Robert Full: Engineering and evolution

68,877 views ใƒป 2008-06-23

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yifat Adler ืžื‘ืงืจ: Shaike Katz
00:19
Welcome. If I could have the first slide, please?
0
19330
5000
ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื. ืืคืฉืจ ืœื”ืฆื™ื’ ืืช ื”ืฉืงื•ืคื™ืช ื”ืจืืฉื•ื ื” ื‘ื‘ืงืฉื”?
00:33
Contrary to calculations made by some engineers, bees can fly,
1
33330
5000
ื‘ื ื™ื’ื•ื“ ืœื—ื™ืฉื•ื‘ื™ื ืฉืœ ื›ืžื” ืžื”ื ื“ืกื™ื, ื“ื‘ื•ืจื™ื ื™ื›ื•ืœื•ืช ืœืขื•ืฃ,
00:38
dolphins can swim, and geckos can even climb
2
38330
7000
ื“ื•ืœืคื™ื ื™ื ื™ื›ื•ืœื™ื ืœืฉื—ื•ืช, ื•ืฉืžืžื™ื•ืช ื™ื›ื•ืœื•ืช ืœื˜ืคืก ืืคื™ืœื• ืขืœ
00:45
up the smoothest surfaces. Now, what I want to do, in the short time I have,
3
45330
6000
ื”ืžืฉื˜ื—ื™ื ื”ื—ืœืงื™ื ื‘ื™ื•ืชืจ. ื‘ืจืฆื•ื ื™ ืœื ืฆืœ ืืช ื”ื–ืžืŸ ื”ืงืฆืจ ื”ืขื•ืžื“ ืœืจืฉื•ืชื™
00:51
is to try to allow each of you to experience
4
51330
4000
ื›ื“ื™ ืœื ืกื•ืช ืœืืคืฉืจ ืœื›ืœ ืื—ื“ ืžื›ื ืœื”ืชื ืกื•ืช
00:55
the thrill of revealing nature's design.
5
55330
6000
ื‘ืžื™ื“ืช ืžื”, ื‘ื”ื ืื” ืฉื‘ื’ื™ืœื•ื™ ื”ืขื™ืฆื•ื‘ื™ื ืฉืœ ื”ื˜ื‘ืข.
01:01
I get to do this all the time, and it's just incredible.
6
61330
2000
ืื ื™ ื–ื•ื›ื” ืœื›ืš ื‘ืื•ืคืŸ ืงื‘ื•ืข, ื•ื–ื” ืคืฉื•ื˜ ื ืคืœื.
01:03
I want to try to share just a little bit of that with you in this presentation.
7
63330
6000
ื‘ืจืฆื•ื ื™ ืœื ืกื•ืช ืœืฉืชืฃ ืืชื›ื ืงืฆืช ื‘ืขื–ืจืช ื”ืžืฆื’ืช ื”ื–ืืช.
01:09
The challenge of looking at nature's designs --
8
69330
2000
ื”ืืชื’ืจ ื‘ื”ืชื‘ื•ื ื ื•ืช ื‘ืขื™ืฆื•ื‘ื™ื ืฉืœ ื”ื˜ื‘ืข --
01:11
and I'll tell you the way that we perceive it, and the way we've used it.
9
71330
4000
ืืกืคืจ ืœื›ื ืขืœ ืฆื•ืจืช ื”ื”ืกืชื›ืœื•ืช ืฉืœื ื• ืขืœ ื”ื ื•ืฉื, ื•ืขืœ ื”ื“ืจืš ื‘ื” ื™ื™ืฉืžื ื• ืื•ืชื•.
01:15
The challenge, of course, is to answer this question:
10
75330
2000
ื”ืืชื’ืจ ื”ื•ื, ื›ืžื•ื‘ืŸ, ืœืขื ื•ืช ืขืœ ื”ืฉืืœื” ื”ื‘ืื”:
01:17
what permits this extraordinary performance of animals
11
77330
3000
ืžื” ืžืืคืฉืจ ืืช ื”ื‘ื™ืฆื•ืขื™ื ื™ื•ืฆืื™ ื”ื“ื•ืคืŸ ืฉืœ ื”ื—ื™ื•ืช
01:20
that allows them basically to go anywhere?
12
80330
3000
ืฉื™ื›ื•ืœื•ืช ืœืžืขืฉื” ืœื ื•ืข ืœื›ืœ ืžืงื•ื?
01:23
And if we could figure that out, how can we implement those designs?
13
83330
7000
ื•ืื ื ื•ื›ืœ ืœื”ื‘ื™ืŸ ื–ืืช, ืื™ืš ื ื•ื›ืœ ืœื™ื™ืฉื ืืช ื”ืขื™ืฆื•ื‘ื™ื ื”ืืœื”?
01:30
Well, many biologists will tell engineers, and others,
14
90330
3000
ื‘ื™ื•ืœื•ื’ื™ื ืจื‘ื™ื ื™ื’ื™ื“ื• ืœืžื”ื ื“ืกื™ื ื•ืœืื ืฉื™ื ืื—ืจื™ื,
01:33
organisms have millions of years to get it right;
15
93330
3000
ืฉืœืื•ืจื’ื ื™ื–ืžื™ื ื”ื™ื• ืžื™ืœื™ื•ื ื™ ืฉื ื™ื ื›ื“ื™ ืœืกื“ืจ ืืช ื”ืขื ื™ื™ื ื™ื,
01:36
they're spectacular; they can do everything wonderfully well.
16
96330
3000
ื”ื ืขื•ืฆืจื™ ื ืฉื™ืžื”, ื”ื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื›ืœ ื“ื‘ืจ ื‘ืฆื•ืจื” ื˜ื•ื‘ื” ืœื”ืคืœื™ื.
01:39
So, the answer is bio-mimicry: just copy nature directly.
17
99330
4000
ื•ื”ืชืฉื•ื‘ื” ื”ื™ื, ืื ื›ืŸ, ื‘ื™ื•ืžื™ืžื™ืงื” -- ืคืฉื•ื˜ ืœื—ืงื•ืช ื™ืฉื™ืจื•ืช ืืช ื”ื˜ื‘ืข.
01:43
We know from working on animals that the truth is
18
103330
5000
ืื‘ืœ, ืžืขื‘ื•ื“ื” ืขื ื—ื™ื•ืช ืื ื• ื™ื•ื“ืขื™ื ืฉื”ืืžืช ื”ื™ื
01:48
that's exactly what you don't want to do -- because evolution works
19
108330
4000
ืฉื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืœื ื ืจืฆื” ืœืขืฉื•ืช. ื”ืื‘ื•ืœื•ืฆื™ื” ืขื•ื‘ื“ืช
01:52
on the just-good-enough principle, not on a perfecting principle.
20
112330
3000
ืขืœ ื”ืขืงืจื•ืŸ ืฉืœ ืœื”ื™ื•ืช ื˜ื•ื‘ ื“ื™ืš, ื•ืœื ืขืœ ืขืงืจื•ืŸ ื”ืžื•ืฉืœืžื•ืช.
01:55
And the constraints in building any organism, when you look at it,
21
115330
4000
ื”ืžื’ื‘ืœื•ืช ื‘ื‘ื ื™ื” ืฉืœ ืื•ืจื’ื ื™ื–ื ื›ืœืฉื”ื• ื”ืŸ ื ื•ืงืฉื•ืช ื‘ื™ื•ืชืจ.
01:59
are really severe. Natural technologies have incredible constraints.
22
119330
5000
ืœื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื˜ื‘ืขื™ื•ืช ื™ืฉ ืžื’ื‘ืœื•ืช ืขืฆื•ืžื•ืช.
02:04
Think about it. If you were an engineer and I told you
23
124330
3000
ื—ืฉื‘ื• ืขืœ ื›ืš. ื ื ื™ื— ืฉื”ื ื›ื ืžื”ื ื“ืกื™ื ื•ืื ื™ ืžื˜ื™ืœ ืขืœื™ื›ื
02:07
that you had to build an automobile, but it had to start off to be this big,
24
127330
5000
ืœื‘ื ื•ืช ืžื›ื•ื ื™ืช, ืฉืฆืจื™ื›ื” ืœื”ืชื—ื™ืœ ื‘ื’ื•ื“ืœ ื”ื–ื”, ื•ืื– ืขืœื™ื” ืœืฆืžื•ื—
02:12
then it had to grow to be full size and had to work every step along the way.
25
132330
4000
ืœื’ื•ื“ืœื” ื”ืžืœื, ื•ืขืœื™ื” ืœื”ื™ื•ืช ื‘ืžืฆื‘ ืคืขื•ืœื” ื‘ืžืฉืš ื›ืœ ื”ืฉืœื‘ื™ื ื‘ื“ืจืš.
02:16
Or think about the fact that if you build an automobile, I'll tell you that you also -- inside it --
26
136330
4000
ื ื ื™ื— ืฉื”ื™ื™ืชื ื‘ื•ื ื™ื ืžื›ื•ื ื™ืช, ื•ื”ื™ื™ืชื™ ืื•ืžืจ ืœื›ื ืฉืขืœื™ื›ื
02:20
have to put a factory that allows you to make another automobile.
27
140330
4000
ืœื”ืชืงื™ืŸ ื‘ื” ื‘ื™ืช ื—ืจื•ืฉืช ืฉื™ืืคืฉืจ ืœื›ื ืœื™ื™ืฆืจ ืžื›ื•ื ื™ืช ื ื•ืกืคืช.
02:24
(Laughter)
28
144330
2000
(ืฆื—ื•ืง)
02:26
And you can absolutely never, absolutely never, because of history
29
146330
4000
ื•ืœืขื•ืœื ืœื ืชื•ื›ืœื•, ืœืขื•ืœื ืœื, ื‘ื’ืœืœ ื”ื”ื™ืกื˜ื•ืจื™ื”
02:30
and the inherited plan, start with a clean slate.
30
150330
4000
ื•ื”ืชื•ื›ื ื™ืช ื”ืชื•ืจืฉืชื™ืช, ืœื”ืชื—ื™ืœ ืขื ืœื•ื— ื—ืœืง.
02:34
So, organisms have this important history.
31
154330
3000
ืœืื•ืจื’ื ื™ื–ืžื™ื ื™ืฉ ื”ื™ืกื˜ื•ืจื™ื” ื—ืฉื•ื‘ื”.
02:37
Really evolution works more like a tinkerer than an engineer.
32
157330
5000
ื”ืื‘ื•ืœื•ืฆื™ื” ืขื•ื‘ื“ืช ื™ื•ืชืจ ื›ืžื• ืชื™ืงื•ื ืฆ'ื™ืง ืžืืฉืจ ื›ืžื• ืžื”ื ื“ืก,
02:42
And this is really important when you begin to look at animals.
33
162330
3000
ื—ืฉื•ื‘ ืžืื•ื“ ืœื–ื›ื•ืจ ื–ืืช ื›ืฉืžืชื—ื™ืœื™ื ืœื”ืชื‘ื•ื ืŸ ื‘ื‘ืขืœื™ ื”ื—ื™ื™ื.
02:45
Instead, we believe you need to be inspired by biology.
34
165330
7000
ื‘ืžืงื•ื ื–ืืช, ืื ื• ืžืืžื™ื ื™ื ืฉื”ื‘ื™ื•ืœื•ื’ื™ื” ืฆืจื™ื›ื” ืœื”ื™ื•ืช ืžืงื•ืจ ื”ื”ืฉืจืื” ืฉืœื ื•.
