The incredible potential of flexible, soft robots | Giada Gerboni

213,514 views ใƒป 2018-07-05

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: NAYEUN KIM ๊ฒ€ํ† : JY Kang
00:13
So, robots.
0
13531
1837
๋กœ๋ด‡์— ๋Œ€ํ•ด์„œ ๋งํ•˜์ž๋ฉด
00:15
Robots can be programmed
1
15392
1414
๋กœ๋ด‡์€ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ํ•˜์—ฌ
00:16
to do the same task millions of times with minimal error,
2
16830
3691
๊ฐ™์€ ์ž‘์—…์„ ์‹ค์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉฐ ์ˆ˜์—†์ด ๋ฐ˜๋ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
00:20
something very difficult for us, right?
3
20545
2514
์ธ๊ฐ„์ธ ์šฐ๋ฆฌ์—๊ฒ ์•„์ฃผ ์–ด๋ ค์šด ์ผ์ด์ฃ ?
00:23
And it can be very impressive to watch them at work.
4
23083
3161
๋ญ”๊ฐ€ ์ž‘์—…์ค‘์ธ ๋กœ๋ด‡์„ ์ง€์ผœ๋ณด๋ฉด ๊ต‰์žฅํžˆ ๋Œ€๋‹จํ•ด ๋ณด์ž…๋‹ˆ๋‹ค.
00:26
Look at them.
5
26268
1256
๋ณด์„ธ์š”.
00:27
I could watch them for hours.
6
27548
1908
์ „ ์ด๊ฑธ ๋ช‡ ์‹œ๊ฐ„์ด๋ผ๋„ ๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์•„์š”.
00:30
No?
7
30108
1299
์•„๋‹ˆ๋ผ๊ณ ์š”?
00:31
What is less impressive
8
31431
2207
๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ์‹ค ์ด๋Ÿฐ ๋กœ๋ด‡๋„ ๊ณต์žฅ ๋ฐ–์—์„œ๋Š” ๋ณ„๊ฒƒ ์•„๋‹™๋‹ˆ๋‹ค.
00:33
is that if you take these robots out of the factories,
9
33662
2933
00:36
where the environments are not perfectly known and measured like here,
10
36619
4380
๋กœ๋ด‡์— ๋งž์ถฐ์„œ ์ž˜ ์งœ์—ฌ์ง„ ํ™˜๊ฒฝ์ด ์•„๋‹Œ ๊ณณ์— ๋กœ๋ด‡์„ ๊ฐ€์ ธ๋‹ค ๋‘๊ณ 
00:41
to do even a simple task which doesn't require much precision,
11
41023
4278
์ •๋ฐ€ํ•จ์ด ์š”๊ตฌ๋˜์ง€ ์•Š๋Š” ๊ฐ„๋‹จํ•œ ์ž‘์—…์„ ์‹œ์ผœ๋ณด๋ฉด
00:45
this is what can happen.
12
45325
1611
๋ฐ”๋กœ ์ด๋Ÿฐ ์ผ์ด ๋ฒŒ์–ด์ง‘๋‹ˆ๋‹ค.
00:46
I mean, opening a door, you don't require much precision.
13
46960
2729
๋ฌธ์„ ์—ฌ๋Š” ๊ฑด ์ •๋ฐ€ํ•จ์ด ์š”๊ตฌ๋˜๋Š” ์ž‘์—…๋„ ์•„๋‹Œ๋ฐ ๋ง์ด์ฃ .
00:49
(Laughter)
14
49713
1030
(์›ƒ์Œ)
00:50
Or a small error in the measurements,
15
50767
2454
๊ฑฐ๋ฆฌ ์ธก์ •์„ ์กฐ๊ธˆ์ด๋ผ๋„ ์ž˜๋ชปํ•˜๋ฉด
00:53
he misses the valve, and that's it --
16
53245
1826
๋ฒจ๋ธŒ๋ฅผ ๋†“์น˜๋ฉด์„œ, ์ด๋ ‡๊ฒŒ ๋˜์ฃ .
00:55
(Laughter)
17
55095
1270
(์›ƒ์Œ)
00:56
with no way of recovering, most of the time.
18
56389
2444
๋Œ€๊ฐœ๋Š” ํšŒ๋ณต ๋ถˆ๋Šฅ์ด ๋˜์–ด๋ฒ„๋ฆฝ๋‹ˆ๋‹ค.
00:59
So why is that?
19
59561
1675
์™œ ๊ทธ๋Ÿฐ ๊ฑธ๊นŒ์š”?
01:01
Well, for many years,
20
61260
1874
์ง€๋‚œ ์ˆ˜๋…„๊ฐ„
01:03
robots have been designed to emphasize speed and precision,
21
63158
3300
๋กœ๋ด‡์€ ์†๋„์™€ ์ •๋ฐ€์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋„๋ก ๋””์ž์ธ๋˜์—ˆ๊ณ 
01:06
and this translates into a very specific architecture.
22
66482
2962
๊ทธ ๋””์ž์ธ์€ ๋งค์šฐ ํŠน์ •ํ•œ ํ˜•ํƒœ๋ฅผ ๊ฐ–๋„๋ก ํ•ด์„๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
01:09
If you take a robot arm,
23
69468
1151
๋กœ๋ด‡์˜ ํŒ”์„ ๋ณด์ž๋ฉด
01:10
it's a very well-defined set of rigid links
24
70643
2759
๋งํฌ๋ผ๋Š” ๋‹จ๋‹จํ•œ ์—ฐ๊ฒฐ๋ถ€์žฌ์™€
01:13
and motors, what we call actuators,
25
73426
2059
์—‘์ถ”์—์ดํ„ฐ๋ผ๋Š” ๋ชจํ„ฐ๋“ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:15
they move the links about the joints.
26
75509
1770
๊ด€์ ˆ์˜ ๋ชจํ„ฐ๋กœ ๋งํฌ๊ฐ€ ์›€์ง์ด๋Š” ๊ฑฐ์ฃ .
