,
85
273839
1977
以前從來沒有發生過的事物,
04:35
so we don't have clues.
86
275840
1480
所以我們會沒頭緒。
04:38
A typical solution could be
87
278040
2896
典型的解決方案可能是,
04:40
looking at the future with the eyes of the past,
88
280960
3216
用過去的眼睛來看未來,
04:44
so relying on all the time series of past events
89
284200
3296
所以,仰賴所有 過去事件的時間序列,
04:47
and hoping that this is enough to predict the future.
90
287520
3496
希望這些資訊足以預測未來。
04:51
But we know this is not working.
91
291040
2176
但我們知道這行不通。
04:53
For instance, this was the first attempt for weather forecasts, and it failed.
92
293240
5216
比如,第一次天氣預測的 嘗試就失敗了。
04:58
And it failed because of the great complexity
93
298480
2416
之所以會失敗,是因為
這背後現象的複雜度太高。
05:00
of the underlying phenomenon.
94
300920
1936
05:02
So now we know that predictions had to be based on modeling,
95
302880
5616
所以,現在我們知道, 預測必須要立基在模型上,
05:08
which means creating a synthetic model of the system,
96
308520
3496
那就表示,創造出 一個系統的合成模型,
05:12
simulating this model and then projecting the system
97
312040
4136
模擬這個模型,接著把這個系統透過
05:16
into the future through this model.
98
316200
2536
這個模型投射到未來。
05:18
And now we can do this in a lot of cases
99
318760
2936
在許多情況下我們都能做到這一點,
05:21
with the help of a lot of data.
100
321720
1880
只要能有大量資料的幫忙。
05:25
Looking at the future with the eye of the past
101
325000
2896
用過去的眼睛看未來,
05:27
could be misleading also for machines.
102
327920
2736
對於機器來說也有可能會造成誤導。
05:30
Think about it.
103
330680
1216
想想這一點。
05:31
Now picture yourself for a second in the middle of the Australian Outback.
104
331920
4800
試想一下,你身處澳洲內陸中間。
05:37
You stand there under the sun.
105
337440
2720
你站在太陽底下。
05:40
So you see something weird happening.
106
340840
2216
你看到奇怪的事情發生。
05:43
The car suddenly stops
107
343080
2736
車突然停下來,
05:45
very, very far from a kangaroo crossing the street.
108
345840
3056
離正在過街的袋鼠非常非常遠。
05:48
You look closer
109
348920
1456
你靠近些看,
05:50
and you realize that the car has no driver.
110
350400
2416
你發現那台車沒有人駕駛。
05:52
It is not restarting, even after the kangaroo is not there anymore.
111
352840
4016
它沒有重新啟動, 即使袋鼠已經不在那裡了。
05:56
So for some reasons,
112
356880
1896
基於某些理由,
05:58
the algorithms driving the car cannot make sense
113
358800
2536
負責開車的演算法無法理解
06:01
of this strange beast jumping here and there on the street.
114
361360
3680
這隻奇怪的野獸在街上跳來跳去。
06:05
So it just stops.
115
365640
1200
所以它停下來了。
06:07
Now, I should tell you, this is a true story.
116
367720
2136
我可以告訴各位,這是真實故事。
06:09
It happened a few months ago to Volvo's self-driving cars
117
369880
2696
這是幾個月前富豪自動駕駛車
06:12
in the middle of the Australian Outback.
118
372600
1936
在澳洲內陸中碰到的狀況。
06:14
(Laughter)
119
374560
1696
(笑聲)
06:16
It is a general problem,
120
376280
1976
這是個一般性的問題,
06:18
and I guess this will affect more and more in the near future
121
378280
2976
我猜這對於未來的 人工智慧和機器學習
06:21
artificial intelligence and machine learning.
122
381280
2560
會有越來越多的影響。
06:24
It's also a very old problem, I would say 17th century,
123
384440
3976
這也是個很古老的問題, 我會說是 17 世紀,
06:28
but I guess now we have new tools and new clues to start solving it.