02:52
You need to discover the general principles of nature,
35
172330
4000
ืขืœื™ื ื• ืœื’ืœื•ืช ืืช ื”ืขืงืจื•ื ื•ืช ื”ื›ืœืœื™ื™ื ืฉืœ ื”ื˜ื‘ืข,
02:56
and then use these analogies when they're advantageous.
36
176330
3000
ื•ืœื”ืฉืชืžืฉ ื‘ืื ืœื•ื’ื™ื•ืช ื”ืืœื” ื›ืืฉืจ ื ื™ืชืŸ ืœื”ืคื™ืง ืžื”ืŸ ืชื•ืขืœืช.
03:02
This is a real challenge to do this, because animals,
37
182330
3000
ื–ื”ื• ืืชื’ืจ ืืžื™ืชื™ ืžื›ื™ื•ื•ืŸ ืฉื‘ืขืœื™ ื”ื—ื™ื™ื -
03:05
when you start to really look inside them -- how they work --
38
185330
3000
ื›ืฉืžืชื—ื™ืœื™ื ืœื”ืชื‘ื•ื ืŸ ื‘ื”ื ืœืขื•ืžืง, ื•ื‘ื“ืจืš ื‘ื” ื”ื ืคื•ืขืœื™ื,
03:08
appear hopelessly complex. There's no detailed history
39
188330
4000
ื ืจืื™ื ืžื•ืจื›ื‘ื™ื ืขื“ ื›ื“ื™ ื™ื™ืื•ืฉ. ืื™ืŸ ื”ืกื˜ื•ืจื™ื” ืžืคื•ืจื˜ืช
03:12
of the design plans, you can't go look it up anywhere.
40
192330
3000
ืฉืœ ืชื•ื›ื ื™ื•ืช ื”ืขื™ืฆื•ื‘, ืœื ื ื™ืชืŸ ืœืžืฆื•ื ืื•ืชืŸ ื‘ืฉื•ื ืžืงื•ื.
03:15
They have way too many motions for their joints, too many muscles.
41
195330
4000
ื™ืฉ ืœื”ื ื™ื•ืชืจ ืžื“ื™ ืชื ื•ืขื•ืช ื‘ืžืคืจืงื™ื ืฉืœื”ื ื•ื™ื•ืชืจ ืžื“ื™ ืฉืจื™ืจื™ื,
03:19
Even the simplest animal we think of, something like an insect,
42
199330
3000
ืืคื™ืœื• ืœื—ื™ื” ื”ืคืฉื•ื˜ื” ื‘ื™ื•ืชืจ ืฉืชืขืœื” ื‘ื“ืขืชื ื•, ื›ืžื• ื—ืจืง.
03:22
and they have more neurons and connections than you can imagine.
43
202330
3000
ืžืกืคืจ ื”ื ื•ื™ืจื•ื ื™ื ื•ื”ื—ื™ื‘ื•ืจื™ื ืฉืœื”ื ื”ื•ื ืžืขื‘ืจ ืœื›ืœ ื“ืžื™ื•ืŸ.
03:25
How can you make sense of this? Well, we believed --
44
205330
5000
ืื™ืš ืืคืฉืจ ืœื”ื‘ื™ืŸ ืžื” ื”ื•ืœืš ืฉื? ื•ื‘ื›ืŸ, ืื ื—ื ื• ื”ืืžื ื• ื•ื”ืขืœื ื• ื”ืฉืขืจื”
03:30
and we hypothesized -- that one way animals could work simply,
45
210330
5000
ืฉื“ืจืš ืื—ืช ื‘ื” ื‘ืขืœื™ ื”ื—ื™ื™ื ื™ื›ื•ืœื™ื ืœืคืขื•ืœ ื‘ืฆื•ืจื” ืคืฉื•ื˜ื” ื”ื™ื
03:35
is if the control of their movements
46
215330
3000
ืื ื”ืฉืœื™ื˜ื” ืขืœ ื”ืชื ื•ืขื•ืช ืฉืœื”ื
03:38
tended to be built into their bodies themselves.
47
218330
6000
ืžื•ื‘ื ื™ืช ื‘ื’ื•ืฃ ืฉืœื”ื ืขืฆืžื•.
03:44
What we discovered was that two-, four-, six- and eight-legged animals
48
224330
7000
ื’ื™ืœื™ื ื• ืฉื‘ืขืœื™ ื—ื™ื™ื ื‘ืขืœื™ 2, 4, 6 ื•-8 ืจื’ืœื™ื™ื,
03:51
all produce the same forces on the ground when they move.
49
231330
3000
ื›ื•ืœื ื”ืคืขื™ืœื• ื›ื•ื—ื•ืช ื–ื”ื™ื ืขืœ ื”ืื“ืžื” ื›ืืฉืจ ื”ื ื ืขื•.
03:54
They all work like this kangaroo, they bounce.
50
234330
4000
ื›ื•ืœื ืคื•ืขืœื™ื ื›ืžื• ื”ืงื ื’ืจื• ื”ื–ื”, ื”ื ืžื ืชืจื™ื.
03:58
And they can be modeled by a spring-mass system that we call the spring mass system
51
238330
4000
ื ื™ืชืŸ ืœื‘ื ื•ืช ืขื‘ื•ืจื ืžื•ื“ืœ ืข"ื™ ืžืขืจื›ืช ืงืคื™ืฅ-ืžืกื” ืฉื ืงืจืืช ื›ืš
04:02
because we're biomechanists. It's actually a pogo stick.
52
242330
3000
ืžื›ื™ื•ื•ืŸ ืฉืื ื—ื ื• ื‘ื™ื•-ืžื›ื•ื ืื™ื, ืœืžืขืฉื” ื–ื”ื• ืžืงืœ ืคื•ื’ื•.
04:05
They all produce the pattern of a pogo stick. How is that true?
53
245330
4000
ื›ื•ืœื ื™ื•ืฆืจื™ื ืืช ื”ื“ืคื•ืก ืฉืœ ืžืงืœ ื”ืคื•ื’ื•. ืื™ืš ื–ื” ืงื•ืจื”?
04:09
Well, a human, one of your legs works like two legs of a trotting dog,
54
249330
6000
ืืฆืœ ื‘ื ื™ ื”ืื“ื - ืจื’ืœ ืื—ืช ืขื•ื‘ื“ืช ื›ืžื• 2 ืจื’ืœื™ื™ื ืฉืœ ื›ืœื‘ ืฉืจืฅ ืจื™ืฆื” ืงืœื”,
04:15
or works like three legs, together as one, of a trotting insect,
55
255330
4000
ืื• ื›ืžื• 3 ืจื’ืœื™ื™ื ืฉืœ ื—ืจืง ืฉืจืฅ ืจื™ืฆื” ืงืœื”,
04:19
or four legs as one of a trotting crab.
56
259330
2000
ืื• ื›ืžื• 4 ืจื’ืœื™ื™ื ืฉืœ ืกืจื˜ืŸ ืฉืจืฅ ืจื™ืฆื” ืงืœื”.
04:21
And then they alternate in their propulsion,
57
261330
4000
ื•ืื– ื”ืŸ ืžืชื—ืœืคื•ืช ื–ื• ืขื ื–ื• ื‘ื›ื•ื— ื”ื”ื ืขื” ืฉืœื”ืŸ.
04:25
but the patterns are all the same. Almost every organism we've looked at this way
58
265330
5000
ื”ื“ืคื•ืกื™ื ื–ื”ื™ื ื›ืžืขื˜ ื‘ื›ืœ ื”ืื•ืจื’ื ื™ื–ืžื™ื ืฉื‘ื“ืงื ื•.
04:30
-- you'll see next week, I'll give you a hint,
59
270330
2000
ื‘ืฉื‘ื•ืข ื”ื‘ื ืชืจืื• - ืืชืŸ ืœื›ื ืจืžื–,
04:32
there'll be an article coming out that says that really big things
60
272330
3000
ื™ืฆื ืœืื•ืจ ืžืืžืจ ืฉืื•ืžืจ ืฉื“ื‘ืจื™ื ื’ื“ื•ืœื™ื ืžืื•ื“,
04:35
like T. rex probably couldn't do this, but you'll see that next week.
61
275330
4000
ื›ืžื• ื˜ื™-ืจืงืก, ื›ื ืจืื” ืœื ื”ื™ื• ืžืกื•ื’ืœื™ื ืœื‘ืฆืข ื–ืืช, ืื‘ืœ ืชืจืื• ื–ืืช ื‘ืฉื‘ื•ืข ื”ื‘ื.
04:39
Now, what's interesting is the animals, then -- we said -- bounce along
62
279330
2000
ืืžืจื ื• ืฉื”ื—ื™ื•ืช ืžื ืชืจื•ืช ื›ืš
04:41
the vertical plane this way, and in our collaborations with Pixar,
63
281330
3000
ื‘ืžื™ืฉื•ืจ ื”ืื ื›ื™. ื‘ืฉื™ืชื•ืคื™ ื”ืคืขื•ืœื” ืฉืœื ื• ืขื ืคื™ืงืกืืจ
04:44
in "A Bug's Life," we discussed the
64
284330
2000
ื‘"ื‘ืื’ ืœื™ื™ืฃ",
04:46
bipedal nature of the characters of the ants.
65
286330
3000
ื“ื ื• ื‘ื˜ื‘ืข ื”ื“ื•-ืจื’ืœื™ ืฉืœ ื“ืžื•ื™ื•ืช ื”ื ืžืœื™ื.
04:49
And we told them, of course, they move in another plane as well.
66
289330
2000
ืืžืจื ื• ืฉื”ืŸ ื ืขื•ืช ื’ื ื‘ืžื™ืฉื•ืจ ืื—ืจ,
04:51
And they asked us this question. They say, "Why model
67
291330
3000
ื•ื”ื ืฉืืœื• ืืช ื”ืฉืืœื” ื”ื‘ืื”. ื”ื ืืžืจื•,
04:54
just in the sagittal plane or the vertical plane,
68
294330
2000
"ืœืžื” ืœื‘ื ื•ืช ืžื•ื“ืœ ืจืง ื‘ืžื™ืฉื•ืจ ื”ืกื’ื™ื˜ืœื™ ืื• ื‘ืžื™ืฉื•ืจ ื”ืื ื›ื™,
04:56
when you're telling us these animals are moving
69
296330
2000
ื›ืืฉืจ ืืชื ืื•ืžืจื™ื ืœื ื• ืฉื”ื—ื™ื•ืช ื”ืืœื” ื ืขื•ืช
04:58
in the horizontal plane?" This is a good question.
70
298330
3000
ื‘ืžื™ืฉื•ืจ ื”ืื•ืคืงื™?" ื–ืืช ืฉืืœื” ื˜ื•ื‘ื”.
05:01
Nobody in biology ever modeled it this way.
71
301330
3000
ืืฃ ืื—ื“ ืžืขื•ืœื ืœื ื‘ื ื” ืžื•ื“ืœ ื›ื–ื” ื‘ื‘ื™ื•ืœื•ื’ื™ื”.
05:04
We took their advice and we modeled the animals moving
72
304330
4000
ืฉืžืขื ื• ื‘ืขืฆืชื ื•ื‘ื ื™ื ื• ืžื•ื“ืœ ื‘ื• ื”ื—ื™ื•ืช
05:08
in the horizontal plane as well. We took their three legs,
73
308330
3000
ื ืขื•ืช ื’ื ื‘ืžื™ืฉื•ืจ ื”ืื•ืคืงื™. ืœืงื—ื ื• 3 ืจื’ืœื™ื™ื ืฉืœื”ืŸ,
05:11
we collapsed them down as one.