01:17
In this robotic structure,
27
77303
1307
์ด๋Ÿฐ ๊ตฌ์กฐ์˜ ๋กœ๋ด‡์€ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์„ ์™„๋ฒฝํ•˜๊ฒŒ ์ธก์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
01:18
you have to perfectly measure your environment,
28
78624
2227
01:20
so what is around,
29
80865
1897
์ฃผ๋ณ€์— ๋ฌด์—‡์ด ์žˆ๋Š”์ง€ ์•Œ์•„์•ผ ํ•˜์ฃ .
01:22
and you have to perfectly program every movement
30
82786
2639
๊ด€์ ˆ์˜ ์›€์ง์ž„ ํ•˜๋‚˜ํ•˜๋‚˜๋ฅผ ์™„๋ฒฝํ•˜๊ฒŒ ํ”„๋กœ๊ทธ๋žจํ™”ํ•ด์•ผ ํž™๋‹ˆ๋‹ค.
01:25
of the robot joints,
31
85449
2135
01:27
because a small error can generate a very large fault,
32
87608
3262
๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ์ž‘์€ ์˜ค๋ฅ˜๋กœ๋„ ์•„์ฃผ ํฐ ์‹ค์ˆ˜๋ฅผ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๊ณ 
01:30
so you can damage something or you can get your robot damaged
33
90894
3013
์ฃผ๋ณ€ ์‚ฌ๋ฌผ์ด๋‚˜ ๋กœ๋ด‡ ์ž์ฒด์— ํ”ผํ•ด๋ฅผ ์ž…ํž ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
01:33
if something is harder.
34
93931
1531
์ฃผ๋ณ€์— ๋” ๋‹จ๋‹จํ•œ ๊ฒƒ์ด ์žˆ์œผ๋ฉด์š”.
01:36
So let's talk about them a moment.
35
96107
2205
๊ทธ๋Ÿผ ์ž ์‹œ ๋กœ๋ด‡์— ๋Œ€ํ•ด ์•ผ๊ธฐํ•ด๋ณด์ฃ .
01:38
And don't think about the brains of these robots
36
98336
3223
์ด ๋กœ๋ด‡๋“ค์˜ ๋‘๋‡Œ๋ฅผ ์‚ดํŽด๋ณด๊ฑฐ๋‚˜
01:41
or how carefully we program them,
37
101583
2745
ํ”„๋กœ๊ทธ๋žจ์ด ์–ผ๋งˆ๋‚˜ ์ž˜ ๋งŒ๋“ค์–ด์กŒ๋Š”์ง€ ์ƒ๊ฐํ•˜๊ธฐ๋ณด๋‹ค
01:44
but rather look at their bodies.
38
104352
1818
๋กœ๋ด‡์˜ ๋ชธ์ฒด์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์ฃ .
01:46
There is obviously something wrong with it,
39
106606
2879
๋ถ„๋ช… ๊ฑฐ๊ธฐ์— ๋ญ”๊ฐ€ ์ž˜๋ชป๋œ ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:49
because what makes a robot precise and strong
40
109509
3127
์ด ๋กœ๋ด‡์„ ์ •ํ™•ํ•˜๊ณ  ๊ฐ•ํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ์š”์†Œ๋“ค์ด
01:52
also makes them ridiculously dangerous and ineffective in the real world,
41
112660
4389
์‚ฌ์‹ค ์ž‘์—…ํ™˜๊ฒฝ์—์„œ ๋งค์šฐ ์œ„ํ—˜ํ•˜๊ณ  ํšจ๊ณผ์ ์ด์ง€ ๋ชปํ•œ ์š”์†Œ๊ฐ€ ๋˜๊ธฐ๋„ ํ•˜์ฃ .
01:57
because their body cannot deform
42
117073
1985
๋กœ๋ด‡์€ ์Šค์Šค๋กœ ๋ชธ์ฒด๋ฅผ ๋ณ€ํ˜•ํ•  ์ˆ˜๋„ ์—†๊ณ 
01:59
or better adjust to the interaction with the real world.
43
119082
3229
์‹ค์ œ ์ž‘์—…ํ™˜๊ฒฝ์— ๋งž๊ฒŒ ์กฐ์œจํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์ด ์—†์Šต๋‹ˆ๋‹ค.
02:03
So think about the opposite approach,
44
123226
3118
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ด ๋ฌธ์ œ๋ฅผ ์—ญ์œผ๋กœ ์ ‘๊ทผํ•ด ๋ณด์„ธ์š”.
02:06
being softer than anything else around you.
45
126368
2818
์ฃผ๋ณ€์˜ ๋‹ค๋ฅธ ์‚ฌ๋ฌผ๋“ค๋ณด๋‹ค ๋ถ€๋“œ๋Ÿฌ์šด ์ƒํƒœ๋กœ ๋งŒ๋“œ๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:09
Well, maybe you think that you're not really able to do anything if you're soft,
46
129827
5085
์•„๋งˆ ๊ทธ ์ƒํƒœ๋กœ๋Š” ์•„๋ฌด๊ฒƒ๋„ ํ•  ์ˆ˜ ์—†๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹ค ๊ฑฐ์˜ˆ์š”.
02:14
probably.
47
134936
1167
๊ทธ๋Ÿด์ง€๋„ ๋ชฐ๋ผ์š”.
02:16
Well, nature teaches us the opposite.
48
136127
2850
๊ทธ๋Ÿฌ๋‚˜ ์ž์—ฐ์—์„œ ๊ทธ ๋ฐ˜๋Œ€์˜ ์ƒํ™ฉ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:19
For example, at the bottom of the ocean,
49
139001
2031
๋ฐ”๋‹ค์˜ ๋ฐ‘๋ฐ”๋‹ฅ์„ ์˜ˆ๋ฅผ ๋“ค์–ด๋ณด๋ฉด
02:21
under thousands of pounds of hydrostatic pressure,
50
141056
2436
์ˆ˜์ฒœ kg์˜ ์ˆ˜์••์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ 
02:23
a completely soft animal
51
143516
2428
์™„์ „ํžˆ ๋ถ€๋“œ๋Ÿฌ์šด ๋™๋ฌผ์ด
02:25
can move and interact with a much stiffer object than him.