124
388440
5136
但我想現在我們有新的工具 和新的線索可以開始解決它。
06:33
So let me take a step back,
125
393600
2176
所以,讓我先退後一步,
06:35
five years back.
126
395800
2736
回到 5 年前。
06:38
Italy. Rome. Winter.
127
398560
2976
義大利。羅馬。冬天。
06:41
So the winter of 2012 was very special in Rome.
128
401560
3576
2012 年羅馬的冬天非常特別。
06:45
Rome witnessed one of the greatest snowfalls of its history.
129
405160
3560
那次降雪量在羅馬史上名列前茅。
06:49
That winter was special also for me and my colleagues,
130
409520
3696
那年冬天對我 和我同事而言也很特別,
06:53
because we had an insight about the possible mathematical scheme --
131
413240
3496
因為我們對於一項可能的 數學方法有了洞見──
06:56
again, possible, possible mathematical scheme,
132
416760
2976
同樣,只是「可能的」數學方法,
06:59
to conceive the occurrence of the new.
133
419760
1840
能構想出新事物的發生。
07:02
I remember that day because it was snowing,
134
422520
2416
我記得那天,是因為在下雪,
07:04
so due to the snowfall, we were blocked, stuck in my department,
135
424960
3776
因為降雪,我們被困在 我的系所裡,走不了,
07:08
and we couldn't go home,
136
428760
1416
我們無法回家,
07:10
so we got another coffee, we relaxed
137
430200
3056
所以我們再喝了一杯咖啡,放輕鬆,
07:13
and we kept discussing.
138
433280
1776
我們持續討論。
07:15
But at some point -- maybe not that date, precisely --
139
435080
3696
但在某個時點── 精確來說也許不是那天──
07:18
at some point we made the connection
140
438800
2896
在某個時點,我們建立了連結,
07:21
between the problem of the new
141
441720
2976
把新事物的問題連結到
07:24
and a beautiful concept proposed years before
142
444720
2416
幾年前提出的一個美麗概念,
07:27
by Stuart Kauffman,
143
447160
1776
由斯圖亞特考夫曼提出的
07:28
the adjacent possible.
144
448960
2040
「相鄰可能」。
07:31
So the adjacent possible consists of all those things.
145
451720
3056
相鄰可能包含了所有這些東西。
07:34
It could be ideas, it could be molecules, it could be technological products
146
454800
3736
可能是想法,可能是分子, 可能是技術產品,
07:38
that are one step away
147
458560
2936
它們都距離真正存在的事物
07:41
from what actually exists,
148
461520
1736
還有一步之差,
07:43
and you can achieve them through incremental modifications
149
463280
3536
你可以達成它們, 只要透過對既有素材做
07:46
and recombinations of the existing material.
150
466840
2560
漸增的修正以及重新組合。
07:50
So for instance, if I speak about the space of my friends,
151
470520
3896
比如,如果我說到我朋友的空間,
07:54
my adjacent possible would be the set of all friends of my friends
152
474440
3976
我的相鄰可能就是「我朋友的朋友中 還沒成為我朋友的那些人」
07:58
not already my friends.
153
478440
1400
所形成的集合。
08:00
I hope that's clear.
154
480240
1736
我希望這樣夠清楚。
08:02
But now if I meet a new person,
155
482000
1816
但若我新結識一個人,
08:03
say Briar,
156
483840
1696
比如布萊兒,
08:05
all her friends would immediately enter my adjacent possible,
157
485560
4056
她所有的朋友就馬上會 進入到我的相鄰可能,
08:09
pushing its boundaries further.
158
489640
1520
把其邊界進一步向外推。
08:12
So if you really want to look from the mathematical point of view --
159
492160
3216
所以,如果你想要從 數學的角度來看──
08:15
I'm sure you want --
160
495400
1400
我相信你們想──
08:18
you can actually look at this picture.
161
498200
1976
你們可以看看這張圖。
08:20
So suppose now this is your universe.
162
500200
1896
假設這是你的宇宙。
08:22
I know I'm asking a lot.
163
502120
1256
我知道我要求很多。
08:23
I mean, this is your universe. Now you are the red spot.