74
311330
1000
ื•ืื™ื—ื“ื ื• ืื•ืชืŸ ืœืจื’ืœ ืื—ืช.
05:12
We got some of the best mathematicians in the world
75
312330
3000
ื’ื™ื™ืกื ื• ืืช ื˜ื•ื‘ื™ ื”ืžืชืžื˜ื™ืงืื™ื ื‘ืขื•ืœื
05:15
from Princeton to work on this problem.
76
315330
2000
ืžืคืจื™ื ืกื˜ื•ืŸ ืœืขื‘ื•ื“ ืขืœ ื”ื‘ืขื™ื” ื”ื–ืืช.
05:17
And we were able to create a model
77
317330
3000
ื•ื”ืฆืœื—ื ื• ืœื‘ื ื•ืช ืžื•ื“ืœ ื‘ื• ื”ื—ื™ื•ืช ืœื ืจืง ืžื ืชืจื•ืช
05:20
where animals are not only bouncing up and down,
78
320330
1000
ืžืขืœื” ื•ืžื˜ื”,
05:21
but they're also bouncing side to side at the same time.
79
321330
4000
ืืœื ื”ืŸ ืžื ืชืจื•ืช ื‘ืื•ืชื• ื”ื–ืžืŸ ื’ื ืžืฆื“ ืœืฆื“.
05:25
And many organisms fit this kind of pattern.
80
325330
2000
ืื•ืจื’ื ื™ื–ืžื™ื ืจื‘ื™ื ืžืชืื™ืžื™ื ืœื“ืคื•ืก ื”ื–ื”.
05:27
Now, why is this important to have this model?
81
327330
2000
ืžื“ื•ืข ื™ืฉ ืœืžื•ื“ืœ ื”ื–ื” ื—ืฉื™ื‘ื•ืช?
05:29
Because it's very interesting. When you take this model
82
329330
3000
ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืžืื•ื“ ืžืขื ื™ื™ืŸ. ื›ืฉืœื•ืงื—ื™ื ืืช ื”ืžื•ื“ืœ ื”ื–ื”
05:32
and you perturb it, you give it a push,
83
332330
3000
ื•ืžืคืจื™ืขื™ื ืœื•, ื ื•ืชื ื™ื ืœื• ื“ื—ื™ืคื”
05:35
as it bumps into something, it self-stabilizes, with no brain
84
335330
4000
ื›ืื™ืœื• ื”ื•ื ื ืชืงืœ ื‘ืžืฉื”ื•, ื”ื•ื ืžื™ื™ืฆื‘ ืืช ืขืฆืžื•, ื‘ืœื™ ืžื•ื—,
05:39
or no reflexes, just by the structure alone.
85
339330
4000
ื‘ืœื™ ืจืคืœืงืกื™ื, ืจืง ื‘ืืžืฆืขื•ืช ื”ืžื‘ื ื”.
05:43
It's a beautiful model. Let's look at the mathematics.
86
343330
5000
ื–ื”ื• ืžื•ื“ืœ ื™ืคื”ืคื”. ื‘ื•ืื• ื ืชื‘ื•ื ืŸ ื‘ืžืชืžื˜ื™ืงื”.
05:48
(Laughter)
87
348330
2000
(ืฆื—ื•ืง)
05:50
That's enough!
88
350330
1000
ืžืกืคื™ืง.
05:51
(Laughter)
89
351330
4000
(ืฆื—ื•ืง)
05:55
The animals, when you look at them running,
90
355330
2000
ื›ืฉืžืชื‘ื•ื ื ื™ื ื‘ื—ื™ื•ืช ืจืฆื•ืช
05:57
appear to be self-stabilizing like this,
91
357330
3000
ื ืจืื” ืฉื”ืŸ ืžื™ื™ืฆื‘ื•ืช ืืช ืขืฆืžืŸ ื‘ื“ืจืš ื”ื–ืืช,
06:00
using basically springy legs. That is, the legs can do
92
360330
3000
ื‘ืืžืฆืขื•ืช ืจื’ืœื™ื™ื ืงืคื™ืฆื™ื•ืช.
06:03
computations on their own; the control algorithms, in a sense,
93
363330
3000
ื›ืœื•ืžืจ, ื”ืจื’ืœื™ื™ื ื™ื›ื•ืœื•ืช ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ืžืฉืœ ืขืฆืžืŸ,
06:06
are embedded in the form of the animal itself.
94
366330
3000
ื•ืืœื’ื•ืจื™ืชืžื™ ื”ืฉืœื™ื˜ื” ืžื•ื˜ืžืขื™ื ื‘ืžื‘ื ื” ืฉืœ ื”ื—ื™ื”.
06:09
Why haven't we been more inspired by nature and these kinds of discoveries?
95
369330
7000
ืœืžื” ืœื ืฉืื‘ื ื• ื™ื•ืชืจ ื”ืฉืจืื” ืžื”ื˜ื‘ืข ื•ืžืชื’ืœื™ื•ืช ืžื”ืกื•ื’ ื”ื–ื”?
06:16
Well, I would argue that human technologies are really different from
96
376330
4000
ืื ื™ ื˜ื•ืขืŸ ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื”ืื ื•ืฉื™ื•ืช ืฉื•ื ื•ืช ืžืื•ื“
06:20
natural technologies, at least they have been so far.
97
380330
3000
ืžื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื˜ื‘ืขื™ื•ืช. ืœืคื—ื•ืช ื–ื” ื”ื™ื” ื”ืžืฆื‘ ืขื“ ืขืชื”.
06:23
Think about the typical kind of robot that you see.
98
383330
5000
ื—ืฉื‘ื• ืขืœ ื”ืจื•ื‘ื•ื˜ ื”ื˜ื™ืคื•ืกื™ ื‘ื• ืืชื ื ืชืงืœื™ื.
06:28
Human technologies have tended to be large, flat,
99
388330
3000
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืื ื•ืฉื™ื•ืช ื ื˜ื• ืœื”ื™ื•ืช ื’ื“ื•ืœื•ืช, ืฉื˜ื•ื—ื•ืช,
06:31
with right angles, stiff, made of metal. They have rolling devices
100
391330
5000
ืขื ื–ื•ื•ื™ื•ืช ื™ืฉืจื•ืช, ื ื•ืงืฉื•ืช, ื•ื‘ื ื•ื™ื•ืช ืžืžืชื›ืช. ื™ืฉ ืœื”ืŸ ื’ืœื’ืœื™ื ื•ืฆื™ืจื™ื.
06:36
and axles. There are very few motors, very few sensors.
101
396330
3000
ื™ืฉ ืœื”ืŸ ืžืขื˜ ืžืื•ื“ ืžื ื•ืขื™ื ื•ืžืขื˜ ืžืื•ื“ ื—ื™ื™ืฉื ื™ื.
06:39
Whereas nature tends to be small, and curved,
102
399330
5000
ื‘ืขื•ื“ ืฉื”ื˜ื‘ืข ื ื•ื˜ื” ืœื”ื™ื•ืช ืงื˜ืŸ, ืขื ืงื™ืžื•ืจื™ื.
06:44
and it bends and twists, and has legs instead, and appendages,
103
404330
3000
ื”ื•ื ืžืชืงืคืœ ื•ืžืชืคืชืœ ื•ื™ืฉ ืœื• ืจื’ืœื™ื™ื ื•ืชื•ืกืคื•ืช.
06:47
and has many muscles and many, many sensors.
104
407330
3000
ื™ืฉ ืœื• ืฉืจื™ืจื™ื ืจื‘ื™ื ื•ื—ื™ื™ืฉื ื™ื ืจื‘ื™ื.
06:50
So it's a very different design. However, what's changing,
105
410330
4000
ื›ืœื•ืžืจ ื–ื”ื• ืขื™ืฆื•ื‘ ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ. ืื‘ืœ, ืžื” ืฉืžืฉืชื ื”, ืžื” ืฉื‘ืืžืช ืžืจื’ืฉ,
06:54
what's really exciting -- and I'll show you some of that next --
106
414330
2000
-- ื•ืืฆื™ื’ ื‘ืคื ื™ื›ื ื—ืœืง ืžื”ื“ื‘ืจื™ื --
06:56
is that as human technology takes on more of the characteristics
107
416330
3000
ื–ื” ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ืื ื•ืฉื™ืช ืจื•ื›ืฉืช ื™ื•ืชืจ
06:59
of nature, then nature really can become a much more useful teacher.
108
419330
6000
ืชื›ื•ื ื•ืช ืฉืœ ื”ื˜ื‘ืข, ื•ื”ื˜ื‘ืข ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื•ืจื” ื”ืจื‘ื” ื™ื•ืชืจ ืฉื™ืžื•ืฉื™.
07:05
And here's one example that's really exciting.
109
425330
2000
ืืฆื™ื’ ื‘ืคื ื™ื›ื ื“ื•ื’ืžื ืื—ืช ืžืื•ื“ ืžืจื’ืฉืช.
07:07
This is a collaboration we have with Stanford.
110
427330
2000
ื–ื”ื• ืฉื™ืชื•ืฃ ืคืขื•ืœื” ืฉืœื ื• ืขื ืกื˜ืื ืคื•ืจื“.
07:09
And they developed this new technique, called Shape Deposition Manufacturing.
111
429330
4000
ื”ื ืคื™ืชื—ื• ื˜ื›ื ื™ืงื” ื—ื“ืฉื” ื”ื ืงืจืืช ื™ื™ืฆื•ืจ ื‘ืฉื™ืงื•ืข ืฆื•ืจื•ืช.
07:13
It's a technique where they can mix materials together and mold any shape
112
433330
4000
ื–ื•ื”ื™ ื˜ื›ื ื™ืงื” ื‘ื” ื”ื ื™ื›ื•ืœื™ื ืœืขืจื‘ื‘ ื—ื•ืžืจื™ื, ืœืขืฆื‘ ื›ืœ ืฆื•ืจื”
07:17
that they like, and put in the material properties.
113
437330
4000
ื›ืจืฆื•ื ื, ื•ืœืงื‘ื•ืข ืืช ืชื›ื•ื ื•ืช ื”ื—ื•ืžืจ.
07:21
They can embed sensors and actuators right in the form itself.
114
441330
3000
ื”ื ื™ื›ื•ืœื™ื ืœื”ื›ื ื™ืก ื—ื™ื™ืฉื ื™ื ื•ืžืคืขื™ืœื™ื ืœืชื•ืš ื”ืฆื•ืจื” ืขืฆืžื”.
07:24
For example, here's a leg: the clear part is stiff,
115
444330
5000
ืœื“ื•ื’ืžื, ื–ื•ื”ื™ ืจื’ืœ -- ื”ื—ืœืง ื”ืฉืงื•ืฃ ื ื•ืงืฉื”,
07:29
the white part is compliant, and you don't need any axles there or anything.
116
449330
3000
ื”ื—ืœืง ื”ืœื‘ืŸ ื’ืžื™ืฉ, ื•ืื™ืŸ ืฆื•ืจืš ืœื”ืฉืชืžืฉ ื‘ืฆื™ืจื™ื.
07:32
It just bends by itself beautifully.
117
452330
3000
ื”ื™ื ืคืฉื•ื˜ ืžืชื›ื•ืคืคืช ื‘ืขืฆืžื” ื‘ืื•ืคืŸ ื™ืคื”ืคื”.