52
145968
3277
์ž์‹ ๋ณด๋‹ค ๋” ๋”ฑ๋”ฑํ•œ ๋ฌผ์ฒด์™€ ํ•จ๊ป˜ ์–ด์šฐ๋Ÿฌ์ ธ ์›€์ง์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:29
He walks by carrying around this coconut shell
53
149878
2847
์ด๋ ‡๊ฒŒ ์ฝ”์ฝ”๋„› ๊ป์งˆ์„ ๊ฐ€์ง€๊ณ  ๊ฑธ์–ด๋‹ค๋‹ˆ๋Š” ๊ฒƒ๋„
02:32
thanks to the flexibility of his tentacles,
54
152749
2384
์ด‰์ˆ˜์˜ ์œ ์—ฐ์„ฑ ๋•๋ถ„์ž…๋‹ˆ๋‹ค.
02:35
which serve as both his feet and hands.
55
155157
2504
์ด‰์ˆ˜๊ฐ€ ๋ฐ”๋กœ ํŒ”๊ณผ ๋‹ค๋ฆฌ์˜ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
02:38
And apparently, an octopus can also open a jar.
56
158241
3825
๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ณด์‹œ๋‹ค์‹œํ”ผ ๋ฌธ์–ด๋Š” ๋ณ‘๋šœ๊ป‘๋„ ์—ด ์ˆ˜ ์žˆ์–ด์š”.
02:43
It's pretty impressive, right?
57
163883
1754
์ •๋ง ๋Œ€๋‹จํ•˜์ฃ ?
02:47
But clearly, this is not enabled just by the brain of this animal,
58
167918
4500
๊ทธ๋Ÿฌ๋‚˜ ๋ถ„๋ช…ํ•œ ์‚ฌ์‹ค์€
์ด๋Ÿฌํ•œ ๋Šฅ๋ ฅ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๊ฑด ์ด ๋™๋ฌผ์˜ ๋‡Œ๋‚˜ ๋ชธ์ด ์•„๋‹™๋‹ˆ๋‹ค.
02:52
but also by his body,
59
172442
2014
02:54
and it's a clear example, maybe the clearest example,
60
174480
4032
์ด ์‚ฌ๋ก€๊ฐ€ ๋ฐ”๋กœ ํ†ตํ•ฉ์ธ๊ณต์ง€๋Šฅ์˜ ๊ฐ€์žฅ ๋ช…๋ฐฑํ•œ ์ฆ๊ฑฐ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:58
of embodied intelligence,
61
178536
1800
03:00
which is a kind of intelligence that all living organisms have.
62
180360
3286
์‚ด์•„์žˆ๋Š” ๋ชจ๋“  ์ƒ๋ช…์ฒด๊ฐ€ ๊ฐ–๊ณ  ์žˆ๋Š” ์ง€๋Šฅ์ด์ฃ .
03:03
We all have that.
63
183670
1566
์šฐ๋ฆฌ ๋ชจ๋‘๊ฐ€ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:05
Our body, its shape, material and structure,
64
185260
3842
์šฐ๋ฆฌ์˜ ๋ชธ์˜ ํ˜•ํƒœ์™€ ์žฌ๋ฃŒ์™€ ์‹ ์ฒด ๊ตฌ์กฐ๋Š”
03:09
plays a fundamental role during a physical task,
65
189126
3182
์œก์ฒด์ ์ธ ์ž‘์—…์„ ํ•˜๋Š” ๋™์•ˆ ๊ทผ๋ณธ์ ์ธ ์—ญํ™œ์„ ํ•ฉ๋‹ˆ๋‹ค.
03:12
because we can conform to our environment
66
192332
5613
๊ทธ๋กœ ์ธํ•ด ์šฐ๋ฆฌ ๋ชธ์€ ์ฃผ๋ณ€ํ™˜๊ฒฝ์— ์ ์‘ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ
03:17
so we can succeed in a large variety of situations
67
197969
2404
๋‹ค์–‘ํ•œ ์ƒํ™ฉ์— ๋Œ€์ฒ˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:20
without much planning or calculations ahead.
68
200397
2993
์‚ฌ์ „ ๊ณ„ํš์ด๋‚˜ ๊ณ„์‚ฐ์ด ์—†์ด๋„ ๋ง์ด์ฃ .
03:23
So why don't we put some of this embodied intelligence
69
203414
2715
๊ทธ๋ ‡๋‹ค๋ฉด ์ด๋Ÿฌํ•œ ํ†ตํ•ฉ์ธ๊ณต์ง€๋Šฅ์„
03:26
into our robotic machines,
70
206153
1555
๋กœ๋ด‡์— ์ ์šฉ์‹œ์ผœ
03:27
to release them from relying on excessive work
71
207732
2349
๋ง‰๋Œ€ํ•œ ์–‘์˜ ๊ณ„์‚ฐ์ด๋‚˜ ์ธก์ • ๊ฒฐ๊ณผ์— ์˜์กดํ•˜์ง€ ์•Š๋„๋ก ํ•˜๋ฉด ์–ด๋–จ๊นŒ์š”?
03:30
on computation and sensing?
72
210105
2017
03:33
Well, to do that, we can follow the strategy of nature,
73
213097
2650
๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž์—ฐ์˜ ์„ญ๋ฆฌ๋ฅผ ๋”ฐ๋ฅด๋ฉด ๋ฉ๋‹ˆ๋‹ค.
03:35
because with evolution, she's done a pretty good job
74
215771
2612
์™œ๋ƒํ•˜๋ฉด ์ž์—ฐ์€ ์ง„ํ™”๋ฅผ ํ†ตํ•ด์„œ ๊ทธ ์ผ์„ ๊ฝค ์ž˜ ํ•ด์™”๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
03:38
in designing machines for environment interaction.
75
218407
4496
์ž์—ฐ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋„๋ก ์ƒ๋ช…์„ ๋””์ž์ธํ•ด์™”์œผ๋‹ˆ๊นŒ์š”.