164
503400
2640
這是你的宇宙,你是那個紅點。
08:27
And the green spot is the adjacent possible for you,
165
507320
2616
綠點是你的相鄰可能,
08:29
so something you've never touched before.
166
509960
2096
它是你以前沒碰過的東西。
08:32
So you do your normal life.
167
512080
1336
你過著你的正常生活。
08:33
You move. You move in the space.
168
513440
1656
你移動,你在空間中移動。
08:35
You have a drink. You meet friends. You read a book.
169
515120
2656
你去喝杯酒。你去見朋友。 你讀一本書。
08:37
At some point, you end up on the green spot,
170
517800
2896
在某個時點,你會到達綠點,
08:40
so you meet Briar for the first time.
171
520720
2176
你會初次見到布萊兒。
08:42
And what happens?
172
522920
1336
會發生什麼事?
08:44
So what happens is there is a new part,
173
524280
2296
發生的事是,會有一個新的部分,
08:46
a brand new part of the space,
174
526600
2456
這空間會有一個全新的部分,
08:49
becoming possible for you in this very moment,
175
529080
4256
在此時刻變成是對你來說有可能的,
08:53
even without any possibility for you to foresee this
176
533360
3856
即使你在接觸這個點之前
08:57
before touching that point.
177
537240
2056
不可能預見此事。
08:59
And behind this there will be a huge set of points
178
539320
2696
這背後就是許多的點,
09:02
that could become possible at some later stages.
179
542040
3696
在後續某些階段就會成為可能。
09:05
So you see the space of the possible is very peculiar,
180
545760
2816
所以,可能性的空間是非常奇特的,
09:08
because it's not predefined.
181
548600
2216
因為它不是預先定義的。
09:10
It's not something we can predefine.
182
550840
2296
它不是能被預先定義的。
09:13
It's something that gets continuously shaped and reshaped
183
553160
3376
它是會因為我們的行為和選擇而不斷
09:16
by our actions and our choices.
184
556560
2600
持續形成和重塑的東西。
09:20
So we were so fascinated by these connections we made --
185
560120
3456
我們做的這些連結, 讓我們非常著迷──
09:23
scientists are like this.
186
563600
1896
科學家就像這樣。
09:25
And based on this,
187
565520
2296
根據這個,
09:27
we conceived our mathematical formulation for the adjacent possible,
188
567840
3216
我們想出了相鄰可能的數學方程式,
09:31
20 years after the original Kauffman proposals.
189
571080
3456
在考夫曼最初 提出這概念的 20 年後。
09:34
In our theory -- this is a key point --
190
574560
2136
在我們的理論中──這是一項關鍵──
09:36
I mean, it's crucially based on a complex interplay
191
576720
3536
很重要的是,它是立基在 複雜的相互影響上,
09:40
between the way in which this space of possibilities expands
192
580280
4776
可能性空間擴張和被重新架構的方式,
09:45
and gets restructured,
193
585080
1536
與我們探索它的方式,
09:46
and the way in which we explore it.
194
586640
2496
兩者間的相互影響。
09:49
After the epiphany of 2012,
195
589160
3856
在 2012 年的主顯節之後,
09:53
we got back to work, real work,
196
593040
1656
我們回到工作狀態,真正的工作,
09:54
because we had to work out this theory,
197
594720
1896
因為我們得發展出這理論,
09:56
and we came up with a certain number of predictions
198
596640
2416
我們做出了一些預測,
09:59
to be tested in real life.
199
599080
1256
在真實人生中測試。
10:00
Of course, we need a testable framework
200
600360
2896
當然,我們需要一個可測試的架構
10:03
to study innovation.
201
603280
1456
才能研究創新。
10:04
So let me drive you across a few predictions we made.
202
604760
4056
讓我帶各位看看我們做的幾個預測。
10:08
The first one concerns the pace of innovation,
203
608840
2896
第一個和創新的步調有關,
10:11
so the rate at which you observe novelties in very different systems.