07:35
So, you can put those properties in. It inspired them to show off
118
455330
3000
ืืคืฉืจ ืœื”ื›ื ื™ืก ืœืชื•ื›ื” ืืช ื”ืชื›ื•ื ื•ืช.
07:38
this design by producing a little robot they named Sprawl.
119
458330
6000
ื”ื™ื ื”ื™ื•ื•ืชื” ืžืงื•ืจ ื”ืฉืจืื” ืœื‘ื ื™ื™ืช ืจื•ื‘ื•ื˜ ืงื˜ืŸ ืฉื›ื•ื ื” ื‘ืฉื ืกืคืจื•ืœ.
07:44
Our work has also inspired another robot, a biologically inspired bouncing robot,
120
464330
4000
ื”ืขื‘ื•ื“ื” ืฉืœื ื• ื”ื™ื•ื•ืชื” ืžืงื•ืจ ื”ืฉืจืื” ื’ื ืœืจื•ื‘ื•ื˜ ืžื ืชืจ ืฉื ื‘ื ื” ื‘ื”ืฉืจืื” ื‘ื™ื•ืœื•ื’ื™ืช,
07:48
from the University of Michigan and McGill
121
468330
2000
ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืžื™ืฉื™ื’ืŸ ื•ืžืงื’ื™ืœ.
07:50
named RHex, for robot hexapod, and this one's autonomous.
122
470330
8000
ื”ื•ื ื ืงืจื ืจื”ืงืก -ืจื•ื‘ื•ื˜ ื”ืงืกืคื•ื“. ืจื•ื‘ื•ื˜ ื–ื” ื”ื•ื ืื•ื˜ื•ื ื•ืžื™ ื‘ืขืœ 6 ืจื’ืœื™ื™ื.
07:58
Let's go to the video, and let me show you some of these animals moving
123
478330
3000
ื ืขื‘ื•ืจ ืœืกืจื˜ ื‘ื• ืืฆื™ื’ ื‘ืคื ื™ื›ื ื—ืœืง ืžื”ื—ื™ื•ืช ื”ืืœื” ื‘ืชื ื•ืขื”,
08:01
and then some of the simple robots
124
481330
2000
ื•ืœืื—ืจ ืžื›ืŸ ืืช ื—ืœืง ืžื”ืจื•ื‘ื•ื˜ื™ื ื”ืคืฉื•ื˜ื™ื
08:03
that have been inspired by our discoveries.
125
483330
3000
ืฉื ื‘ื ื• ื‘ื”ืฉืจืืช ื”ืชื’ืœื™ื•ืช ืฉืœื ื•.
08:06
Here's what some of you did this morning, although you did it outside,
126
486330
4000
ื–ื” ืžื” ืฉื—ืœืงื›ื ืขืฉื” ื”ื‘ื•ืงืจ, ืœืžืจื•ืช ืฉืืชื ืขืฉื™ืชื ื–ืืช ื‘ื—ื•ืฅ
08:10
not on a treadmill.
127
490330
2000
ื•ืœื ืขืœ ื”ืœื™ื›ื•ืŸ.
08:12
Here's what we do.
128
492330
3000
ื–ื” ืžื” ืฉืื ื• ืขื•ืฉื™ื.
08:15
(Laughter)
129
495330
2000
(ืฆื—ื•ืง)
08:17
This is a death's head cockroach. This is an American cockroach
130
497330
5000
ื–ื”ื• ืชื™ืงืŸ ื’ื•ืœื’ื•ืœืช ื”ืžืช - ืชื™ืงืŸ ืืžืจื™ืงืื™ ืฉืืชื ื—ื•ืฉื‘ื™ื ืฉืœื ื ืžืฆื
08:22
you think you don't have in your kitchen.
131
502330
1000
ื‘ืžื˜ื‘ื— ืฉืœื›ื.
08:23
This is an eight-legged scorpion, six-legged ant, forty-four-legged centipede.
132
503330
7000
ืืœื• ื”ื ืขืงืจื‘ ื‘ืขืœ 8 ืจื’ืœื™ื™ื, ื ืžืœื” ื‘ืช 6 ืจื’ืœื™ื™ื ื•ืžืจื‘ื” ืจื’ืœื™ื™ื ืขื 44 ืจื’ืœื™ื™ื.
08:30
Now, I said all these animals are sort of working like pogo sticks --
133
510330
3000
ื”ื—ื™ื•ืช ื”ืืœื” ื ืขื•ืช ื‘ื“ืจืš ื“ื•ืžื” ืœืžืงืœื•ืช ื”ืคื•ื’ื• --
08:33
they're bouncing along as they move. And you can see that
134
513330
4000
ื”ืŸ ืžื ืชืจื•ืช ื‘ื–ืžืŸ ื”ืชื ื•ืขื” ื•ื ื™ืชืŸ ืœืจืื•ืช ื–ืืช
08:37
in this ghost crab, from the beaches of Panama and North Carolina.
135
517330
3000
ื‘ืกืจื˜ืŸ ื”ื—ื•ืœื•ืช ื”ื–ื” ืžื—ื•ืคื™ ืคื ืžื” ื•ืฆืคื•ืŸ ืงืจื•ืœื™ื™ื ื”.
08:40
It goes up to four meters per second when it runs.
136
520330
3000
ื‘ื–ืžืŸ ืฉื”ื•ื ืจืฅ ื”ื•ื ืžืชืงื“ื 4 ืžื˜ืจื™ื ื‘ืฉื ื™ื”.
08:43
It actually leaps into the air, and has aerial phases
137
523330
3000
ืœืžืขืฉื”, ื”ื•ื ืžื–ื ืง ืœืื•ื•ื™ืจ ื•ื™ืฉ ืœื• ืฉืœื‘ื™ื ืื•ื•ื™ืจื™ื™ื
08:46
when it does it, like a horse, and you'll see it's bouncing here.
138
526330
4000
ื‘ื”ื ื”ื•ื ืžื‘ืฆืข ื–ืืช, ื›ืžื• ืกื•ืก. ืชืจืื• ืื•ืชื• ืžื ืชืจ ื›ืืŸ.
08:50
What we discovered is whether you look at the leg of a human
139
530330
3000
ื’ื™ืœื™ื ื• ืฉื‘ื™ืŸ ืื ืžืชื‘ื•ื ื ื™ื ื‘ืจื’ืœ ืฉืœ ืื“ื
08:53
like Richard, or a cockroach, or a crab, or a kangaroo,
140
533330
6000
ื›ืžื• ืจื™ืฆ'ืืจื“, ืื• ื‘ืจื’ืœ ืฉืœ ืžืงืง, ืื• ืฉืœ ืกืจื˜ืŸ, ืื• ืฉืœ ืงื ื’ืจื•,
08:59
the relative leg stiffness of that spring is the same for everything we've seen so far.
141
539330
5000
ื ื•ืงืฉื•ืช ื”ืจื’ืœ ื”ื™ื—ืกื™ืช ืฉืœ ื”ืงืคื™ืฅ ื–ื”ื” ืขื‘ื•ืจ ื›ืœ ืžื™ ืฉืจืื™ื ื• ืขื“ ื›ื”.
09:04
Now, what good are springy legs then? What can they do?
142
544330
2000
ืžื” ื”ืชื•ืขืœืช ื‘ืจื’ืœื™ื™ื ืงืคื™ืฆื™ื•ืช? ืžื” ื”ืŸ ื™ื›ื•ืœื•ืช ืœื‘ืฆืข?
09:06
Well, we wanted to see if they allowed the animals
143
546330
2000
ืจืฆื™ื ื• ืœื‘ื“ื•ืง ืื ื”ืŸ ืžืขื ื™ืงื•ืช ืœื—ื™ื•ืช
09:08
to have greater stability and maneuverability.
144
548330
3000
ื™ื•ืชืจ ื™ืฆื™ื‘ื•ืช ื•ื›ื•ืฉืจ ืชืžืจื•ืŸ.
09:11
So, we built a terrain that had obstacles three times the hip height
145
551330
4000
ื‘ื ื™ื ื• ืฉื˜ื— ืขื ืžื›ืฉื•ืœื™ื ื‘ื’ื•ื‘ื” ืคื™ 3 ืžื’ื•ื‘ื” ื”ื™ืจืš
09:15
of the animals that we're looking at.
146
555330
1000
ืฉืœ ื”ื—ื™ื•ืช ืฉื‘ื“ืงื ื•,
09:16
And we were certain they couldn't do this. And here's what they did.
147
556330
4000
ื•ื”ื™ื™ื ื• ื‘ื˜ื•ื—ื™ื ืฉื”ืŸ ืœื ื™ืฆืœื™ื—ื•. ื–ื” ืžื” ืฉื”ืŸ ืขืฉื•.
09:20
The animal ran over it and it didn't even slow down!
148
560330
3000
ื”ื—ื™ื” ืจืฆื” ืžืขืœื™ื”ื ื•ืืคื™ืœื• ืœื ื”ืื˜ื”.
09:23
It didn't decrease its preferred speed at all.
149
563330
2000
ื”ื™ื ื›ืœืœ ืœื ื”ืคื—ื™ืชื” ืืช ื”ืžื”ื™ืจื•ืช ื”ืžื•ืขื“ืคืช ืขืœื™ื”.
09:25
We couldn't believe that it could do this. It said to us
150
565330
3000
ืœื ื”ืืžื ื• ืฉื”ื™ื ืžืกื•ื’ืœืช ืœืขืฉื•ืช ื–ืืช. ื–ื” ืืžืจ ืœื ื•
09:28
that if you could build a robot with very simple, springy legs,
151
568330
5000
ืฉืื ื ื•ื›ืœ ืœื‘ื ื•ืช ืจื•ื‘ื•ื˜ ืขื ืจื’ืœื™ื™ื ืงืคื™ืฆื™ื•ืช ืคืฉื•ื˜ื•ืช ืžืื•ื“,
09:33
you could make it as maneuverable as any that's ever been built.
152
573330
6000
ื ื•ื›ืœ ืœื”ืงื ื•ืช ืœื• ื›ื•ืฉืจ ืชืžืจื•ืŸ ื‘ื“ื•ืžื” ืœื›ืœ ืžื” ืฉื ื‘ื ื” ื‘ืขื‘ืจ.
09:39
Here's the first example of that. This is the Stanford
153
579330
2000
ื–ื•ื”ื™ ื”ื“ื•ื’ืžื ื”ืจืืฉื•ื ื” ืœื›ืš, ื–ื”ื• ื”ืจื•ื‘ื•ื˜ ืฉืœ ืกื˜ืื ืคื•ืจื“
09:41
Shape Deposition Manufactured robot, named Sprawl.
154
581330
3000
ืฉื™ื•ืฆืจ ื‘ืฉื™ืงื•ืข ืฆื•ืจื•ืช, ื”ืขื•ื ื” ืœืฉื ืกืคืจื•ืœ.
09:44
It has six legs -- there are the tuned, springy legs.
155
584330
6000
ื™ืฉ ืœื• 6 ืจื’ืœื™ื™ื - ืืœื• ื”ืŸ ืจื’ืœื™ื™ื ืงืคื™ืฆื™ื•ืช ืžืชื•ืืžื•ืช.
09:50
It moves in a gait that an insect uses, and here it is
156
590330
3000
ืฆื•ืจืช ื”ื”ืœื™ื›ื” ืฉืœื• ื“ื•ืžื” ืœื–ืืช ืฉืœ ื—ืจืง.