03:42
And it's easy to notice that nature uses soft material frequently
76
222927
4494
์ž์—ฐ์—์„œ ์ž˜ ์•Œ ์ˆ˜ ์žˆ๋Š” ์‚ฌ์‹ค์€
๋ถ€๋“œ๋Ÿฌ์šด ์žฌ์งˆ์€ ํ”ํ•˜๊ณ  ๋”ฑ๋”ฑํ•œ ์žฌ์งˆ์€ ๋“œ๋ฌผ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:47
and stiff material sparingly.
77
227445
2295
03:49
And this is what is done in this new field of robotics,
78
229764
3792
์ด ์ ์ด ์ ์šฉ๋œ ์ƒˆ๋กœ์šด ๋กœ๋ด‡๊ณตํ•™ ๋ถ„์•ผ๊ฐ€ ๋ฐ”๋กœ "์œ ์—ฐํ•œ ๋กœ๋ด‡๊ณตํ•™"์ž…๋‹ˆ๋‹ค.
03:53
which is called "soft robotics,"
79
233580
2300
03:55
in which the main objective is not to make super-precise machines,
80
235904
3736
์ด ๋ถ„์•ผ์˜ ์ฃผ๋ชฉ์ ์€ ์ดˆ์ •๋ฐ€์˜ ๊ธฐ๊ณ„๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐ ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹™๋‹ˆ๋‹ค.
03:59
because we've already got them,
81
239664
1937
๊ทธ๋Ÿฐ ๋กœ๋ด‡์€ ์ด๋ฏธ ์žˆ์œผ๋‹ˆ๊นŒ์š”.
04:01
but to make robots able to face unexpected situations in the real world,
82
241625
4920
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ๋กœ๋ด‡์ด ์‹ค์ œ ์ž‘์—…์žฅ์—์„œ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ์ƒํ™ฉ์— ์ฒ˜ํ–ˆ์„ ๋•Œ
04:06
so able to go out there.
83
246569
1557
๋น ์ ธ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:08
And what makes a robot soft is first of all its compliant body,
84
248150
3524
๋กœ๋ด‡์ด ๋ถ€๋“œ๋Ÿฝ๋‹ค๋Š” ๊ฒƒ์€ ์ฒซ์งธ๋กœ ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•œ ๋ชธ์ฒด๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
04:11
which is made of materials or structures that can undergo very large deformations,
85
251698
5531
ํฐ ๋ณ€ํ˜•์„ ๊ฒฌ๋”œ ์ˆ˜ ์žˆ๋Š” ์žฌ๋ฃŒ๋‚˜ ๋ชจ์–‘์œผ๋กœ ๋งŒ๋“ค์–ด์กŒ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•˜์ฃ .
04:17
so no more rigid links,
86
257253
1831
๋‹จ๋‹จํ•œ ๋งํฌ ๋ถ€์žฌ๋ฅผ ์—†์• ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:19
and secondly, to move them, we use what we call distributed actuation,
87
259108
3548
๋‘ ๋ฒˆ์งธ๋กœ, ๋กœ๋ด‡์˜ ์›€์ง์ž„์„ ์œ„ํ•ด ๋ถ„์‚ฐ ๊ตฌ๋™๋ฐฉ์‹์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
04:22
so we have to control continuously the shape of this very deformable body,
88
262680
5032
์ด ๋ณ€ํ˜•๊ฐ€๋Šฅํ•œ ๋ชธ์˜ ํ˜•ํƒœ๋ฅผ ์ง€์†์ ์œผ๋กœ ํ†ต์ œํ•ด์•ผ ํ•˜๋Š”๋ฐ
04:27
which has the effect of having a lot of links and joints,
89
267736
3298
๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ˆ˜๋งŽ์€ ๋งํฌ์™€ ๊ด€์ ˆ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
04:31
but we don't have any stiff structure at all.
90
271058
2623
๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ๋Š” ๋”ฑ๋”ฑํ•œ ๋ฌผ์ฒด๋Š” ์ „ํ˜€ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
04:33
So you can imagine that building a soft robot is a very different process
91
273705
3430
์ด๋ ‡๊ฒŒ ์œ ์—ฐํ•œ ๋กœ๋ด‡์„ ๋งŒ๋“œ๋Š” ๊ณผ์ •์ด ์ „ํ˜€ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒŒ ์ƒ์ƒ์ด ๋˜์‹œ๊ฒ ์ฃ .
04:37
than stiff robotics, where you have links, gears, screws
92
277159
2880
๋”ฑ๋”ฑํ•œ ๋กœ๋ด‡์˜ ๊ฒฝ์šฐ์—๋Š” ๋งํฌ, ๊ธฐ์–ด, ๋‚˜์‚ฌ ๋“ฑ์„
04:40
that you must combine in a very defined way.
93
280063
2231
๋ฏธ๋ฆฌ ์ •ํ•ด์ง„ ๋ฐฉ์‹์œผ๋กœ ์กฐ๋ฆฝํ•ด์•ผ ํ•˜๋Š” ๋ฐ˜๋ฉด์—
04:42
In soft robots, you just build your actuator from scratch
94
282948
3525
์œ ์—ฐํ•œ ๋กœ๋ด‡์€ ๊ตฌ๋™์žฅ์น˜๋ฅผ ์ฒ˜์Œ๋ถ€ํ„ฐ ์†์ˆ˜ ๋งŒ๋“ค์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
04:46
most of the time,
95
286497
1151
๋Œ€๊ฐœ์˜ ๊ฒฝ์šฐ๋Š” ๊ทธ๋ ‡์ฃ .
04:47
but you shape your flexible material
96
287672
2382
์œ ์—ฐํ•œ ๋ฌผ์งˆ์€ ํ˜•ํƒœ๋ฅผ ๋ฐ”๊พธ์–ด
04:50
to the form that responds to a certain input.
97
290078
2403
ํŠน์ •ํ•œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๋ฐ˜์‘ํ•˜๋Š” ๋ชจ์–‘์œผ๋กœ ๋ฐ”๋€๋‹ˆ๋‹ค.
04:53
For example, here, you can just deform a structure
98
293054
2458
์˜ˆ๋ฅผ ๋“ค์–ด ์ด๊ฑธ ๋ณด์„ธ์š”. ์ด๋ ‡๊ฒŒ ํ˜•ํƒœ๋ฅผ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์ฃ .