204
611760
4896
也就是你觀察不同系統中 新奇之處的速度。
10:16
So our theory predicts that the rate of innovation
205
616680
2496
我們的理論預測,
創新率應該會遵循一種通用的曲線,
10:19
should follow a universal curve,
206
619200
1936
10:21
like this one.
207
621160
1320
像這種。
10:23
This is the rate of innovation versus time in very different conditions.
208
623240
3640
這是在不同情況下 隨時間變化的創新率。
10:27
And somehow, we predict that the rate of innovation
209
627720
2616
我們預測出的創新率
10:30
should decrease steadily over time.
210
630360
2696
會隨著時間穩定下降。
10:33
So somehow, innovation is predicted to become more difficult
211
633080
3096
所以我們預測,隨時間進展,
10:36
as your progress over time.
212
636200
1920
創新會變得越來越困難。
10:38
It's neat. It's interesting. It's beautiful. We were happy.
213
638960
3536
它很棒。它很有趣。 它很美好。我們很開心。
10:42
But the question is, is that true?
214
642520
2176
但問題是,那是真的嗎?
10:44
Of course we should check with reality.
215
644720
1880
當然,我們要確認現實狀況。
10:47
So we went back to reality
216
647600
2376
所以,我們回到現實,
10:50
and we collected a lot of data, terabytes of data,
217
650000
3136
我們收集了許多資料, 幾兆位元組的資料,
10:53
tracking innovation in Wikipedia, Twitter,
218
653160
3336
追蹤在維基百科、推特的創新,
10:56
the way in which we write free software,
219
656520
2216
我們撰寫免費軟體的方式,
10:58
even the way we listen to music.
220
658760
1640
甚至我們聽音樂的方式。
11:01
I cannot tell you, we were so amazed and pleased and thrilled
221
661160
3736
我無法告訴各位我們有 多麼驚訝、開心,和興奮,
11:04
to discover that the same predictions we made in the theory
222
664920
3496
因為我們發現, 我們在理論上做的預測,
11:08
were actually satisfied in real systems,
223
668440
2576
實際上也符合真實系統,
11:11
many different real systems.
224
671040
1536
許多不同的真實系統。
11:12
We were so excited.
225
672600
1496
我們好興奮。
11:14
Of course, apparently, we were on the right track,
226
674120
2816
當然,顯然,我們的方向是對的,
11:16
but of course, we couldn't stop,
227
676960
2496
但當然,我們無法停止,
11:19
so we didn't stop.
228
679480
1496
所以我們沒有停止。
11:21
So we kept going on,
229
681000
2096
我們持續下去,
11:23
and at some point we made another discovery
230
683120
2056
在某個時點,我們有了另一個發現,
11:25
that we dubbed "correlated novelties."
231
685200
3536
我們稱之為「相關新奇」。
11:28
It's very simple.
232
688760
1256
它非常簡單。
11:30
So I guess we all experience this.
233
690040
1896
我想我們都經歷過。
11:31
So you listen to "Suzanne" by Leonard Cohen,
234
691960
3560
如果你聽了李歐納柯恩的歌《蘇珊》,
11:36
and this experience triggers your passion for Cohen
235
696440
3656
這體驗觸發了你對柯恩的熱情,
11:40
so that you start frantically listening to his whole production.
236
700120
3816
所以你開始瘋狂地聽他的所有作品。
11:43
And then you realize that Fabrizio De André here
237
703960
2296
接著,你發現法布里奇奧德安德烈
11:46
recorded an Italian version of "Suzanne,"
238
706280
1976
錄製了《蘇珊》的義大利版本,
11:48
and so on and so forth.
239
708280
2016
諸如此類。
11:50
So somehow for some reason,
240
710320
1976
所以,基於某種原因,
11:52
the very notion of adjacent possible is already encoding the common belief
241
712320
3896
相鄰可能的概念已經被編寫在
11:56
that one thing leads to another
242
716240
2560
「一件事會導致另一件事」的 這個一般看法中,
11:59
in many different systems.