09:53
going on the treadmill. Now, what's important about this robot,
157
593330
7000
ื›ืืŸ ื”ื•ื ื”ื•ืœืš ืขืœ ื”ืœื™ื›ื•ืŸ. ืžื” ืฉื—ืฉื•ื‘ ื‘ืจื•ื‘ื•ื˜ ื”ื–ื”,
10:00
compared to other robots, is that it can't see anything,
158
600330
3000
ื‘ื”ืฉื•ื•ืื” ืœืจื•ื‘ื•ื˜ื™ื ืื—ืจื™ื, ื–ื” ืฉื”ื•ื ืœื ื™ื›ื•ืœ ืœืจืื•ืช,
10:03
it can't feel anything, it doesn't have a brain, yet it can maneuver
159
603330
6000
ื”ื•ื ืœื ื™ื›ื•ืœ ืœื—ื•ืฉ, ืื™ืŸ ืœื• ืžื•ื—, ื•ืœืžืจื•ืช ื–ืืช ื”ื•ื ื™ื›ื•ืœ ืœืชืžืจืŸ
10:09
over these obstacles without any difficulty whatsoever.
160
609330
6000
ื‘ื™ืŸ ื”ืžื›ืฉื•ืœื™ื ื”ืืœื” ืœืœื ื›ืœ ืงื•ืฉื™.
10:15
It's this technique of building the properties into the form.
161
615330
4000
ื–ื•ื”ื™ ื”ื˜ื›ื ื™ืงื” ืฉืœ ื‘ื ื™ื™ืช ื”ืชื›ื•ื ื•ืช ืืœ ืชื•ืš ื”ืฆื•ืจื”.
10:19
This is a graduate student. This is what he's doing to his thesis project --
162
619330
3000
ื–ื”ื• ืกื˜ื•ื“ื ื˜ ืžื—ืงืจ, ื•ื–ื” ืžื” ืฉื”ื•ื ืขื•ืฉื” ืขื‘ื•ืจ ื”ืชื™ื–ื” ืฉืœื•.
10:22
very robust, if a graduate student
163
622330
2000
ื—ืกื•ืŸ ืžืื•ื“ ืื ืกื˜ื•ื“ื ื˜ ืžื—ืงืจ
10:24
does that to his thesis project.
164
624330
2000
ืขื•ืฉื” ื–ืืช ืขื‘ื•ืจ ื”ืชื™ื–ื” ืฉืœื•.
10:26
(Laughter)
165
626330
1000
(ืฆื—ื•ืง)
10:27
This is from McGill and University of Michigan. This is the RHex,
166
627330
4000
ื–ื” ืžืžืงื’ื™ืœ ื•ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืžื™ืฉื™ื’ืŸ, ื–ื”ื• ื”ืจื”ืงืก,
10:31
making its first outing in a demo.
167
631330
3000
ื‘ืืื•ื˜ื™ื ื’ ื”ืจืืฉื•ืŸ ืฉืœื• ื‘ื”ื“ื’ืžื”.
10:34
(Laughter)
168
634330
4000
(ืฆื—ื•ืง)
10:38
Same principle: it only has six moving parts,
169
638330
5000
ืื•ืชื• ืขืงืจื•ืŸ. ื™ืฉ ืœื• ืจืง 6 ื—ืœืงื™ื ื ืขื™ื.
10:43
six motors, but it has springy, tuned legs. It moves in the gait of the insect.
170
643330
6000
6 ืžื ื•ืขื™ื, ืื‘ืœ ื™ืฉ ืœื• ืจื’ืœื™ื™ื ืงืคื™ืฆื™ื•ืช ืžืชื•ืืžื•ืช. ื”ื•ื ื ืข ื›ืžื• ื—ืจืง.
10:49
It has the middle leg moving in synchrony with the front,
171
649330
4000
ื”ืจื’ืœ ื”ืืžืฆืขื™ืช ืฉืœื• ื ืขื” ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืจื’ืœ ื”ืงื“ืžื™ืช
10:53
and the hind leg on the other side. Sort of an alternating tripod,
172
653330
4000
ื•ื”ืจื’ืœ ื”ืื—ื•ืจื™ืช ืฉื‘ืฆื“ ื”ืฉื ื™. ื›ืžื• ื˜ืจื™ืคื•ื“ ืžืชื—ืœืฃ,
10:57
and they can negotiate obstacles just like the animal.
173
657330
4000
ื•ื”ืŸ ื™ื›ื•ืœื•ืช ืœื”ืชืžื•ื“ื“ ืขื ืžื›ืฉื•ืœื™ื ื‘ื“ื™ื•ืง ื›ืžื• ื”ื—ื™ื”.
11:01
(Laughter)
174
661330
6000
(ืฆื—ื•ืง)
11:07
(Voice: Oh my God.)
175
667330
1000
ืืœื•ื”ื™ื ืื“ื™ืจื™ื!
11:08
(Applause)
176
668330
5000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:13
Robert Full: It'll go on different surfaces -- here's sand --
177
673330
2000
ื”ื•ื ื™ื›ื•ืœ ืœืœื›ืช ืขืœ ืžืฉื˜ื—ื™ื ืฉื•ื ื™ื, ื›ืืŸ ื–ื”ื• ื—ื•ืœ,
11:15
although we haven't perfected the feet yet, but I'll talk about that later.
178
675330
5000
ืœืžืจื•ืช ืฉื”ืจื’ืœ ืฉืœื• ืขื“ื™ื™ืŸ ืœื ืžื•ืฉืœืžืช, ืื‘ืœ ืื“ื‘ืจ ืขืœ ื›ืš ื‘ื”ืžืฉืš.
11:20
Here's RHex entering the woods.
179
680330
3000
ื›ืืŸ ืจื”ืงืก ื ื›ื ืก ืืœ ื”ื™ืขืจ.
11:23
(Laughter)
180
683330
2000
(ืฆื—ื•ืง)
11:38
Again, this robot can't see anything, it can't feel anything,
181
698330
4000
ื•ืฉื•ื‘, ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ืœื ืจื•ืื”, ื•ืœื ื—ืฉ,
11:42
it has no brain. It's just working with a tuned mechanical system,
182
702330
6000
ื•ืื™ืŸ ืœื• ืžื•ื—. ื”ื•ื ืจืง ืขื•ื‘ื“ ืขื ืžืขืจื›ืช ืžื›ื ื™ืช ืžืชื•ืืžืช
11:48
with very simple parts, but inspired from the fundamental dynamics of the animal.
183
708330
10000
ืขื ื—ืœืงื™ื ืžืื•ื“ ืคืฉื•ื˜ื™ื. ืื‘ืœ ื”ื•ื ื ื‘ื ื” ื‘ื”ืฉืจืืช ื”ื“ื™ื ืžื™ืงื” ื”ื‘ืกื™ืกื™ืช ืฉืœ ื”ื—ื™ื”.
11:58
(Voice: Ah, I love him, Bob.) RF: Here's it going down a pathway.
184
718330
8000
ืื”, ืื ื™ ืื•ื”ื‘ ืื•ืชื•, ื‘ื•ื‘. ื›ืืŸ ื”ื•ื ื”ื•ืœืš ื‘ืฉื‘ื™ืœ.
12:06
I presented this to the jet propulsion lab at NASA, and they said
185
726330
3000
ื”ืฆื’ืชื™ ืื•ืชื• ืœืžืขื‘ื“ืช ื”ื”ื ืขื” ื”ืกื™ืœื•ื ื™ืช ืฉืœ ื ืืก"ื.
12:09
that they had no ability to go down craters to look for ice,
186
729330
4000
ื•ื”ื ืืžืจื• ืฉืื™ืŸ ืœื”ื ื™ื›ื•ืœืช ืœื”ื›ื ืก ืœืžื›ืชืฉื™ื ืœื—ืคืฉ
12:13
and life, ultimately, on Mars. And he said --
187
733330
4000
ืงืจื—, ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื—ื™ื™ื, ื‘ืžืื“ื™ื, ื‘ืขื™ืงืจ ืขื
12:17
especially with legged-robots, because they're way too complicated.
188
737330
2000
ื”ืจื•ื‘ื•ื˜ื™ื ื”ืจื’ืœื™ื™ื ื›ื™ ื”ื ืžื•ืจื›ื‘ื™ื ืžื“ื™.
12:19
Nothing can do that. And I talk next. I showed them this video
189
739330
5000
ืฉื•ื ื“ื‘ืจ ืœื ื™ื›ื•ืœ ืœื‘ืฆืข ื–ืืช. ืœืื—ืจ ืžื›ืŸ ืื ื™ ื“ื™ื‘ืจืชื™ ื•ื”ืจืืชื™ ืœื”ื ืืช ื”ืกืจื˜ ื”ื–ื”
12:24
with the simple design of RHex here. And just to convince them
190
744330
3000
ืขื ื”ื“ื’ื ื”ืคืฉื•ื˜ ืฉืœ ืจื”ืงืก. ื•ื›ื“ื™ ืœืฉื›ื ืข ืื•ืชื
12:27
we should go to Mars in 2011, I tinted the video orange
191
747330
4000
ืฉืขืœื™ื ื• ืœื ืกื•ืข ืœืžืื“ื™ื ื‘-2011, ืฆื‘ืขืชื™ ืืช ื”ืกืจื˜ ื‘ื›ืชื•ื
12:31
just to give them the sense of being on Mars.
192
751330
3000
ืจืง ื›ื“ื™ ืœืชืช ืœื”ื ืชื—ื•ืฉื” ืฉืœ ืœื”ื™ื•ืช ืขืœ ืžืื“ื™ื.
12:34
(Laughter)
193
754330
1000
(ืฆื—ื•ืง)
12:35
(Applause)
194
755330
6000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
12:43
Another reason why animals have extraordinary performance,
195
763330
3000
ืกื™ื‘ื” ื ื•ืกืคืช ืœื›ืš ืฉืœื—ื™ื•ืช ื™ืฉ ื‘ื™ืฆื•ืขื™ื ื™ื•ืฆืื™ ื“ื•ืคืŸ
12:46
and can go anywhere, is because they have an effective interaction
196
766330
3000
ื•ืฉื”ืŸ ื™ื›ื•ืœื•ืช ืœื ื•ืข ืœื›ืœ ืžืงื•ื, ื”ื™ื ื”ืชืงืฉื•ืจืช ื”ื™ืขื™ืœื”
12:49
with the environment. The animal I'm going to show you,
197
769330
3000
ืฉืœื”ืŸ ืขื ื”ืกื‘ื™ื‘ื”. ื”ื—ื™ื” ืฉืืฆื™ื’ ื‘ืคื ื™ื›ื
12:52
that we studied to look at this, is the gecko.
198
772330
4000
ืฉื—ืงืจื ื• ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื”ื ื•ืฉื ื”ื™ื ื”ืฉืžืžื™ืช.
12:56
We have one here and notice its position. It's holding on.
199
776330
7000
ืฉื™ืžื• ืœื‘ ืœืชื ื•ื—ื” ืฉืœ ื”ืฉืžืžื™ืช ื”ื–ืืช. ื”ื™ื ื ืชืœื™ืช ืœื” ืฉื.
13:03
Now I'm going to challenge you. I'm going show you a video.
200
783330
3000
ื•ืขื›ืฉื™ื• ืืฆื™ื‘ ื‘ืคื ื™ื›ื ืืชื’ืจ. ืืจืื” ืœื›ื ืกืจื˜.