04:55
doing a fairly complex shape
99
295536
2471
๊ฝค ๋ณต์žกํ•œ ํ˜•ํƒœ๋กœ ๋ง์ด์ฃ .
04:58
if you think about doing the same with rigid links and joints,
100
298031
3278
๋”ฑ๋”ฑํ•œ ํ˜•ํƒœ์˜ ๋งํฌ์™€ ๊ด€์ ˆ ๊ตฌ์กฐ๋กœ ์ด๋ ‡๊ฒŒ ํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
05:01
and here, what you use is just one input,
101
301333
2333
์—ฌ๊ธฐ ํ•˜๋‚˜์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋งŒ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ๋ฅผ ๋ณด์„ธ์š”.
05:03
such as air pressure.
102
303690
1364
๊ณต๊ธฐ์•• ๊ฐ™์€ ๊ฑธ์š”.
05:05
OK, but let's see some cool examples of soft robots.
103
305869
3489
์ž. ๊ทธ๋Ÿฌ๋ฉด ์œ ์—ฐํ•œ ๋กœ๋ด‡์˜ ๋ฉ‹์ง„ ์˜ˆ๋“ค์„ ๋ณด๋„๋ก ํ•˜์ฃ .
05:09
Here is a little cute guy developed at Harvard University,
104
309765
4547
์—ฌ๊ธฐ ํ•˜๋ฒ„๋“œ๋Œ€์—์„œ ๋งŒ๋“  ์ด ๊ท€์—ฌ์šด ์ž‘์€ ๋…€์„์„ ๋ณด์„ธ์š”.
05:14
and he walks thanks to waves of pressure applied along its body,
105
314336
4493
๊ทธ์˜ ๋ชธ์ฒด๋ฅผ ๋”ฐ๋ผ ๊ฐ€ํ•ด์ง€๋Š” ๊ณต๊ธฐ์••์˜ ํ๋ฆ„ ๋•๋ถ„์— ๊ฑท๊ณ  ์žˆ์ฃ .
05:18
and thanks to the flexibility, he can also sneak under a low bridge,
106
318853
3286
๋ฟ๋งŒ์•„๋‹ˆ๋ผ ์œ ์—ฐ์„ฑ ๋•๋ถ„์— ๋‚ฎ์€ ๋‹ค๋ฆฌ ์•„๋ž˜๋กœ ์ง€๋‚˜๊ฐˆ ์ˆ˜๋„ ์žˆ์–ด์š”.
05:22
keep walking,
107
322163
1151
๊ณ„์† ๊ฑท๊ณ 
05:23
and then keep walking a little bit different afterwards.
108
323338
3197
๋˜ ๊ฑท๊ณ  ๊ทธ๋ฆฌ๊ณ  ์ดํ›„์—” ์กฐ๊ธˆ ๋‹ค๋ฅด๊ฒŒ ๊ณ„์†ํ•ด์„œ ๊ฑท์Šต๋‹ˆ๋‹ค.
05:27
And it's a very preliminary prototype,
109
327345
2231
์ด๊ฑด ์•„์ฃผ ์ดˆ๊ธฐ์˜ ์‹œ์ œํ’ˆ์ž…๋‹ˆ๋‹ค.
05:29
but they also built a more robust version with power on board
110
329600
3676
ํ•˜๋ฒ„๋“œ๋Œ€์—์„œ๋Š” ์ „์›์„ ํƒ‘์žฌํ•œ ๋” ํŠผํŠผํ•œ ๋กœ๋ด‡๋„ ๋งŒ๋“ค์—ˆ๋Š”๋ฐ์š”.
05:33
that can actually be sent out in the world and face real-world interactions
111
333300
5447
์ด๊ฒƒ๋“ค์€ ๋ฐ–์œผ๋กœ ๋‚˜๊ฐ€ ์‹ค์ œ ์„ธ์ƒ๊ณผ ์ƒํ˜ธ์ž‘์šฉ์„ ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
05:38
like a car passing it over it ...
112
338771
1706
์ฐจ๊ฐ€ ๋ฐŸ๊ณ  ์ง€๋‚˜๊ฐ€๊ธฐ๋„ ํ•˜์ฃ .
05:42
and keep working.
113
342090
1150
๊ทธ๋ž˜๋„ ๊ณ„์† ์›€์ง์ž…๋‹ˆ๋‹ค.
05:44
It's cute.
114
344056
1151
๊ท€์—ฝ์ฃ .
05:45
(Laughter)
115
345231
1421
(์›ƒ์Œ)
05:46
Or a robotic fish, which swims like a real fish does in water
116
346676
3864
๋กœ๋ด‡ ๋ฌผ๊ณ ๊ธฐ ๊ฐ™์€ ๊ฒฝ์šฐ์—” ๋ฌผ ์†์—์„œ ์‹ค์ œ ๋ฌผ๊ณ ๊ธฐ์ฒ˜๋Ÿผ ํ—ค์—„์น  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:50
simply because it has a soft tail with distributed actuation
117
350564
3184
์ด๊ฒƒ์€ ๋‹จ์ง€ ๋ถ€๋“œ๋Ÿฌ์šด ๊ผฌ๋ฆฌ์˜ ๋ถ„์‚ฐ๊ตฌ๋™ ๊ธฐ๋Šฅ ๋•๋ถ„์ž…๋‹ˆ๋‹ค.
05:53
using still air pressure.
118
353772
1644
์ •์ฒด ๊ณต๊ธฐ์••์„ ์‚ฌ์šฉํ•˜์ฃ .
05:55
That was from MIT,
119
355954
1358
์ด ๋ฌผ๊ณ ๊ธฐ๋Š” MIT์—์„œ ๋งŒ๋“ค์—ˆ๊ณ ์š”.
05:57
and of course, we have a robotic octopus.
120
357336
2805
๋ฌผ๊ณ ๊ธฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฌธ์–ด๋„ ์žˆ์–ด์š”.
06:00
This was actually one of the first projects
121
360165
2079
์ด๊ฒƒ์€ ์‚ฌ์‹ค ์œ ์—ฐํ•œ ๋กœ๋ด‡์—์„œ๋Š” ์ฒ˜์Œ์œผ๋กœ ์‹œ๋„๋œ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค.