243
719720
1736
在許多不同系統中皆是如此。
12:01
But the reason why we were thrilled
244
721480
2296
但我們很興奮的原因,
12:03
is because actually we could give, for the first time,
245
723800
2524
是因為這是第一次,我們能夠賦予
12:06
a scientific substance to this intuition
246
726348
2068
這種直覺一個科學本質,
12:08
and start making predictions
247
728440
1656
並開始做出預測,
12:10
about the way in which we experience the new.
248
730120
2416
預測我們會如何體驗新事物。
12:12
So novelties are correlated.
249
732560
2320
所以,新奇的事物是相關聯的。
12:16
They are not occurring randomly.
250
736320
2056
它們不是隨機發生的。
12:18
And this is good news,
251
738400
1456
這是好消息,
12:19
because it implies that impossible missions
252
739880
4736
因為這意味著,不可能的任務
12:24
might not be so impossible after all,
253
744640
2376
歸根結底,也許不是那麼不可能,
12:27
if we are guided by our intuition,
254
747040
3096
如果我們讓直覺引導我們,
12:30
somehow leading us to trigger a positive chain reaction.
255
750160
3760
帶領我們去觸發 一種正向的連鎖反應。
12:34
But there is a third consequence of the existence of the adjacent possible
256
754840
3496
但相鄰可能的存在 會有第三項後果,
12:38
that we named "waves of novelties."
257
758360
3536
我們稱之為「新奇波浪」。
12:41
So just to make this simple, so in music,
258
761920
2696
簡單來說,在音樂方面,
12:44
without waves of novelties,
259
764640
1376
若沒有新奇波浪,
12:46
we would still be listening all the time to Mozart or Beethoven,
260
766040
6056
我們都還會一直在聽 莫札特和貝多芬,
12:52
which is great,
261
772120
1496
他們的音樂很棒,
12:53
but we don't do this all the time.
262
773640
1656
但我們不會一直聽。
12:55
We also listen to the Pet Shop Boys or Justin Bieber -- well, some of us do.
263
775320
5016
我們也會聽寵物店男孩 或小賈斯汀──嗯,有些人會。
13:00
(Laughter)
264
780360
2176
(笑聲)
13:02
So we could see very clearly all of these patterns
265
782560
3896
我們可以在我們收集 並分析的大量資料中,
13:06
in the huge amounts of data we collected and analyzed.
266
786480
3736
清楚看到所有這些模式。
13:10
For instance, we discovered that popular hits in music
267
790240
3656
比如,我們發現, 音樂中的流行熱門歌曲
13:13
are continuously born, you know that,
268
793920
1896
不斷產生出來,你們知道這點,
13:15
and then they disappear, still leaving room for evergreens.
269
795840
3440
接著它們就消失了,留下空間 給不褪流行的長青歌曲。
13:20
So somehow waves of novelties ebb and flow
270
800120
3096
所以,新奇波浪會退潮和流動,
13:23
while the tides always hold the classics.
271
803240
2576
而潮流會一直留住經典。
13:25
There is this coexistence between evergreens and new hits.
272
805840
3960
長青歌曲和新熱門曲之間 有這種共存現象。
13:31
Not only our theory predicts these waves of novelties.
273
811920
2696
我們的理論不只是 預測這些新奇波浪。
13:34
This would be trivial.
274
814640
1456
這沒什麼。
13:36
But it also explains why they are there,
275
816120
2896
而是它也解釋了為什麼它們會出現,
13:39
and they are there for a specific reason,
276
819040
1976
它們的出現是有特殊理由的,
13:41
because we as humans display different strategies
277
821040
3216
因為我們人類在可能性的空間中
13:44
in the space of the possible.
278
824280
1856
展現出不同的策略。
13:46
So some of us tend to retrace already known paths.
279
826160
5136
我們有些人會傾向折返已知的路徑。
13:51
So we say they exploit.
280
831320
2320
我們說他們是在「利用」。
13:54
Some of us always launch into new adventures.
281
834360
2856
有些人總是要展開新的冒險。
13:57
We say they explore.