13:06
One of the animals is going to be running on the level,
201
786330
2000
ื—ื™ื” ืื—ืช ืชืจื•ืฅ ื‘ืžื™ืฉื•ืจ,
13:08
and the other one's going to be running up a wall. Which one's which?
202
788330
4000
ื•ื”ืฉื ื™ื” ืชืจื•ืฅ ื‘ืžืขืœื” ืงื™ืจ. ืขืœื™ื›ื ืœื–ื”ื•ืช ืื•ืชืŸ.
13:12
They're going at a meter a second. How many think the one on the left
203
792330
5000
ื”ืŸ ืžืชืงื“ืžื•ืช ื‘ืงืฆื‘ ืฉืœ ืžื˜ืจ ื‘ืฉื ื™ื”. ื›ืžื” ื—ื•ืฉื‘ื™ื ืฉื–ืืช ืžืฉืžืืœ
13:17
is running up the wall?
204
797330
2000
ืจืฆื” ื‘ืžืขืœื” ื”ืงื™ืจ?
13:19
(Applause)
205
799330
4000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:23
Okay. The point is it's really hard to tell, isn't it? It's incredible,
206
803330
5000
ื”ื ืงื•ื“ื” ื”ื™ื ืฉืงืฉื” ืžืื•ื“ ืœื”ื‘ื—ื™ืŸ. ืœื? ื–ื” ืœื ื™ืื•ืžืŸ.
13:28
we looked at students do this and they couldn't tell.
207
808330
2000
ื’ื ืกื˜ื•ื“ื ื˜ื™ื ืœื ื™ื›ืœื• ืœื”ื‘ื“ื™ืœ.
13:30
They can run up a wall at a meter a second, 15 steps per second,
208
810330
3000
ื”ืŸ ื™ื›ื•ืœื•ืช ืœืจื•ืฅ ื‘ืžืขืœื” ืงื™ืจ ื‘ืžื”ื™ืจื•ืช ืฉืœ ืžื˜ืจ ื‘ืฉื ื™ื”, 15 ืฆืขื“ื™ื ื‘ืฉื ื™ื”,
13:33
and they look like they're running on the level. How do they do this?
209
813330
4000
ื•ื ืจืื” ื›ืื™ืœื• ื”ืŸ ืจืฆื•ืช ื‘ืžื™ืฉื•ืจ. ืื™ืš ื”ืŸ ืขื•ืฉื•ืช ื–ืืช?
13:37
It's just phenomenal. The one on the right was going up the hill.
210
817330
6000
ื–ื” ื‘ืœืชื™ ื ืชืคืฉ. ื–ืืช ืฉืžื™ืžื™ืŸ ืจืฆื” ืœืžืขืœื”.
13:43
How do they do this? They have bizarre toes. They have toes
211
823330
4000
ื”ืŸ ืขื•ืฉื•ืช ื–ืืช ื‘ืืžืฆืขื•ืช ื‘ื”ื•ื ื•ืช ืžื•ื–ืจื™ื - ื™ืฉ ืœื”ืŸ ื‘ื”ื•ื ื•ืช
13:47
that uncurl like party favors when you blow them out,
212
827330
4000
ืฉื ืคืจืฉื™ื ื›ืžื• ืฆืคืฆืคื•ืช ื ื—ืฉ ื‘ืžืกื™ื‘ื” ื›ืฉื ื•ืฉืคื™ื ื‘ื”ืŸ,
13:51
and then peel off the surface, like tape.
213
831330
3000
ื•ืื– ื”ื ืžืชืงืœืคื™ื ืžื”ืžืฉื˜ื— ื›ืžื• ื ื™ื™ืจ ื“ื‘ืง.
13:54
Like if we had a piece of tape now, we'd peel it this way.
214
834330
2000
ื‘ืื•ืชื” ืฆื•ืจื” ื‘ื” ื”ื™ื™ื ื• ืžืงืœืคื™ื ื ื™ื™ืจ ื“ื‘ืง.
13:56
They do this with their toes. It's bizarre! This peeling inspired
215
836330
7000
ื”ืŸ ืžื‘ืฆืขื•ืช ื–ืืช ื‘ืขื–ืจืช ื”ื‘ื”ื•ื ื•ืช ืฉืœื”ืŸ. ื–ื” ืžื•ื–ืจ. ื”ืงื™ืœื•ืฃ ื”ื–ื” ื”ื™ื•ื•ื” ืžืงื•ืจ ื”ืฉืจืื”
14:03
iRobot -- that we work with -- to build Mecho-Geckos.
216
843330
3000
ืœื—ื‘ืจืช ืื™ื™-ืจื•ื‘ื•ื˜ ืฉื‘ื•ื ื” ืื™ืชื ื• ืฉืžืžื™ื•ืช-ืžื›ื ื™ื•ืช.
14:06
Here's a legged version and a tractor version, or a bulldozer version.
217
846330
7000
ื™ืฉ ื’ื™ืจืกื” ืขื ืจื’ืœื™ื™ื ื•ื’ื™ืจืกืช ื˜ืจืงื˜ื•ืจ, ืื• ื’ื™ืจืกืช ื‘ื•ืœื“ื•ื–ืจ.
14:13
Let's see some of the geckos move with some video,
218
853330
2000
ื ืชื‘ื•ื ืŸ ื‘ืฉืžืžื™ื•ืช ื ืขื•ืช ื‘ืกืจื˜ ื”ื‘ื.
14:15
and then I'll show you a little bit of a clip of the robots.
219
855330
3000
ืœืื—ืจ ืžื›ืŸ ืืฆื™ื’ ื‘ืคื ื™ื›ื ืงืœื™ืค ืงืฆืจ ืฉืœ ื”ืจื•ื‘ื•ื˜ื™ื.
14:18
Here's the gecko running up a vertical surface. There it goes,
220
858330
3000
ื”ืฉืžืžื™ืช ื”ื–ืืช ืจืฆื” ื‘ืžืฉื˜ื— ืื ื›ื™.
14:21
in real time. There it goes again. Obviously, we have to slow this down a little bit.
221
861330
7000
ื”ื ื” ื”ื™ื ื‘ื–ืžืŸ ืืžืช, ื”ื ื” ื”ื™ื ืฉื•ื‘. ืื™ืŸ ืกืคืง ืฉืฆืจื™ืš ืœืขื‘ื•ืจ ืœื”ื™ืœื•ืš ืื™ื˜ื™.
14:28
You can't use regular cameras.
222
868330
2000
ืœื ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืžืฆืœืžื•ืช ืจื’ื™ืœื•ืช.
14:30
You have to take 1,000 pictures per second to see this.
223
870330
3000
ืฆืจื™ืš ืœืฆืœื 1,000 ืชืžื•ื ื•ืช ืœืฉื ื™ื” ื›ื“ื™ ืœืจืื•ืช ื–ืืช.
14:33
And here's some video at 1,000 frames per second.
224
873330
3000
ื–ื”ื• ืกืจื˜ ื‘-1,000 ืžืกื’ืจื•ืช ืœืฉื ื™ื”.
14:36
Now, I want you to look at the animal's back.
225
876330
2000
ืชื‘ื™ื˜ื• ืขืœ ื”ื’ื‘ ืฉืœ ื”ื—ื™ื”.
14:38
Do you see how much it's bending like that? We can't figure that out --
226
878330
3000
ืืชื ืจื•ืื™ื ืื™ืš ื”ื•ื ืžืชื›ื•ืคืฃ? ืœื ื”ืฆืœื—ื ื• ืœืžืฆื•ื ืืช ื”ืกื™ื‘ื” ืœื›ืš.
14:41
that's an unsolved mystery. We don't know how it works.
227
881330
3000
ื–ื•ื”ื™ ืชืขืœื•ืžื” ืœื ืžืคื•ืขื ื—ืช. ืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืื™ืš ื–ื” ืขื•ื‘ื“.
14:44
If you have a son or a daughter that wants to come to Berkeley,
228
884330
3000
ืื ื™ืฉ ืœื›ื ื‘ืŸ ืื• ื‘ืช ืฉืจื•ืฆื™ื ืœื‘ื•ื ืœื‘ืจืงืœื™,
14:47
come to my lab and we'll figure this out. Okay, send them to Berkeley
229
887330
4000
ื‘ื•ืื• ืœืžืขื‘ื“ื” ืฉืœื™ ื•ื ืคืขื ื— ื–ืืช. ืื•ืงื™, ืชืฉืœื—ื• ืื•ืชื ืœื‘ืจืงืœื™
14:51
because that's the next thing I want to do. Here's the gecko mill.
230
891330
3000
ื›ื™ ื–ื”ื• ื”ื“ื‘ืจ ื”ื‘ื ืฉื‘ืจืฆื•ื ื™ ืœืขืฉื•ืช. ื–ื”ื• ื”ื”ืœื™ื›ื•ืŸ ืฉืœ ื”ืฉืžืžื™ืช.
14:54
(Laughter)
231
894330
1000
(ืฆื—ื•ืง)
14:55
It's a see-through treadmill with a see-through treadmill belt,
232
895330
3000
ื–ื”ื• ื”ืœื™ื›ื•ืŸ ืฉื ื™ืชืŸ ืœืจืื•ืช ื“ืจื›ื•, ืขื ื—ื’ื•ืจื” ืฉื ื™ืชืŸ ืœืจืื•ืช ื“ืจื›ื”,
14:58
so we can watch the animal's feet, and videotape them
233
898330
3000
ื›ืš ืื ื• ื™ื›ื•ืœื™ื ืœื”ืชื‘ื•ื ืŸ ื‘ืจื’ืœื™ื™ื ืฉืœ ื”ื—ื™ื•ืช, ื•ืœืฆืœื ืื•ืชืŸ
15:01
through the treadmill belt, to see how they move.
234
901330
3000
ื“ืจืš ื”ื—ื’ื•ืจื” ืฉืœ ื”ื”ืœื™ื›ื•ืŸ, ื•ืœืจืื•ืช ืื™ืš ื”ืŸ ื ืขื•ืช.
15:04
Here's the animal that we have here, running on a vertical surface.
235
904330
4000
ื–ื•ื”ื™ ื”ื—ื™ื” ื›ืฉื”ื™ื ืจืฆื” ืขืœ ืžืฉื˜ื— ืื ื›ื™.
15:08
Pick a foot and try to watch a toe, and see if you can see what the animal's doing.
236
908330
6000
ื‘ื—ืจื• ืจื’ืœ ื•ื ืกื• ืœื”ืชื‘ื•ื ืŸ ื‘ื‘ื•ื”ืŸ ื•ืœืจืื•ืช ืžื” ื”ื—ื™ื” ืขื•ืฉื”.
15:14
See it uncurl and then peel these toes.
237
914330
2000
ื”ื™ื ืคื•ืจืฉืช ื•ืื– ืžืงืœืคืช ืืช ื”ื‘ื”ื•ื ื•ืช.
15:16
It can do this in 14 milliseconds. It's unbelievable.
238
916330
7000
ื”ื™ื ื™ื›ื•ืœื” ืœืขืฉื•ืช ื–ืืช ืชื•ืš 14 ืžื™ืœื™-ืฉื ื™ื•ืช. ื–ื” ืœื ื™ืื•ืžืŸ.
15:23
Here are the robots that they inspire, the Mecho-Geckos from iRobot.
239
923330
4000
ืืœื• ื”ืจื•ื‘ื•ื˜ื™ื ืฉื ื‘ื ื• ื‘ื”ืฉืจืืชืŸ, ื”ืฉืžืžื™ื•ืช-ื”ืžื›ื ื™ื•ืช ืฉืœ ืื™ื™-ืจื•ื‘ื•ื˜.
15:27
First we'll see the animals toes peeling -- look at that.
240
927330
5000
ืชื—ื™ืœื” ื ืจืื” ืืช ื”ื‘ื”ื•ื ื•ืช ืฉืœ ื”ื—ื™ื” ืžืชืงืœืคื™ื -- ืฉื™ืžื• ืœื‘.
15:32
And here's the peeling action of the Mecho-Gecko.
241
932330
4000
ื–ื•ื”ื™ ืคืขื•ืœืช ื”ืงื™ืœื•ืฃ ืฉืœ ื”ืฉืžืžื™ืช-ื”ืžื›ื ื™ืช.
15:36
It uses a pressure-sensitive adhesive to do it.
242
936330
3000
ื”ื™ื ืžืฉืชืžืฉืช ื‘ื“ื‘ืง ื”ืจื’ื™ืฉ ืœืœื—ืฅ ื›ื“ื™ ืœื‘ืฆืข ื–ืืช.
15:39
Peeling in the animal. Peeling in the Mecho-Gecko --
243
939330
3000
ืงื™ืœื•ืฃ ื‘ื—ื™ื”, ืงื™ืœื•ืฃ ื‘ืฉืžืžื™ืช-ื”ืžื›ื ื™ืช,
15:42
that allows them climb autonomously. Can go on the flat surface,
244
942330
3000
ืฉืžืืคืฉืจ ืœื”ืŸ ืœื˜ืคืก ื‘ืื•ืคืŸ ืื•ื˜ื•ื ื•ืžื™. ื”ืŸ ื™ื›ื•ืœื•ืช ืœืœื›ืช
15:45
transition to a wall, and then go onto a ceiling.
245
945330
3000
ืขืœ ืžืฉื˜ื— ืฉื˜ื•ื—, ืœืขื‘ื•ืจ ืœืงื™ืจ, ื•ืื– ืœื”ืžืฉื™ืš ืœืชืงืจื”.
15:48
There's the bulldozer version. Now, it doesn't use pressure-sensitive glue.
246
948330
6000
ื–ืืช ื’ื™ืจืกืช ื”ื‘ื•ืœื“ื•ื–ืจ. ื”ื—ื™ื” ืœื ืžืฉืชืžืฉืช ื‘ื“ื‘ืง ืจื’ื™ืฉ ืœืœื—ืฅ.
15:54
The animal does not use that.
247
954330
2000
ื”ื™ื ืœื ืžืฉืชืžืฉืช ื‘ื›ืš.
15:56
But that's what we're limited to, at the moment.
248
956330
2000
ืื‘ืœ ืืœื• ื”ืŸ ื”ืžื’ื‘ืœื•ืช ืฉืœื ื• ื›ืจื’ืข.
15:58
What does the animal do? The animal has weird toes.
249
958330
5000
ืžื” ื”ื—ื™ื” ืขื•ืฉื”? ื™ืฉ ืœื” ื‘ื”ื•ื ื•ืช ืžื•ื–ืจื™ื,
16:03
And if you look at the toes, they have these little leaves there,
250
963330
4000
ื•ืื ืชื‘ื—ื ื• ืืช ื”ื‘ื”ื•ื ื•ืช ืชืจืื• ืฉื™ืฉ ืขืœื™ื”ื ืขืœื™ื ืงื˜ื ื™ื,
16:07
and if you blow them up and zoom in, you'll see
251
967330
2000
ืื ื ื‘ืฆืข ื–ื•ื ื•ื ื’ื“ื™ืœ ืื•ืชื ื ื•ื›ืœ ืœืจืื•ืช
16:09
that's there's little striations in these leaves.
252
969330
3000
ื‘ืขืœื™ื ื”ืืœื” ื—ืจื™ืฆื™ื ืงื˜ื ื™ื.
16:12
And if you zoom in 270 times, you'll see it looks like a rug.
253
972330
7000
ื‘ื–ื•ื ืฉืœ ืคื™ 270 ื–ื” ื ืจืื” ื›ืžื• ืฉื˜ื™ื—.
16:19
And if you blow that up, and zoom in 900 times,
254
979330
3000
ื•ืื ื ืžืฉื™ืš ืœื”ื’ื“ื™ืœ ื•ื ืขื‘ื•ืจ ืœื–ื•ื ืคื™ 900,
16:22
you see there are hairs there, tiny hairs. And if you look carefully,
255
982330
5000
ื ืจืื” ืฉืขืจื•ืช, ืฉืขืจื•ืช ืงื˜ื ื˜ื ื•ืช, ืฉื’ื ื‘ื”ืŸ ื ื™ืชืŸ ืœื”ื‘ื—ื™ืŸ ื‘ื—ืจื™ืฆื™ื.
16:27
those tiny hairs have striations. And if you zoom in on those 30,000 times,
256
987330
6000
ื•ืื ื ืขื‘ื•ืจ ืœื–ื•ื ืฉืœ ืคื™ 30,000,
16:33
you'll see each hair has split ends.
257
993330
3000
ื ืจืื” ืฉืœื›ืœ ืฉืขืจื” ื™ืฉ ืงืฆื•ื•ืช ืžืคื•ืฆืœื™ื.
16:36
And if you blow those up, they have these little structures on the end.
258
996330
5000
ื•ืื ื ื’ื“ื™ืœ ืื•ืชื ื ืจืื” ืฉื™ืฉ ืœื”ื ืžื‘ื ื™ื ืงื˜ื ื™ื ื‘ืงืฆื”.
16:41
The smallest branch of the hairs looks like spatulae,
259
1001330
2000
ื”ืขื ืฃ ื”ืงื˜ืŸ ื‘ื™ื•ืชืจ ืฉืœ ื”ืฉืขืจื•ืช ื ืจืื” ื›ืžื• ืžืจื™ืช.
16:43
and an animal like that has one billion of these nano-size split ends,
260
1003330
7000
ืœื—ื™ื” ื–ื• ื™ืฉ ืžื™ืœื™ืืจื“ ืงืฆื•ื•ืช ืžืคื•ืฆืœื™ื ื‘ื’ื•ื“ืœ ื ืื ื•
16:50
to get very close to the surface. In fact, there's the diameter of your hair --
261
1010330
5000
ื›ื“ื™ ืœื”ืชืงืจื‘ ืžืื•ื“ ืืœ ื”ืžืฉื˜ื—. ืœืžืขืฉื”, ื–ื”ื• ื”ืงื•ื˜ืจ ืฉืœ ื”ืฉื™ืขืจ ืฉืœื›ื,
16:55
a gecko has two million of these, and each hair has 100 to 1,000 split ends.
262
1015330
6000
ืœืฉืžืžื™ืช ื™ืฉ 2 ืžื™ืœื™ื•ืŸ ื›ืืœื”, ื•ืœื›ืœ ืฉืขืจื” ื™ืฉ ื‘ื™ืŸ 100 ืœ-1,000 ืงืฆื•ื•ืช ืžืคื•ืฆืœื™ื.
17:01
Think of the contact of that that's possible.
263
1021330
3000
ื—ื™ืฉื‘ื• ืขืœ ื”ืžื’ืข ืฉื“ื‘ืจ ื–ื” ืžืืคืฉืจ.
17:04
We were fortunate to work with another group
264
1024330
2000
ื”ืชืžื–ืœ ืžื–ืœื ื• ืœืขื‘ื•ื“ ืขื ืงื‘ื•ืฆื” ื ื•ืกืคืช
17:06
at Stanford that built us a special manned sensor,
265
1026330
2000
ื‘ืกื˜ืื ืคื•ืจื“ ืฉื‘ื ืชื” ืขื‘ื•ืจื ื• ื—ื™ื™ืฉืŸ ืžื™ื•ื—ื“
17:08
that we were able to measure the force of an individual hair.
266
1028330
3000
ืฉืื™ืคืฉืจ ืœื ื• ืœืžื“ื•ื“ ืืช ื”ื›ื•ื— ืฉืœ ื›ืœ ืฉืขืจื” ื‘ื•ื“ื“ืช.
17:11
Here's an individual hair with a little split end there.
267
1031330
5000
ื–ื•ื”ื™ ืฉืขืจื” ื‘ื•ื“ื“ืช ืขื ืงืฆื” ืžืคื•ืฆืœ ืงื˜ืŸ.
17:16
When we measured the forces, they were enormous.
268
1036330
2000
ื›ืฉืžื“ื“ื ื• ืืช ื”ื›ื•ื—ื•ืช - ื”ื ื”ื™ื• ืขืฆื•ืžื™ื,
17:18
They were so large that a patch of hairs about this size --
269
1038330
3000
ื”ื ื”ื™ื• ื›ืœ ื›ืš ื’ื“ื•ืœื™ื ืฉืงื‘ื•ืฆืช ืฉืขืจื•ืช ื‘ืขืจืš ื‘ื’ื•ื“ืœ ื”ื–ื”
17:21
the gecko's foot could support the weight of a small child,
270
1041330
4000
ืฉืœ ืจื’ืœ ืฉืžืžื™ืช ื™ื›ืœื” ืœืชืžื•ืš ื‘ืžืฉืงืœ ืฉืœ ื™ืœื“ ืงื˜ืŸ,
17:25
about 40 pounds, easily. Now, how do they do it?
271
1045330
4000
ื›-20 ืงื™ืœื•, ื‘ืงืœื•ืช. ืื™ืš ื”ืŸ ืขื•ืฉื•ืช ื–ืืช?
17:29
We've recently discovered this. Do they do it by friction?
272
1049330
4000
ืœืื—ืจื•ื ื” ื’ื™ืœื™ื ื• ืืช ื”ืชืฉื•ื‘ื”. ื‘ืืžืฆืขื•ืช ื—ื™ื›ื•ืš?
17:33
No, force is too low. Do they do it by electrostatics?
273
1053330
3000
ืœื, ื”ื›ื•ื—ื•ืช ื—ืœืฉื™ื ืžื“ื™. ื‘ืืžืฆืขื•ืช ืืœืงื˜ืจื•ืกื˜ื˜ื™ืงื”?
17:36
No, you can change the charge -- they still hold on.
274
1056330
2000
ืœื, ื‘ื”ื—ืœืคืช ื”ืžื˜ืขืŸ ื”ื—ืฉืžืœื™ ื”ืŸ ืขื“ื™ื™ืŸ ืžื—ื–ื™ืงื•ืช ืžืขืžื“.
17:38
Do they do it by interlocking? That's kind of a like a Velcro-like thing.
275
1058330
3000
ื‘ืืžืฆืขื•ืช ืฉื•ืœื‘ื™ื ื‘ื“ื•ืžื” ืœืกืงื•ื˜ืฉ?
17:41
No, you can put them on molecular smooth surfaces -- they don't do it.
276
1061330
3000
ืœื, ืืคืฉืจ ืœื”ื ื™ื— ืื•ืชืŸ ืขืœ ืžืฉื˜ื—ื™ื ื—ืœืงื™ื ืžื‘ื—ื™ื ื” ืžื•ืœืงื•ืœืจื™ืช.
17:44
How about suction? They stick on in a vacuum.
277
1064330
4000
ืžื” ืขื ื™ื ื™ืงื”? ื”ืŸ ื ื“ื‘ืงื•ืช ื’ื ื‘ื•ื•ืืงื•ื.
17:48
How about wet adhesion? Or capillary adhesion?
278
1068330
3000
ืžื” ืขื ื”ื™ื“ื‘ืงื•ืช ืจื˜ื•ื‘ื”? ืื• ื”ื™ื“ื‘ืงื•ืช ื ื™ืžื™ืช?
17:51
They don't have any glue, and they even stick under water just fine.
279
1071330
3000
ืื™ืŸ ืœื”ืŸ ื“ื‘ืง ื•ื”ืŸ ื ืฆืžื“ื•ืช ื’ื ื‘ืžื™ื.
17:54
If you put their foot under water, they grab on.
280
1074330
2000
ืื ืžื›ื ื™ืกื™ื ืืช ื”ืจื’ืœื™ื™ื ืฉืœื”ืŸ ืœืžื™ื - ื”ืŸ ืžืžืฉื™ื›ื•ืช ืœื”ืื—ื–.
17:56
How do they do it then? Believe it or not, they grab on
281
1076330
4000
ืื– ืื™ืš ื”ืŸ ืขื•ืฉื•ืช ื–ืืช? ืชืืžื™ื ื• ืื• ืœื, ื”ืŸ ื ืื—ื–ื•ืช
18:00
by intermolecular forces, by Van der Waals forces.
282
1080330
4000
ื‘ืืžืฆืขื•ืช ื›ื•ื—ื•ืช ื‘ื™ืŸ-ืžื•ืœืงื•ืœืืจื™ื™ื - ื›ื•ื—ื•ืช ื•ืŸ ื“ืจ ื•ืืœืก.
18:04
You know, you probably had this a long time ago in chemistry,
283
1084330
2000
ื•ื“ืื™ ื ืชืงืœืชื ื‘ื”ื ื‘ืฉื™ืขื•ืจื™ ื”ื›ื™ืžื™ื”.
18:06
where you had these two atoms, they're close together,
284
1086330
2000
ืื ืฉื ื™ ืื˜ื•ืžื™ื ืงืจื•ื‘ื™ื ื–ื” ืœื–ื”
18:08
and the electrons are moving around. That tiny force is sufficient
285
1088330
3000
ื”ืืœืงื˜ืจื•ื ื™ื ื ืขื™ื ืกื‘ื™ื‘ื. ื”ื›ื•ื— ื”ื–ืขื™ืจ ื”ื–ื” ืžืกืคื™ืง
18:11
to allow them to do that because it's added up so many times
286
1091330
3000
ื›ื“ื™ ืœืืคืฉืจ ืœื”ืŸ ืœื‘ืฆืข ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืžืฆื˜ื‘ืจ
18:14
with these small structures.
287
1094330
3000
ื‘ื›ืœ ื”ืžื‘ื ื™ื ื”ืงื˜ื ื™ื ื”ืืœื”.
18:17
What we're doing is, we're taking that inspiration of the hairs,
288
1097330
5000
ืฉืื‘ื ื• ื”ืฉืจืื” ืžื”ืฉืขืจื•ืช,
18:22
and with another colleague at Berkeley, we're manufacturing them.
289
1102330
5000
ื•ื‘ืขื–ืจืช ืขืžื™ืช ื ื•ืกืฃ ืžื‘ืจืงืœื™, ืื ื—ื ื• ืžื™ื™ืฆืจื™ื ืื•ืชืŸ.
18:27
And just recently we've made a breakthrough, where we now believe
290
1107330
3000
ืจืง ืœืื—ืจื•ื ื” ื”ื™ืชื” ืœื ื• ืคืจื™ืฆืช ื“ืจืš ื•ืขื›ืฉื™ื• ืื ื—ื ื• ืžืืžื™ื ื™ื
18:30
we're going to be able to create the first synthetic, self-cleaning,
291
1110330
5000
ืฉื ื•ื›ืœ ืœื™ื™ืฆืจ ืืช ื”ื“ื‘ืง ื”ืกื™ื ื˜ื˜ื™, ื”ืžืชื ืงื” ืขืฆืžื™ืช, ื”ื™ื‘ืฉ ื”ืจืืฉื•ืŸ.
18:35
dry adhesive. Many companies are interested in this.
292
1115330
5000
ื—ื‘ืจื•ืช ืจื‘ื•ืช ืžื’ืœื•ืช ื‘ื›ืš ืขื ื™ื™ืŸ.
18:40
(Laughter)
293
1120330
3000
(ืฆื—ื•ืง)
18:43
We also presented to Nike even.
294
1123330
2000
ืขืฉื™ื ื• ืžืฆื’ืช ื’ื ืœื ื™ื™ืง.
18:45
(Laughter)
295
1125330
3000
(ืฆื—ื•ืง)
18:48
(Applause)
296
1128330
6000
[ื“ื‘ืงื•ืช ื‘ืžื˜ืจื”] (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
18:54
We'll see where this goes. We were so excited about this
297
1134330
3000
ื ืจืื” ืœืืŸ ื–ื” ื™ื•ื‘ื™ืœ. ื”ื™ื™ื ื• ืžืื•ื“ ื ืจื’ืฉื™ื
18:57
that we realized that that small-size scale --
298
1137330
3000
ื›ืฉื”ื‘ื ื• ืฉื‘ืงื ื” ื”ืžื™ื“ื” ื”ืงื˜ืŸ ื”ื–ื”,
19:00
and where everything gets sticky, and gravity doesn't matter anymore --
299
1140330
3000
ื›ืืฉืจ ื”ื›ืœ ื ืขืฉื” ื“ื‘ื™ืง, ื›ื‘ืจ ืื™ืŸ ื—ืฉื™ื‘ื•ืช ืœื›ื•ื— ื”ืžืฉื™ื›ื”,
19:03
we needed to look at ants and their feet, because
300
1143330
3000
ืจืฆื™ื ื• ืœื‘ื—ื•ืŸ ืืช ื”ืจื’ืœื™ื™ื ืฉืœ ื”ื ืžืœื™ื,
19:06
one of my other colleagues at Berkeley has built a six-millimeter silicone
301
1146330
5000
ืžื›ื™ื•ื•ืŸ ืฉืื—ื“ ืžื—ื‘ืจื™ ื‘ื‘ืจืงืœื™ ื‘ื ื” ืจื•ื‘ื•ื˜ ืกื™ืœื™ืงื•ืŸ ื‘ื’ื•ื“ืœ 6-ืžื™ืœื™ืžื˜ืจื™ื
19:11
robot with legs. But it gets stuck. It doesn't move very well.
302
1151330
3000
ืขื ืจื’ืœื™ื™ื. ืื‘ืœ ื”ื•ื ื ืชืงืข. ื”ื•ื ืœื ื ืข ื‘ืฆื•ืจื” ื›ืœ ื›ืš ื˜ื•ื‘ื”.
19:14
But the ants do, and we'll figure out why, so that ultimately
303
1154330
3000
ืื‘ืœ ื”ื ืžืœื™ื ื›ืŸ. ืื ื—ื ื• ื ืคืขื ื— ืืช ื”ืกื™ื‘ื” ืœื›ืš, ื•ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ
19:17
we'll make this move. And imagine: you're going to be able
304
1157330
3000
ื ื‘ืฆืข ืืช ื”ืžื”ืœืš ื”ื–ื”. ื“ืžื™ื™ื ื• ืœืขืฆืžื›ื ืฉืชื•ื›ืœื•
19:20
to have swarms of these six-millimeter robots available to run around.
305
1160330
5000
ืœื”ืฉื™ื’ ื ื—ื™ืœื™ ืจื•ื‘ื•ื˜ื™ื ื‘ื’ื•ื“ืœ 6 ืžื™ืœื™ืžื˜ืจื™ื ืฉื™ืชืจื•ืฆืฆื• ืžืกื‘ื™ื‘.
19:25
Where's this going? I think you can see it already.
306
1165330
3000
ืœืืŸ ื–ื” ืžื•ื‘ื™ืœ? ืื ื™ ื—ื•ืฉื‘ ืฉืืชื ื›ื‘ืจ ื™ื›ื•ืœื™ื ืœืจืื•ืช ื–ืืช.
19:28
Clearly, the Internet is already having eyes and ears,
307
1168330
4000
ืœืื™ื ื˜ืจื ื˜ ื›ื‘ืจ ื™ืฉ ืขื™ื ื™ื™ื ื•ืื•ื–ื ื™ื™ื,
19:32
you have web cams and so forth. But it's going to also have legs and hands.
308
1172330
4000
ื™ืฉ ืžืฆืœืžื•ืช ืจืฉืช ื•ื›ื•'. ืื‘ืœ ื‘ืขืชื™ื“ ื™ื”ื™ื• ืœื• ื’ื ืจื’ืœื™ื™ื ื•ื™ื“ื™ื™ื.
19:36
You're going to be able to do programmable
309
1176330
2000
ืชื•ื›ืœื• ืœื‘ืฆืข ืขื‘ื•ื“ื”
19:38
work through these kinds of robots, so that you can run,
310
1178330
4000
ื”ื ื™ืชื ืช ืœืชื›ื ื•ืช ื‘ืืžืฆืขื•ืช ืจื•ื‘ื•ื˜ื™ื ืžื”ืกื•ื’ ื”ื–ื”, ื›ืš ืฉืชื•ื›ืœื• ืœืจื•ืฅ,
19:42
fly and swim anywhere. We saw David Kelly is at the beginning of that with his fish.
311
1182330
9000
ืœืขื•ืฃ ื•ืœืฉื—ื•ืช ืœื›ืœ ืžืงื•ื. ืจืื™ื ื• ืืช ื“ื™ื™ื•ื™ื“ ืงืœื™ ื‘ืชื—ื™ืœืช ื”ื“ืจืš ืขื ื”ื“ื’ ืฉืœื•.
19:51
So, in conclusion, I think the message is clear.
312
1191330
2000
ื•ืœืกื™ื›ื•ื, ืื ื™ ื—ื•ืฉื‘ ืฉื”ืžืกืจ ื‘ืจื•ืจ.
19:53
If you need a message, if nature's not enough, if you care about
313
1193330
4000
ืื ืืชื ื–ืงื•ืงื™ื ืœืžืกืจ, ืื ื”ื˜ื‘ืข ืื™ื ื• ืžืกืคื™ืง, ืื ืืชื ืžื•ื˜ืจื“ื™ื ืœื’ื‘ื™
19:57
search and rescue, or mine clearance, or medicine,
314
1197330
2000
ื—ื™ืœื•ืฅ ื•ื”ืฆืœื”, ืคื™ื ื•ื™ ืžื•ืงืฉื™ื, ืจืคื•ืื”,
19:59
or the various things we're working on, we must preserve
315
1199330
4000
ืื• ื”ื“ื‘ืจื™ื ื”ืฉื•ื ื™ื ืฉืื ื• ืขื•ืกืงื™ื ื‘ื”ื, ืขืœื™ื ื• ืœืฉืžืจ
20:03
nature's designs, otherwise these secrets will be lost forever.
316
1203330
4000
ืืช ื”ืขื™ืฆื•ื‘ื™ื ืฉืœ ื”ื˜ื‘ืข, ืื—ืจืช ื”ืกื•ื“ื•ืช ื”ืืœื” ื™ืขืœืžื• ืœืขื•ืœืžื™ ืขื•ืœืžื™ื.
20:07
Thank you.
317
1207330
1000
ืชื•ื“ื” ืจื‘ื”.
20:08
(Applause)
318
1208330
9000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7