06:02
developed in this new field of soft robots.
122
362268
2126
06:04
Here, you see the artificial tentacle,
123
364418
1886
์—ฌ๊ธฐ ์ธ๊ณต ์ด‰์ˆ˜๋ฅผ ๋ณด์„ธ์š”.
06:06
but they actually built an entire machine with several tentacles
124
366328
4679
์ด ๋กœ๋ด‡์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ด‰์ˆ˜๋“ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:11
they could just throw in the water,
125
371031
2611
๋ฌผ์†์— ์ด๋ ‡๊ฒŒ ๋˜์ ธ ๋„ฃ์œผ๋ฉด
06:13
and you see that it can kind of go around and do submarine exploration
126
373666
4293
์—ฌ๊ธฐ์ €๊ธฐ ๋Œ์•„๋‹ค๋‹ˆ๋ฉฐ ๋ฐ”๋‹ท์†์„ ํƒํ—˜ํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
06:17
in a different way than rigid robots would do.
127
377983
3303
๋”ฑ๋”ฑํ•œ ๋กœ๋ด‡๋“ค๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒƒ๋“ค์„ ํ•  ์ˆ˜ ์žˆ์ฃ .
06:21
But this is very important for delicate environments, such as coral reefs.
128
381310
3660
์ด๋Ÿฌํ•œ ๋Šฅ๋ ฅ์€ ์‚ฐํ˜ธ์ดˆ ๊ฐ™์€ ๊นŒ๋‹ค๋กœ์šด ํ™˜๊ฒฝ์— ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
06:24
Let's go back to the ground.
129
384994
1396
๋‹ค์‹œ ์ง€์ƒ์œผ๋กœ ์˜ฌ๋ผ๊ฐ€ ๋ด…์‹œ๋‹ค.
06:26
Here, you see the view
130
386414
1190
์ง€๊ธˆ ๋ณด์‹œ๋Š” ์˜์ƒ์€
06:27
from a growing robot developed by my colleagues in Stanford.
131
387628
4148
์Šคํƒ ํฌ๋“œ๋Œ€์˜ ์ œ ๋™๋ฃŒ๋“ค์ด ๋ฐœ๋ช…ํ•œ ๋Š˜์–ด๋‚˜๋Š” ๋กœ๋ด‡์ด ์ฐ์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:31
You see the camera fixed on top.
132
391800
1850
๋จธ๋ฆฌ์— ์นด๋ฉ”๋ผ๊ฐ€ ์„ค์น˜๋˜์–ด ์žˆ์ฃ .
06:33
And this robot is particular,
133
393674
1438
์ด ๋กœ๋ด‡์˜ ๋…ํŠนํ•œ ์ ์€
06:35
because using air pressure, it grows from the tip,
134
395136
2416
๊ณต๊ธฐ ์••๋ ฅ์œผ๋กœ ๋๋ถ€๋ถ„์ด ๊ธธ๊ฒŒ ๋Š˜์–ด๋‚œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:37
while the rest of the body stays in firm contact with the environment.
135
397576
3346
๋ฐ˜๋ฉด์— ๋‚˜๋จธ์ง€ ๋ถ€๋ถ„๋“ค์€ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๊ฒฌ๊ณ ํ•˜๊ฒŒ ๋ถ™์–ด ์žˆ์ฃ .
06:41
And this is inspired by plants, not animals,
136
401316
2718
์ด๊ฒƒ์€ ๋™๋ฌผ์ด ์•„๋‹ˆ๋ผ ์‹๋ฌผ์— ์˜๊ฐ์„ ๋ฐ›์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:44
which grows via the material in a similar manner
137
404058
3315
์‹๋ฌผ๊ณผ ๋น„์Šทํ•œ ๋ฐฉ์‹์œผ๋กœ ๋ฌผ์งˆ์„ ์ž๋ผ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
06:47
so it can face a pretty large variety of situations.
138
407397
2960
๊ทธ๋กœ ์ธํ•ด ๋‹ค์–‘ํ•˜๊ณ  ์ˆ˜๋งŽ์€ ์ƒํ™ฉ๊ณผ ๋งž๋‹ฅ๋œจ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:51
But I'm a biomedical engineer,
139
411043
1668
๊ทธ๋Ÿฐ๋ฐ ์ €๋Š” ์ƒ์ฒด๊ณตํ•™์ž์ด๊ธฐ์—
06:52
and perhaps the application I like the most
140
412735
2269
์–ด์ฉŒ๋ฉด ์ œ๊ฐ€ ๊ฐ€์žฅ ๊ด€์‹ฌ์žˆ๋Š” ์‘์šฉ ๋ถ„์•ผ๋Š”
06:55
is in the medical field,
141
415028
1453
์˜ํ•™๋ถ„์•ผ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:56
and it's very difficult to imagine a closer interaction with the human body
142
416505
4841
์ธ๊ฐ„์˜ ์‹ ์ฒด์™€ ๊ฐ€์žฅ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ƒ๊ฐํ•ด๋ณด๋ฉด
07:01
than actually going inside the body,
143
421370
1919
์ธ๊ฐ„์˜ ๋ชธ ์†์œผ๋กœ ์ง์ ‘ ๋“ค์–ด๊ฐ€๋Š” ๊ฒƒ์ด ์œ ์ผํ•˜๊ฒ ์ฃ .
07:03
for example, to perform a minimally invasive procedure.
144
423313
2771
์˜ˆ๋ฅผ ๋“ค์ž๋ฉด, ์ตœ์†Œํ•œ์˜ ์™ธ๊ณผ ์‹œ์ˆ ์„ ์‹œํ–‰ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
07:06
And here, robots can be very helpful with the surgeon,
145
426958
3402
์ด๋•Œ ๋กœ๋ด‡์ด ์™ธ๊ณผ ์˜์‚ฌ์—๊ฒŒ ํฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:10
because they must enter the body
146
430384
1749
๋ชธ์†์œผ๋กœ ๊ผญ ๋“ค์–ด๊ฐ€์•ผ ํ•  ๋•Œ๋Š”
07:12
using small holes and straight instruments,
147
432157
2627
์ž‘์€ ๊ตฌ๋ฉ์„ ๋‚ด๊ณ  ์ง์„ ์˜ ๋„๊ตฌ๋“ค์„ ์‚ฌ์šฉํ•˜์ฃ .
07:14
and these instruments must interact with very delicate structures
148
434808
3510
๊ทธ ๋„๊ตฌ๋“ค๋กœ ๋งค์šฐ ์—ฐ์•ฝํ•œ ์žฅ๊ธฐ ๊ตฌ์กฐ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
07:18
in a very uncertain environment,
149
438342
2048
๋งค์šฐ ๋ถˆ๋ถ„๋ช…ํ•œ ํ™˜๊ฒฝ์—์„œ ๋ง์ด์ฃ .
07:20
and this must be done safely.
150
440414
1675
์ด ๊ณผ์ •์€ ์•ˆ์ „ํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
07:22
Also bringing the camera inside the body,
151
442113
2112
๊ทธ๋ฆฌ๊ณ  ์นด๋ฉ”๋ผ๊ฐ€ ๋ชธ์†์— ๋“ค์–ด๊ฐ€๋Š” ๊ฒƒ์€
07:24
so bringing the eyes of the surgeon inside the surgical field
152
444249
3618
์ˆ˜์ˆ  ๋ถ€์œ„์— ์˜์‚ฌ์˜ ๋ˆˆ์ด ๋“ค์–ด๊ฐ€๋Š” ๊ฒƒ๊ณผ ๊ฐ™๊ธฐ ๋•Œ๋ฌธ์—
07:27
can be very challenging if you use a rigid stick,
153
447891
2351
๋”ฑ๋”ฑํ•œ ๋ง‰๋Œ€๊ธฐ๊ฐ™์€ ๊ฒƒ์œผ๋กœ๋Š” ๋งค์šฐ ํž˜๋“  ์ž‘์—…์ž…๋‹ˆ๋‹ค.
07:30
like a classic endoscope.
154
450266
1607
๋Œ€๋ถ€๋ถ„์˜ ๋‚ด์‹œ๊ฒฝ์ด ๊ทธ๋ ‡์ฃ .
07:32
With my previous research group in Europe,
155
452517
2589
์ €๋Š” ์œ ๋Ÿฝ์˜ ์—ฐ๊ตฌํŒ€๊ณผ ํ•จ๊ป˜
07:35
we developed this soft camera robot for surgery,
156
455130
2596
์ˆ˜์ˆ ์— ์“ธ ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐํ•œ ์นด๋ฉ”๋ผ ๋กœ๋ด‡์„ ๋ฐœ๋ช…ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:37
which is very different from a classic endoscope,
157
457750
3768
์ผ๋ฐ˜ ๋‚ด์‹œ๊ฒฝ์ด๋ž‘ ๋งค์šฐ ๋‹ค๋ฅธ ํ˜•ํƒœ๋กœ
07:41
which can move thanks to the flexibility of the module
158
461542
3104
๋ชจ๋“ˆ์˜ ์œ ์—ฐ์„ฑ ๋•๋ถ„์— ์›€์ง์ž„์ด ์ž์œ ๋กญ๊ณ 
07:44
that can bend in every direction and also elongate.
159
464670
4888
์—ฌ๋Ÿฌ ๋ฐฉํ–ฅ์œผ๋กœ ๊ตฌ๋ถ€๋Ÿฌ์ง€๋ฉฐ ๊ธธ๊ฒŒ ๋Š˜์–ด๋‚˜๋Š” ๊ฒƒ๋„ ๊ฐ€๋Šฅํ•˜์ฃ .
07:49
And this was actually used by surgeons to see what they were doing
160
469582
3110
๊ทธ๋ฆฌ๊ณ  ์˜์‚ฌ์—๊ฒŒ ์ด ๋กœ๋ด‡์„ ์‹ค์ œ๋กœ ์‚ฌ์šฉํ•ด๋ณด๋„๋ก ํ•˜๊ณ 
07:52
with other instruments from different points of view,
161
472716
2738
๋‹ค๋ฅธ ๊ด€์ ์—์„œ ๋‚ด๋ถ€๋ฅผ ๊ด€์ฐฐํ•˜๋ฉฐ ๋„๊ตฌ๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€ ๋ดค์Šต๋‹ˆ๋‹ค.
07:55
without caring that much about what was touched around.
162
475478
3206
์ฃผ๋ณ€์„ ๊ฑด๋“œ๋ฆฌ์ง€ ์•Š๋Š”์ง€ ํฌ๊ฒŒ ์‹ ๊ฒฝ์“ฐ์ง€ ์•Š๊ณ ๋„ ๋ง์ด์ฃ .
07:59
And here you see the soft robot in action,
163
479247
3743
์ด์ œ ์œ ์—ฐํ•œ ๋กœ๋ด‡์˜ ํ™œ์•ฝ์„ ๋ณด์‹œ์ฃ .
08:03
and it just goes inside.
164
483014
2818
๋ชธ์†์œผ๋กœ ๋“ค์–ด๊ฐ‘๋‹ˆ๋‹ค.
08:05
This is a body simulator, not a real human body.
165
485856
3269
์ด๊ฑด ์‹ค์ œ ์ธ๊ฐ„์˜ ๋ชธ์ด ์•„๋‹Œ ์‹ ์ฒด ๋ชจํ˜•์ž…๋‹ˆ๋‹ค.
08:09
It goes around.
166
489149
1151
๋ชธ์†์„ ๋Œ์•„๋‹ค๋‹ˆ์ฃ .
08:10
You have a light, because usually,
167
490324
1674
์ด ์˜์ƒ์€ ๋ฐ์€ ์ƒํƒœ์ง€๋งŒ ๋Œ€๋ถ€๋ถ„ ๋ชธ์†์€ ๋น›์ด ๊ฑฐ์˜ ์—†์Šต๋‹ˆ๋‹ค.
08:12
you don't have too many lights inside your body.
168
492022
3121
08:15
We hope.
169
495167
1173
๋ฐ์œผ๋ฉด ์ข‹๊ฒ ์ง€๋งŒ์š”.
08:16
(Laughter)
170
496364
3002
(์›ƒ์Œ)
08:19
But sometimes, a surgical procedure can even be done using a single needle,
171
499390
4698
๊ทธ๋Ÿฐ๋ฐ ๋•Œ๋กœ๋Š” ์ž‘์€ ๋ฐ”๋Š˜ ํ•˜๋‚˜๋งŒ์œผ๋กœ ๋๋‚ผ ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ˆ ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
08:24
and in Stanford now, we are working on a very flexible needle,
172
504112
4047
ํ˜„์žฌ ์Šคํƒ ํฌ๋“œ๋Œ€์—์„œ๋Š” ์œ ์—ฐํ•œ ๋ฐ”๋Š˜์„ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ๋Š”๋ฐ์š”.
์•„์ฃผ ์ž‘์€ ์œ ์—ฐํ•œ ๋กœ๋ด‡์œผ๋กœ
08:28
kind of a very tiny soft robot
173
508183
2652
08:30
which is mechanically designed to use the interaction with the tissues
174
510859
3294
๋ชธ์˜ ์กฐ์ง๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ธฐ ์œ„ํ•ด ๊ณตํ•™์ ์œผ๋กœ ๋””์ž์ธ๋˜์–ด์ ธ
08:34
and steer around inside a solid organ.
175
514177
2230
๋‹จ๋‹จํ•œ ๋ชธ์˜ ์žฅ๊ธฐ ์•ˆ์„ ํ”ผํ•ด์„œ ๋‹ค๋‹ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:36
This makes it possible to reach many different targets, such as tumors,
176
516431
4080
๊ทธ๋ž˜์„œ ์ข…์–‘ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ชฉํ‘œ๋ฌผ๊นŒ์ง€ ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ์ฃ .
08:40
deep inside a solid organ
177
520535
1698
๋‹จ ํ•œ ๋ฒˆ๋งŒ ์‚ฝ์ž…ํ•ด๋„ ๋‹จ๋‹จํ•œ ์žฅ๊ธฐ์˜ ์•„์ฃผ ๊นŠ์€ ๊ณณ๊นŒ์ง€ ๋‹ฟ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:42
by using one single insertion point.
178
522257
2325
08:44
And you can even steer around the structure that you want to avoid
179
524606
4039
์‹ฌ์ง€์–ด ํ”ผํ•ด์•ผ ํ•  ๋ชธ์† ์žฅ๊ธฐ๋ฅผ ํ”ผํ•ด์„œ ๋ชฉํ‘œ ๋ถ€๋ถ„์— ๋‹ค๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:48
on the way to the target.
180
528669
1364
08:51
So clearly, this is a pretty exciting time for robotics.
181
531377
3305
์ด๋ ‡๊ฒŒ ๋กœ๋ด‡๊ณตํ•™์— ์žˆ์–ด ์ง€๊ธˆ์ด ์•„์ฃผ ํฅ๋ฏธ์ง„์ง„ํ•œ ์‹œ๊ธฐ์ž„์ด ๋ถ„๋ช…ํ•˜์ฃ .
08:54
We have robots that have to deal with soft structures,
182
534706
3153
์—ฐ์•ฝํ•œ ์‚ฌ๋ฌผ๋“ค์— ๋Œ€์ฒ˜ ๊ฐ€๋Šฅํ•œ ๋กœ๋ด‡์ด ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์€
08:57
so this poses new and very challenging questions
183
537883
2585
์ƒˆ๋กญ๊ณ  ์•„์ฃผ ๋„์ „์ ์ธ ์งˆ๋ฌธ์„ ๋˜์ง‘๋‹ˆ๋‹ค.
09:00
for the robotics community,
184
540492
1357
๋กœ๋ด‡๊ณตํ•™ ๋ถ„์•ผ์— ๋ง์ด์ฃ .
09:01
and indeed, we are just starting to learn how to control,
185
541873
2675
๋ฌผ๋ก  ์šฐ๋ฆฌ๋Š” ์œ ์—ฐํ•œ ๋กœ๋ด‡์˜ ๋ชธ์ฒด๋ฅผ ์–ด๋–ป๊ฒŒ ์กฐ์ข…ํ•˜๊ณ 
09:04
how to put sensors on these very flexible structures.
186
544572
3004
์„ผ์„œ๋ฅผ ์–ด๋–ป๊ฒŒ ์ ์šฉํ•ด์•ผํ•˜๋Š”์ง€๋ฅผ ์ด์ œ ๋ง‰ ๋ฐฐ์šฐ๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:07
But of course, we are not even close to what nature figured out
187
547600
2960
์ž์—ฐ์ด ์ˆ˜๋ฐฑ๋งŒ ๋…„๊ฐ„์˜ ์ง„ํ™”๋ฅผ ํ†ตํ•ด ๊นจ๋‹ฌ์€ ์‚ฌ์‹ค์— ๋‹ค๋‹ค๋ฅด๊ธฐ๊นŒ์ง€๋Š”
09:10
in millions of years of evolution.
188
550584
2194
์•„์ง ๋ฉ€์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ์••๋‹ˆ๋‹ค.
09:12
But one thing I know for sure:
189
552802
2104
๊ทธ๋Ÿฌ๋‚˜ ํ•œ ๊ฐ€์ง€ ํ™•์‹ ํ•˜๋Š” ๊ฒƒ์€
09:14
robots will be softer and safer,
190
554930
2516
๋กœ๋ด‡์€ ์•ž์œผ๋กœ ๋” ๋ถ€๋“œ๋Ÿฌ์›Œ์ง€๊ณ  ์•ˆ์ „ํ•ด์งˆ ๊ฒƒ์ด๋ฉฐ
09:17
and they will be out there helping people.
191
557470
2982
์„ธ์ƒ์— ๋‚˜๊ฐ€ ์‚ฌ๋žŒ๋“ค์„ ๋„์šธ ๊ฒƒ์ด๋ผ๋Š” ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
09:20
Thank you.
192
560809
1151
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
09:21
(Applause)
193
561984
4412
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7