282
837240
1696
我們說他們是在「探索」。
13:58
And what we discovered is all the systems we investigated
283
838960
3296
我們發現,所有被我們研究的系統,
14:02
are right at the edge between these two strategies,
284
842280
3176
都在這兩項策略間的邊緣上,
14:05
something like 80 percent exploiting, 20 percent exploring,
285
845480
3536
比如 80% 的利用,20% 的探索,
14:09
something like blade runners of innovation.
286
849040
2680
像是創新的「銀翼殺手」(電影)。
14:12
So it seems that the wise balance, you could also say a conservative balance,
287
852720
5216
似乎,明智的平衡, 你也可以說是保守的平衡,
14:17
between past and future, between exploitation and exploration,
288
857960
4976
在過去和未來間、 在利用和探索間的平衡,
14:22
is already in place and perhaps needed in our system.
289
862960
3416
已經就位了, 且是我們的系統所需要的。
14:26
But again the good news is now we have scientific tools
290
866400
3616
但同樣的,好消息是 我們現在有科學工具
14:30
to investigate this equilibrium,
291
870040
1736
在研究這種均衡,
14:31
perhaps pushing it further in the near future.
292
871800
3280
也許能將它再推展到不遠的將來。
14:37
So as you can imagine,
293
877360
2256
不難想像,
14:39
I was really fascinated by all this.
294
879640
4160
我深深著迷於這一切。
14:44
Our mathematical scheme is already providing cues and hints
295
884920
3136
我們的數學方法已經 在提供提示和暗示,
14:48
to investigate the space of possibilities
296
888080
2056
來探究可能性空間,
14:50
and the way in which all of us create it and explore it.
297
890160
4016
以及我們所有人創造它、 探索它的方式。
14:54
But there is more.
298
894200
1336
但不只如此。
14:55
This, I guess, is a starting point of something that has the potential
299
895560
3376
我想,這只是個起始點,它還有潛力
14:58
to become a wonderful journey for a scientific investigation of the new,
300
898960
4616
能變成美好的旅程, 對於新事物做科學的研究,
15:03
but also I would say a personal investigation of the new.
301
903600
3280
還有對於新事物做個人的研究。
15:09
And I guess this can have a lot of consequences
302
909320
2896
我想,這可能會有很多後果,
15:12
and a huge impact in key activities
303
912240
2136
在關鍵活動中也會有重大影響,
15:14
like learning, education, research, business.
304
914400
5320
比如學習、教育、研究、商業。
15:20
So for instance, if you think about artificial intelligence,
305
920680
2896
舉例來說,想想人工智慧,
15:23
I am sure -- I mean, artificial intelligence,
306
923600
2136
我很確定──我是說,人工智慧,
15:25
we need to rely in the near future
307
925760
1816
在不遠的將來,我們會
15:27
more and more on the structure of the adjacent possible,
308
927600
3816
越來越需要依賴相鄰可能的結構,
15:31
to restructure it, to change it,
309
931440
1936
來重新架構它、改變它,
15:33
but also to cope with the unknowns of the future.
310
933400
2320
同時也要應對未來的未知。
15:36
In parallel, we have a lot of tools,
311
936400
1856
同樣的,我們有很多工具,
15:38
new tools now, to investigate how creativity works
312
938280
3496
新工具,可用來探究 創意是如何運作的,
15:41
and what triggers innovation.
313
941800
1600
以及是什麼觸發了創新。
15:44
And the aim of all this is to raise a generation of people
314
944080
3176
這一切的目標, 是要提升一個世代的人,
15:47
able to come up with new ideas to face the challenges in front of us.
315
947280
3616
讓他們能提出新的點子, 來面對我們眼前的挑戰。
15:50
We all know.
316
950920
1216
我們都知道。
15:52
I think it's a long way to go,
317
952160
2096
我認為還有很長的路要走,
15:54
but the questions, and the tools,
318
954280
3056
但問題以及工具都具備了,
15:57
are now there, adjacent and possible.
319
957360
3560
是相鄰的,也是可能的。
16:01
Thank you.
320
961720
1216
謝謝。
16:02
(Applause)
321
962960
4880
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog