Robert Full: Engineering and evolution

68,932 views ใƒป 2008-06-23

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Hyun Soo Kim ๊ฒ€ํ† : JY Kang
00:19
Welcome. If I could have the first slide, please?
0
19330
5000
๋ฐ˜๊ฐ‘์Šต๋‹ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ ์Šฌ๋ผ์ด๋“œ๋ฅผ ๋ณด์—ฌ์ฃผ์‹œ๊ฒ ์Šต๋‹ˆ๊นŒ?
00:33
Contrary to calculations made by some engineers, bees can fly,
1
33330
5000
๋ช‡๋ช‡ ๊ณตํ•™์ž๋“ค์ด ๊ณ„์‚ฐํ•œ ๊ฒƒ๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ๋ฒŒ๋“ค์€ ๋น„ํ–‰ํ•  ์ˆ˜ ์žˆ๊ณ ,
00:38
dolphins can swim, and geckos can even climb
2
38330
7000
๋Œ๊ณ ๋ž˜๋“ค์€ ์ˆ˜์˜ ํ•  ์ˆ˜ ์žˆ๊ณ , ๋„๋งˆ๋ฑ€๋“ค์€ ์‹ฌ์ง€์–ด
00:45
up the smoothest surfaces. Now, what I want to do, in the short time I have,
3
45330
6000
๋งค๋ˆํ•œ ํ‘œ๋ฉด๋„ ์˜ฌ๋ผ๊ฐˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜ ์ €์—๊ฒŒ ์ฃผ์–ด์ง„ ์งง์€ ์‹œ๊ฐ„๋™์•ˆ
00:51
is to try to allow each of you to experience
4
51330
4000
์ž์—ฐ์ด ๋งŒ๋“ค์–ด ๋†“์€ ๋น„๋ฐ€์„ ์•Œ์•„๋‚ผ ๋•Œ์˜ ์ „์œจ์„
00:55
the thrill of revealing nature's design.
5
55330
6000
์—ฌ๋Ÿฌ๋ถ„๋„ ๊ฒฝํ—˜ํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค.
01:01
I get to do this all the time, and it's just incredible.
6
61330
2000
์ œ๊ฐ€ ๋Š˜ ํ•˜๋Š” ์ผ์ด์ง€๋งŒ, ์ •๋ง ๋†€๋ž์Šต๋‹ˆ๋‹ค.
01:03
I want to try to share just a little bit of that with you in this presentation.
7
63330
6000
์ด๋ฒˆ ๋ฐœํ‘œ์— ์—ฌ๋Ÿฌ๋ถ„๊ณผ ์•ฝ๊ฐ„์ด๋ผ๋„ ์ด ๋Š๋‚Œ์„ ๋‚˜๋ˆ„๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
01:09
The challenge of looking at nature's designs --
8
69330
2000
์ž์—ฐ์ด ๋””์ž์ธํ•œ ๊ฒƒ์„ ์‚ดํŽด๋ณผ ๋•Œ์˜ ์–ด๋ ค์›€ --
01:11
and I'll tell you the way that we perceive it, and the way we've used it.
9
71330
4000
๊ทธ๊ฒƒ์„ ์•Œ์•„๋‚ธ ๋ฐฉ๋ฒ•๊ณผ ์–ด๋–ป๊ฒŒ ์‘์šฉํ–ˆ๋Š”์ง€๋ฅผ ์•Œ๋ ค ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
01:15
The challenge, of course, is to answer this question:
10
75330
2000
์–ด๋ ค์šด ์ ์€ ๋‹น์—ฐํžˆ, ์ด๋Ÿฐ ์งˆ๋ฌธ๋“ค์˜ ๋‹ต์„ ์ฐพ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค:
01:17
what permits this extraordinary performance of animals
11
77330
3000
๋™๋ฌผ๋“ค์˜ ์ด ๋น„๋ฒ”ํ•œ ๋Šฅ๋ ฅ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๊ณ 
01:20
that allows them basically to go anywhere?
12
80330
3000
๊ธฐ๋ณธ์ ์œผ๋กœ ์–ด๋””๋กœ๋“  ์ด๋™ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์€ ๋ฌด์—‡์ธ๊ฐ€?
01:23
And if we could figure that out, how can we implement those designs?
13
83330
7000
๊ทธ๋ฆฌ๊ณ  ๋งŒ์•ฝ ๊ทธ๊ฒƒ์„ ์•Œ์•„ ๋ƒˆ๋‹ค๋ฉด, ๊ทธ๋Ÿฌํ•œ ๋””์ž์ธ์„ ์–ด๋–ป๊ฒŒ ์ ์šฉํ•  ์ˆ˜ ์žˆ์„๊นŒ?
01:30
Well, many biologists will tell engineers, and others,
14
90330
3000
์•„๋งˆ ์ƒ๋ฌผํ•™์ž๋“ค์€ ๊ณตํ•™์ž๋‚˜ ๋‹ค๋ฅธ ์ด๋“ค์—๊ฒŒ ์ด๋ ‡๊ฒŒ ๋งํ•˜๊ฒ ์ฃ .
01:33
organisms have millions of years to get it right;
15
93330
3000
'์ƒ๋ฌผ๋“ค์„ ๊ทธ๋ ‡๊ฒŒ ๋˜๊ธฐ ๊นŒ์ง€ ๋ช‡๋ฐฑ๋งŒ๋…„์ด ๊ฑธ๋ ธ์œผ๋ฉฐ,
01:36
they're spectacular; they can do everything wonderfully well.
16
96330
3000
๊ทธ๋“ค์€ ๊ต‰์žฅํ•˜๋ฉฐ, ๋ชจ๋“  ๊ฒƒ์„ ํ›Œ๋ฅญํ•˜๊ฒŒ ์ž˜ ํ•  ์ˆ˜ ์žˆ์–ด์š”'
01:39
So, the answer is bio-mimicry: just copy nature directly.
17
99330
4000
ํ•ด๋‹ต์€ ์ƒ์ฒด๋ชจ๋ฐฉ์ž…๋‹ˆ๋‹ค -- ๊ทธ๋ƒฅ ์ง์ ‘์ ์œผ๋กœ ์ž์—ฐ์„ ๋”ฐ๋ผํ•˜๋Š” ๊ฑฐ์ฃ .
01:43
We know from working on animals that the truth is
18
103330
5000
๋™๋ฌผ๋“ค์„ ์—ฐ๊ตฌํ•˜๋ฉด์„œ ์•Œ๊ฒŒ ๋œ ์‚ฌ์‹ค์€
01:48
that's exactly what you don't want to do -- because evolution works
19
108330
4000
๋ชจ๋ฐฉ์ด ์ •๋ง ์‰ฝ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด ์ง„ํ™”๋Š”
01:52
on the just-good-enough principle, not on a perfecting principle.
20
112330
3000
๊ดœ์ฐฎ์€ ๋ฒ•์น™์—๋Š” ์ ์šฉ๋˜์ง€๋งŒ, ์™„๋ฒฝํ•œ ๋ฒ•์น™์—๋Š” ์ ์šฉ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
01:55
And the constraints in building any organism, when you look at it,
21
115330
4000
์–ด๋–ค ์ƒ๋ฌผ์ฒด๋ฅผ ๋งŒ๋“ค๋˜ ๊ฐ„์— ๋‚˜ํƒ€๋‚˜๋Š” ์ œ์•ฝ์กฐ๊ฑด์„ ๋“ค์—ฌ๋‹ค๋ณด๋ฉด
01:59
are really severe. Natural technologies have incredible constraints.
22
119330
5000
์ •๋ง ์ถฉ๊ฒฉ์ ์ž…๋‹ˆ๋‹ค. ์ž์—ฐ์˜ ๊ธฐ์ˆ ์€ ๋†€๋ผ์šด ์ œ์•ฝ์กฐ๊ฑด์ด ์žˆ์Šต๋‹ˆ๋‹ค.
02:04
Think about it. If you were an engineer and I told you
23
124330
3000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์ด ๊ณตํ•™์ž์ด๊ณ , ์ œ๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ์ด๋Ÿฐ ์š”๊ตฌ๋ฅผ ํ•œ๋‹ค๊ณ  ์ณ๋ด…์‹œ๋‹ค.
02:07
that you had to build an automobile, but it had to start off to be this big,
24
127330
5000
์ž๋™์ฐจ๋ฅผ ๋งŒ๋“ค์–ด์•ผ ํ•˜๋Š”๋ฐ, ์ฒ˜์Œ์—๋Š” ์ด ์ •๋„ ํฌ๊ธฐ์—์„œ ์ถœ๋ฐœํ•ด์„œ,
02:12
then it had to grow to be full size and had to work every step along the way.
25
132330
4000
์ ์  ์ปค์ ธ์•ผ ํ•˜๊ณ , ๊ทธ๋Ÿฌ๋Š” ๊ณผ์ •์—์„œ๋„ ๊ณ„์† ์ž‘๋™ํ•˜๋„๋ก ๋งŒ๋“ค์–ด์•ผ ํ•œ๋‹ค๊ณ  ์น˜์ฃ .
02:16
Or think about the fact that if you build an automobile, I'll tell you that you also -- inside it --
26
136330
4000
์—ฌ๋Ÿฌ๋ถ„์ด ์ œ๊ฐ€ ๋งŒ๋“ค๋ผ๊ณ  ํ•œ ์ž๋™์ฐจ๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ, ๊ทธ ์•ˆ์—๋„
02:20
have to put a factory that allows you to make another automobile.
27
140330
4000
๋˜ ๋‹ค๋ฅธ ์ž๋™์ฐจ๋ฅผ ๋งŒ๋“ค ๊ณต์žฅ์ด ์•ˆ์— ์žˆ์–ด์•ผ ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ƒ์ƒํ•ด ๋ณด์„ธ์š”.
02:24
(Laughter)
28
144330
2000
(์›ƒ์Œ)
02:26
And you can absolutely never, absolutely never, because of history
29
146330
4000
์—ฌ๋Ÿฌ๋ถ„์€ ์ ˆ๋Œ€๋กœ, ์ ˆ๋Œ€๋กœ ๊ทธ๋Ÿฐ ์ž๋™์ฐจ๋Š” ๋ชป ๋งŒ๋“ค๊ฑฐ์—์š”.
02:30
and the inherited plan, start with a clean slate.
30
150330
4000
์™œ๋ƒํ•˜๋ฉด ์—ญ์‚ฌ์™€ ์œ ์ „์€ ๋ฐฑ์ง€์ƒํƒœ์—์„œ ์ถœ๋ฐœํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:34
So, organisms have this important history.
31
154330
3000
์ƒ๋ฌผ์ฒด๋“ค์€ ์ค‘์š”ํ•œ ์—ญ์‚ฌ๋ฅผ ๊ฐ–๊ณ  ํƒœ์–ด๋‚ฉ๋‹ˆ๋‹ค.
02:37
Really evolution works more like a tinkerer than an engineer.
32
157330
5000
์ง„ํ™”๋Š” ๊ณตํ•™์ž๋ผ๊ธฐ๋ณด๋‹ค๋Š” ๋•œ์Ÿ์ด์ฒ˜๋Ÿผ ์ž‘์šฉํ•˜์ฃ .
02:42
And this is really important when you begin to look at animals.
33
162330
3000
๋™๋ฌผ๋“ค์„ ๋ณด๋ฉด ์ด๊ฒƒ์€ ์ •๋ง ์ค‘์š”ํ•œ ์ ์ž…๋‹ˆ๋‹ค.
02:45
Instead, we believe you need to be inspired by biology.
34
165330
7000
๋Œ€์‹ ์— ์šฐ๋ฆฌ๋Š” ์ƒ๋ฌผํ•™์—์„œ ์˜๊ฐ์„ ์–ป์–ด์•ผ ํ•œ๋‹ค ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
02:52
You need to discover the general principles of nature,
35
172330
4000
์ผ๋ฐ˜์ ์ธ ์ž์—ฐ์˜ ๋ฒ•์น™์„ ์•Œ์•„๋‚ด์•ผ ํ•˜๊ณ ,
02:56
and then use these analogies when they're advantageous.
36
176330
3000
์œ ์ตํ•œ ๊ฒƒ์ด ์žˆ๋‹ค๋ฉด ์œ ์‚ฌํ•˜๊ฒŒ ์ด์šฉํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:02
This is a real challenge to do this, because animals,
37
182330
3000
์‚ฌ์‹ค ๊ทธ๋ ‡๊ฒŒ ํ•˜๊ธฐ๋Š” ๋งค์šฐ ์–ด๋ ต์ฃ . ์™œ๋ƒํ•˜๋ฉด ๋™๋ฌผ์€,
03:05
when you start to really look inside them -- how they work --
38
185330
3000
์ œ๋Œ€๋กœ ์‚ดํŽด๋ณด๊ณ , ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€ ์—ฐ๊ตฌํ•˜๊ธฐ ์‹œ์ž‘ํ•˜๋ฉด,
03:08
appear hopelessly complex. There's no detailed history
39
188330
4000
์ ˆ๋ง์ ์ผ ์ •๋„๋กœ ๋ณต์žกํ•ด ๋ณด์ž…๋‹ˆ๋‹ค. ์„ธ๋ถ€์ ์œผ๋กœ ์„ค๋ช…ํ•ด ๋†“์€
03:12
of the design plans, you can't go look it up anywhere.
40
192330
3000
๋””์ž์ธ ๊ณ„ํš์˜ ๊ธฐ๋ก๊ฐ™์€ ๊ฒƒ์€ ์–ด๋””์„œ๋„ ์ฐพ์•„ ๋ณผ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
03:15
They have way too many motions for their joints, too many muscles.
41
195330
4000
๊ด€์ ˆ๋กœ ๊ฐ€๋Šฅํ•œ ๋„ˆ๋ฌด๋‚˜ ๋งŽ์€ ๋™์ž‘๋“ค๊ณผ, ๋„ˆ๋ฌด ๋งŽ์€ ๊ทผ์œก,
03:19
Even the simplest animal we think of, something like an insect,
42
199330
3000
์‹ฌ์ง€์–ด ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์žฅ ๊ฐ„๋‹จํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ๋™๋ฌผ,
03:22
and they have more neurons and connections than you can imagine.
43
202330
3000
๊ณค์ถฉ๋“ค์กฐ์ฐจ๋„ ์ƒ์ƒ๋ณด๋‹ค ๋งŽ์€ ์‹ ๊ฒฝ๊ณผ ์—ฐ๊ฒฐ์ฒด๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:25
How can you make sense of this? Well, we believed --
44
205330
5000
์ด๊ฒƒ์ด ์–ด๋–ป๊ฒŒ ๋ง์ด ๋  ์ˆ˜ ์žˆ๋‚˜์š”? ์šฐ๋ฆฌ๊ฐ€ ๋ฏฟ๊ธฐ๋ก  --
03:30
and we hypothesized -- that one way animals could work simply,
45
210330
5000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฐ ๊ฐ€์ •ํ–ˆ๊ธฐ๋ฅผ -- ๋™๋ฌผ์ด ๋‹จ์ˆœํ•˜๊ฒŒ ์ผํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”,
03:35
is if the control of their movements
46
215330
3000
๊ทธ๋“ค์˜ ๋™์ž‘์„ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์ด
03:38
tended to be built into their bodies themselves.
47
218330
6000
๋ชธ ์•ˆ์— ๋งŒ๋“ค์–ด์ ธ ์žˆ์„ ๋•Œ ์ž…๋‹ˆ๋‹ค.
03:44
What we discovered was that two-, four-, six- and eight-legged animals
48
224330
7000
์šฐ๋ฆฌ๊ฐ€ ๋ฐœ๊ฒฌํ•œ ๊ฒƒ์€ 2, 4, 6 ๊ทธ๋ฆฌ๊ณ  8๊ฐœ์˜ ๋‹ค๋ฆฌ๋ฅผ ๊ฐ€์ง€๋Š” ๋™๋ฌผ๋“ค ๋ชจ๋‘๊ฐ€
03:51
all produce the same forces on the ground when they move.
49
231330
3000
์ง€์ƒ์—์„œ ์›€์ง์ผ๋•Œ ๊ฐ™์€ ํž˜์„ ๋งŒ๋“ค์–ด ๋‚ธ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:54
They all work like this kangaroo, they bounce.
50
234330
4000
๋ชจ๋‘ ์ด ์บฅ๊ฑฐ๋ฃจ ์ฒ˜๋Ÿผ, ํŠ‘๋‹ˆ๋‹ค.
03:58
And they can be modeled by a spring-mass system that we call the spring mass system
51
238330
4000
๊ทธ๋Ÿฐ ๋™์ž‘์€ ์Šคํ”„๋ง ์งˆ๋Ÿ‰๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ๋ชจ๋ธ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ƒ์ฒด์—ญํ•™์ž์ด๊ธฐ ๋•Œ๋ฌธ์—
04:02
because we're biomechanists. It's actually a pogo stick.
52
242330
3000
์Šคํ”„๋ง ์งˆ๋Ÿ‰๊ณ„๋ผ๋Š” ์šฉ์–ด๋ฅผ ์“ฐ์ง€๋งŒ, ์‚ฌ์‹ค ์Šค์นด์ด ์ฝฉ์ฝฉ ๊ฐ™์€ ๊ฒ๋‹ˆ๋‹ค.
04:05
They all produce the pattern of a pogo stick. How is that true?
53
245330
4000
์ „๋ถ€ ์Šค์นด์ด ์ฝฉ์ฝฉ์˜ ํŒจํ„ด์„ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค. ์–ด๋–ป๊ฒŒ ๊ทธ๋Ÿด ์ˆ˜ ์žˆ์„ ๊นŒ์š”?
04:09
Well, a human, one of your legs works like two legs of a trotting dog,
54
249330
6000
์ธ๊ฐ„์˜, ์—ฌ๋Ÿฌ๋ถ„์˜ ๋‹ค๋ฆฌ ์ค‘ ํ•˜๋‚˜๋Š”, ๋น ๋ฅด๊ฒŒ ๊ฑท๋Š” ๊ฐœ์˜ ๋‘ ๋‹ค๋ฆฌ ์ฒ˜๋Ÿผ ์ž‘๋™ํ•˜๊ฑฐ๋‚˜,
04:15
or works like three legs, together as one, of a trotting insect,
55
255330
4000
๋น ๋ฅด๊ฒŒ ๊ฑท๋Š” ๊ณค์ถฉ์˜ 3๊ฐœ์˜ ๋‹ค๋ฆฌ๊ฐ€ ํ•˜๋‚˜์ธ ๊ฒƒ์ฒ˜๋Ÿผ ์ž‘๋™ํ•˜๊ฑฐ๋‚˜
04:19
or four legs as one of a trotting crab.
56
259330
2000
๋น ๋ฅด๊ฒŒ ๊ฑท๋Š” ๊ฒŒ์˜ 4๊ฐœ์˜ ๋‹ค๋ฆฌ๋ฅผ ํ•˜๋‚˜๋กœ ๋ฌถ์–ด์„œ ์ž‘๋™ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
04:21
And then they alternate in their propulsion,
57
261330
4000
๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ๋“ค์„ ์—‡๊ฐˆ๋ ค ์›€์ง์ด๋ฉด์„œ ์ถ”์ง„๋ ฅ์„ ๋งŒ๋“ค์–ด๋‚ด์ฃ .
04:25
but the patterns are all the same. Almost every organism we've looked at this way
58
265330
5000
ํ•˜์ง€๋งŒ ํŒจํ„ด์€ ๋ชจ๋‘ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๋ชจ๋“  ์ƒ๋ฌผ์ฒด๊ฐ€ ์ด๋Ÿฐ ์‹์œผ๋กœ ์›€์ง์ž…๋‹ˆ๋‹ค.
04:30
-- you'll see next week, I'll give you a hint,
59
270330
2000
๋‹ค์Œ ์ฃผ์— ๊ธฐ์‚ฌ๊ฐ€ ๋‚˜๊ฐˆํ…๋ฐ์š”, ํžŒํŠธ๋ฅผ ์กฐ๊ธˆ ๋“œ๋ฆฌ์ž๋ฉด,
04:32
there'll be an article coming out that says that really big things
60
272330
3000
์ •๋ง ํฐ ๊ฒƒ๋“ค, ์˜ˆ๋ฅผ ๋“ค์–ด ํ‹ฐ๋ผ๋…ธ์‚ฌ์šฐ๋ฅด์Šค ๊ฐ™์€ ๋™๋ฌผ๋“ค์€
04:35
like T. rex probably couldn't do this, but you'll see that next week.
61
275330
4000
์•„๋งˆ ์ด๋ ‡๊ฒŒ ๋ชปํ•  ๊ฒ๋‹ˆ๋‹ค. ๋‹ค์Œ ์ฃผ์— ๊ธฐ์‚ฌ๋ฅผ ์ฝ์–ด ๋ณด์‹œ๋ฉด ์•Œ๊ฑฐ์—์š”.
04:39
Now, what's interesting is the animals, then -- we said -- bounce along
62
279330
2000
ํฅ๋ฏธ๋กœ์šด ์ ์€, ๋™๋ฌผ๋“ค์€ ์ด๋ ‡๊ฒŒ ์ˆ˜์ง๋ฉด์œผ๋กœ ๋›ด๋‹ค๊ณ  ํ–ˆ๋Š”๋ฐ,
04:41
the vertical plane this way, and in our collaborations with Pixar,
63
281330
3000
ํ”ฝ์‚ฌ(Pixar)์˜ "๋ฒ…์Šค ๋ผ์ดํ”„"๋ฅผ ๊ณต๋™์ œ์ž‘ํ•  ๋•Œ
04:44
in "A Bug's Life," we discussed the
64
284330
2000
๋‘๋ฐœ๋กœ ๊ฑท๋Š” ๊ฐœ๋ฏธ ์บ๋ฆญํ„ฐ๋“ค์— ๊ด€ํ•ด์„œ
04:46
bipedal nature of the characters of the ants.
65
286330
3000
์˜๋…ผํ•œ ์ ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:49
And we told them, of course, they move in another plane as well.
66
289330
2000
๊ฐœ๋ฏธ๋“ค๋„ ๋‹น์—ฐํžˆ ๋‹ค๋ฅธ ๋ฉด์œผ๋กœ๋„ ์›€์ง์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋งํ–ˆ๋”๋‹ˆ,
04:51
And they asked us this question. They say, "Why model
67
291330
3000
๊ทธ๋“ค์€ ์ด๋Ÿฐ ์งˆ๋ฌธ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:54
just in the sagittal plane or the vertical plane,
68
294330
2000
"์™œ ์ •์ค‘๋ฉด์ด๋‚˜ ์ˆ˜์ง๋ฉด์— ๋Œ€ํ•ด์„œ๋งŒ ๋ชจ๋ธ์„ ๋งŒ๋“ค์ฃ ?
04:56
when you're telling us these animals are moving
69
296330
2000
์ด ๋™๋ฌผ๋“ค์ด ์ˆ˜ํ‰๋ฉด์œผ๋กœ๋„ ์›€์ง์ผ ์ˆ˜
04:58
in the horizontal plane?" This is a good question.
70
298330
3000
์žˆ๋‹ค๊ณ  ๋งํ•ด์ฃผ์…จ๋Š”๋ฐ๋„ ๋ง์ด์ฃ ?" ์ด๊ฑด ์ข‹์€ ์งˆ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:01
Nobody in biology ever modeled it this way.
71
301330
3000
์ƒ๋ฌผํ•™ ๊ด€๋ จ ์ข…์‚ฌ์ž๋Š” ์•„๋ฌด๋„ ์ด๋ ‡๊ฒŒ ๋ชจ๋ธํ™” ํ•˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
05:04
We took their advice and we modeled the animals moving
72
304330
4000
์šฐ๋ฆฌ๋Š” ๊ทธ๋“ค์˜ ์กฐ์–ธ์„ ๋ฐ›์•„๋“ค์—ฌ์„œ,
05:08
in the horizontal plane as well. We took their three legs,
73
308330
3000
์ˆ˜ํ‰๋ฉด์œผ๋กœ๋„ ์ด๋™ํ•˜๋Š” ๋™๋ฌผ ๋ชจ๋ธ์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
05:11
we collapsed them down as one.
74
311330
1000
3๊ฐœ์˜ ๋‹ค๋ฆฌ๊ฐ€ ํ•˜๋‚˜์ฒ˜๋Ÿผ ์›€์ง์ด๋„๋ก ํ•˜๊ณ ,
05:12
We got some of the best mathematicians in the world
75
312330
3000
์„ธ๊ณ„์ ์œผ๋กœ ์œ ๋ช…ํ•œ ํ”„๋ฆฐ์Šคํ†ค์˜ ์ˆ˜ํ•™์ž๋“ค์„ ๋ถˆ๋Ÿฌ๋‹ค๊ฐ€
05:15
from Princeton to work on this problem.
76
315330
2000
์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ ํ•˜๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:17
And we were able to create a model
77
317330
3000
์šฐ๋ฆฌ๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์—ˆ๋Š”๋ฐ
05:20
where animals are not only bouncing up and down,
78
320330
1000
๊ทธ ๋™๋ฌผ๋“ค์€ ์ƒํ•˜๋กœ ๋›ธ ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
05:21
but they're also bouncing side to side at the same time.
79
321330
4000
๋™์‹œ์— ์ขŒ์šฐ๋กœ๋„ ๋›ธ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
05:25
And many organisms fit this kind of pattern.
80
325330
2000
๊ทธ๋ฆฌ๊ณ  ๋งŽ์€ ์ƒ๋ฌผ์ฒด๋“ค์€ ์ด๋Ÿฌํ•œ ํŒจํ„ด์„ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค.
05:27
Now, why is this important to have this model?
81
327330
2000
์ด ๋ชจ๋ธ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์ด ์™œ ์ค‘์š”ํ•œ ๊ฒƒ์ผ๊นŒ์š”?
05:29
Because it's very interesting. When you take this model
82
329330
3000
์™œ๋ƒํ•˜๋ฉด, ์ด์ ์ด ํฅ๋ฏธ๋กœ์šด๋ฐ์š”,
05:32
and you perturb it, you give it a push,
83
332330
3000
์ด ๋ชจ๋ธ์„ ๋ถˆ์•ˆ์ •ํ•˜๊ฒŒ ํ•˜๊ณ , ๋ฐ€๊ณ  ๊ทธ๋Ÿฌ๋ฉด,
05:35
as it bumps into something, it self-stabilizes, with no brain
84
335330
4000
์–ด๋”˜๊ฐ€์— ๋ถ€๋”ชํžˆ๋ฉด์„œ๋„ ์Šค์Šค๋กœ ์•ˆ์ •๋œ ์ž์„ธ๋ฅผ ์ทจํ•ฉ๋‹ˆ๋‹ค.
05:39
or no reflexes, just by the structure alone.
85
339330
4000
๋‡Œ๋„ ์—†๊ณ , ๋ฐ˜์‚ฌ์‹ ๊ฒฝ๋„ ์—†์ง€๋งŒ, ๊ทธ๋ƒฅ ๊ทธ ๊ตฌ์กฐ ์Šค์Šค๋กœ ํ•ด๋ƒ…๋‹ˆ๋‹ค.
05:43
It's a beautiful model. Let's look at the mathematics.
86
343330
5000
์ •๋ง ์•„๋ฆ„๋‹ค์šด ๋ชจ๋ธ์ด์—์š”. ์ˆ˜ํ•™๊ณต์‹์„ ํ•œ๋ฒˆ ๋ณด์‹œ์ฃ .
05:48
(Laughter)
87
348330
2000
(์›ƒ์Œ)
05:50
That's enough!
88
350330
1000
๋„˜์–ด๊ฐ€์ฃ .
05:51
(Laughter)
89
351330
4000
(์›ƒ์Œ)
05:55
The animals, when you look at them running,
90
355330
2000
๋™๋ฌผ๋“ค์ด ๋›ฐ๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜๋ฉด,
05:57
appear to be self-stabilizing like this,
91
357330
3000
๊ธฐ๋ณธ์ ์œผ๋กœ ์šฉ์ˆ˜์ฒ  ๊ฐ™์€ ๋‹ค๋ฆฌ๋ฅผ ์ด์šฉํ•ด์„œ
06:00
using basically springy legs. That is, the legs can do
92
360330
3000
์ด๋ ‡๊ฒŒ ์Šค์Šค๋กœ ์•ˆ์ •๋œ ์ž์„ธ๋ฅผ ์ทจํ•˜๋Š” ๋“ฏ์ด ๋ณด์ž…๋‹ˆ๋‹ค.
06:03
computations on their own; the control algorithms, in a sense,
93
363330
3000
๊ทธ ๊ฒƒ์€ ๋ฐ”๋กœ ๋™๋ฌผ์•ˆ์— ํŠน์ •ํ•œ ํ˜•ํƒœ๋กœ ๋‚ด์žฌ๋˜์–ด ์žˆ๋Š” ๊ฐ๊ฐ์ œ์–ด
06:06
are embedded in the form of the animal itself.
94
366330
3000
์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด์„œ ๋‹ค๋ฆฌ ์Šค์Šค๋กœ๊ฐ€ ๊ณ„์‚ฐ์„ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:09
Why haven't we been more inspired by nature and these kinds of discoveries?
95
369330
7000
์šฐ๋ฆฌ๋Š” ์™œ ์ž์—ฐ๊ณผ ์ด๋Ÿฌํ•œ ๋ฐœ๊ฒฌ๋“ค์— ์ข€ ๋” ์˜๊ฐ์„ ๋ฐ›์ง€ ๋ชปํ–ˆ๋˜ ๊ฑธ๊นŒ์š”?
06:16
Well, I would argue that human technologies are really different from
96
376330
4000
์ œ๊ฐ€ ๋งํ•  ์ˆ˜ ์žˆ๋Š” ๊ฑด, ์ธ๊ฐ„ ๊ธฐ์ˆ ์€ ์ž์—ฐ์˜ ๊ธฐ์ˆ ๊ณผ๋Š” ์ „ํ˜€ ๋‹ค๋ฅธ ํ˜•ํƒœ๋ฅผ ๋ฑ๋‹ˆ๋‹ค.
06:20
natural technologies, at least they have been so far.
97
380330
3000
์ ์–ด๋„ ์ง€๊ธˆ๊นŒ์ง„ ๊ทธ๋ ‡์ฃ .
06:23
Think about the typical kind of robot that you see.
98
383330
5000
์—ฌ๋Ÿฌ๋ถ„์ด ์ผ๋ฐ˜์ ์œผ๋กœ ๋ณด๋Š” ์ „ํ˜•์ ์ธ ๋กœ๋ด‡์„ ์ƒ๊ฐํ•ด ๋ด…์‹œ๋‹ค.
06:28
Human technologies have tended to be large, flat,
99
388330
3000
์ธ๊ฐ„์˜ ๊ธฐ์ˆ ์€ ํฌ๊ณ , ๋‚ฉ์ž‘ํ•˜๊ณ , ์ •ํ™•ํ•œ ๊ฐ๋„๋ฅผ ์œ ์ง€ํ•˜๊ณ ,
06:31
with right angles, stiff, made of metal. They have rolling devices
100
391330
5000
๋‹จ๋‹จํ•˜๊ณ , ๊ธˆ์†์„ฑ์œผ๋กœ ๋งŒ๋“œ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์ฃ . ์ „๋™์žฅ์น˜์™€ ์ฐจ์ถ•๋„ ์žˆ์–ด์•ผ ํ•˜๊ณ ์š”.
06:36
and axles. There are very few motors, very few sensors.
101
396330
3000
๋ชจํ„ฐ๋Š” ์ ๊ฒŒ ์“ฐ๊ณ , ์„ผ์„œ๋„ ๋งŽ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:39
Whereas nature tends to be small, and curved,
102
399330
5000
๋ฐ˜๋ฉด์—, ์ž์—ฐ์ด ๋งŒ๋“  ๊ฒƒ์€ ์ž‘๊ณ , ์œ ์„ ํ˜•์ž…๋‹ˆ๋‹ค.
06:44
and it bends and twists, and has legs instead, and appendages,
103
404330
3000
๊ทธ๋ฆฌ๊ณ  ๊ตฝํž ์ˆ˜๋„ ์žˆ๊ณ , ๋น„ํ‹€๊ธฐ๋„ ํ•˜๊ณ , ๋‹ค๋ฆฌ๋„ ๊ธธ๊ฑฐ๋‚˜ ์งง์Šต๋‹ˆ๋‹ค.
06:47
and has many muscles and many, many sensors.
104
407330
3000
๊ทธ๋ฆฌ๊ณ  ๋งŽ์€ ๊ทผ์œก๊ณผ ์ •๋ง ์ •๋ง ๋งŽ์€ ์„ผ์„œ๋ฅผ ๊ฐ–๊ณ  ์žˆ์ฃ .
06:50
So it's a very different design. However, what's changing,
105
410330
4000
์ •๋ง ์™„์ „ํžˆ ๋‹ค๋ฅธ ๋””์ž์ธ์ด์ฃ . ํ•˜์ง€๋งŒ, ๋ฐ”๋€Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์€,
06:54
what's really exciting -- and I'll show you some of that next --
106
414330
2000
๊ทธ๋ฆฌ๊ณ  ์ •๋ง๋กœ ์žฌ๋ฏธ์žˆ๋Š” ๊ฒƒ์€ -- ์ž ์‹œํ›„์— ๋ช‡๊ฐ€์ง€ ์˜ˆ๋ฅผ ๋ณด์—ฌ๋“œ๋ฆดํ…๋ฐ์š”--
06:56
is that as human technology takes on more of the characteristics
107
416330
3000
์ธ๊ฐ„์˜ ๊ธฐ์ˆ ์ด ์ž์—ฐ์˜ ํŠน์„ฑ์„ ์ ์  ๋” ๋งŽ์ด ๋ฐ›์•„ ๋“ค์ด๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:59
of nature, then nature really can become a much more useful teacher.
108
419330
6000
์ง„์ • ์ž์—ฐ์ด์•ผ๋ง๋กœ ๊ฐ€์žฅ ํ›Œ๋ฅญํ•œ ์„ ์ƒ๋‹˜์ธ ๊ฒƒ์ด์ฃ .
07:05
And here's one example that's really exciting.
109
425330
2000
์ •๋ง๋กœ ์žฌ๋ฏธ์žˆ๋Š” ๊ฒƒ์˜ ํ•œ ๊ฐ€์ง€ ์˜ˆ๊ฐ€ ์ด๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:07
This is a collaboration we have with Stanford.
110
427330
2000
์Šคํƒ ํฌ๋“œ ๋Œ€ํ•™๊ต์™€ ๊ณต๋™์œผ๋กœ ์ž‘์—…ํ•œ ๊ฒƒ์ธ๋ฐ์š”.
07:09
And they developed this new technique, called Shape Deposition Manufacturing.
111
429330
4000
๊ทธ ๋Œ€ํ•™์—์„œ๋Š” ํ˜•์ƒ์นจ์ฐฉ์ œ์กฐ๋ฒ•(SDM)์ด๋ผ๋Š” ์ƒˆ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
07:13
It's a technique where they can mix materials together and mold any shape
112
433330
4000
์ด ๊ธฐ์ˆ ์€ ์žฌ๋ฃŒ๋“ค์„ ์„ž์–ด์„œ ์›ํ•˜๋Š” ์–ด๋–ค ํ˜•ํƒœ๋กœ ๋งŒ๋“ค๊ณ 
07:17
that they like, and put in the material properties.
113
437330
4000
๊ทธ๋ฆฌ๊ณ  ๊ฑฐ๊ธฐ์— ์žฌ๋ฃŒ์˜ ๋ฌผ์„ฑ์„ ๋ถ€์—ฌํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
07:21
They can embed sensors and actuators right in the form itself.
114
441330
3000
๊ทธ๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ํ˜•ํƒœ์•ˆ์— ์„ผ์„œ์™€ ๊ตฌ๋™์žฅ์น˜๋ฅผ ์ง‘์–ด ๋„ฃ์„ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์ฃ .
07:24
For example, here's a leg: the clear part is stiff,
115
444330
5000
์˜ˆ๋ฅผ ๋“ค์–ด, ์—ฌ๊ธฐ ์ด ๋‹ค๋ฆฌ -- ํˆฌ๋ช…ํ•œ ๋ถ€๋ถ„์€ ๋‹จ๋‹จํ•˜๊ณ ,
07:29
the white part is compliant, and you don't need any axles there or anything.
116
449330
3000
ํฐ ๋ถ€๋ถ„์€ ์œ ์—ฐํ•ด์„œ, ๊ทธ๋ถ€๋ถ„์— ๋‹ค๋ฅธ ์–ด๋–ค ์ถ•๋„ ํ•„์š”ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
07:32
It just bends by itself beautifully.
117
452330
3000
์Šค์Šค๋กœ ์˜ˆ์˜๊ฒŒ ๊ตฌ๋ถ€๋Ÿฌ์ง€์ฃ .
07:35
So, you can put those properties in. It inspired them to show off
118
455330
3000
๊ทธ๋ž˜์„œ ์—ฌ๊ธฐ์— ์†์„ฑ์„ ๋„ฃ์„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
07:38
this design by producing a little robot they named Sprawl.
119
458330
6000
์ด ๊ธฐ์ˆ ๋กœ Sprawl์ด๋ผ๋Š” ์ด๋ฆ„์˜ ์ž‘์€ ๋กœ๋ด‡์„ ์ƒ์‚ฐํ•˜๋Š” ๋””์ž์ธ์„ ์„ ๋ณด์ด๊ธฐ๋„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:44
Our work has also inspired another robot, a biologically inspired bouncing robot,
120
464330
4000
์ด ์ž‘์—…์€ ๋‹ค๋ฅธ ๋กœ๋ด‡์ œ์ž‘์—๋„ ์˜ํ–ฅ์„ ์ฃผ์—ˆ๋Š”๋ฐ, ๋ฏธ์‹œ๊ฑด๋Œ€ํ•™๊ณผ ๋งฅ๊ธธ๋Œ€ํ•™์—์„œ ๋งŒ๋“ 
07:48
from the University of Michigan and McGill
121
468330
2000
์ƒ๋ฌผํ•™์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ๋›ฐ๋Š” ๋กœ๋ด‡์ธ
07:50
named RHex, for robot hexapod, and this one's autonomous.
122
470330
8000
RHex๋ผ๋Š” ์ด๋ฆ„์˜ ๊ณค์ถฉ๋กœ๋ด‡์ด ๊ทธ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ์Šค์Šค๋กœ ์›€์ง์ด์ฃ .
07:58
Let's go to the video, and let me show you some of these animals moving
123
478330
3000
๋น„๋””์˜ค๋ฅผ ํ†ตํ•ด ์ด ๋™๋ฌผ๋“ค์˜ ์›€์ง์ž„์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
08:01
and then some of the simple robots
124
481330
2000
๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ๋“ค์ด ๋ฐœ๊ฒฌํ•œ ๊ฒƒ๋“ค์— ๊ธฐ์ดˆํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„
08:03
that have been inspired by our discoveries.
125
483330
3000
๋‹จ์ˆœํ•œ ๋กœ๋ด‡ ๋ช‡ ๊ฐœ๋ฅผ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
08:06
Here's what some of you did this morning, although you did it outside,
126
486330
4000
์—ฌ๊ธฐ ๊ณ„์‹  ๋ช‡๋ช‡ ๋ถ„๋“ค์ด ์˜ค๋Š˜ ์•„์นจ์— ํ•˜์…จ๊ฒ ์ฃ . ๋ฌผ๋ก  ๋Ÿฌ๋‹ ๋จธ์‹ ์€ ์•„๋‹ˆ๊ณ 
08:10
not on a treadmill.
127
490330
2000
๋ฐ–์—์„œ ํ•˜์…จ๊ฒ ์ง€๋งŒ์š”.
08:12
Here's what we do.
128
492330
3000
์ด๊ฒŒ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” ์ผ์ž…๋‹ˆ๋‹ค.
08:15
(Laughter)
129
495330
2000
(์›ƒ์Œ)
08:17
This is a death's head cockroach. This is an American cockroach
130
497330
5000
์ด๊ฑด ํ•ด๊ณจ ๋ฐ”ํ€ด๋ฒŒ๋ ˆ -- ์ด๊ฑด ๋ฏธ๊ตญ ๋ฐ”ํ€ด๋ฒŒ๋ ˆ
08:22
you think you don't have in your kitchen.
131
502330
1000
์—ฌ๋Ÿฌ๋ถ„์˜ ๋ถ€์—Œ์—๋Š” ์—†์„ ๊ฑฐ๋ผ ์ƒ๊ฐํ•˜์‹œ๊ฒ ์ฃ .
08:23
This is an eight-legged scorpion, six-legged ant, forty-four-legged centipede.
132
503330
7000
์ด๊ฑด ๋‹ค๋ฆฌ 8๊ฐœ์˜ ์ „๊ฐˆ, ๋‹ค๋ฆฌ 6๊ฐœ์˜ ๊ฐœ๋ฏธ, ๊ทธ๋ฆฌ๊ณ  44๊ฐœ์˜ ๋‹ค๋ฆฌ๋ฅผ ๊ฐ€์ง„ ์ง€๋„ค์ž…๋‹ˆ๋‹ค.
08:30
Now, I said all these animals are sort of working like pogo sticks --
133
510330
3000
์ด๋Ÿฐ ๋™๋ฌผ๋“ค์ด ๋ชจ๋‘ ์Šค์นด์ด ์ฝฉ์ฝฉ์ฒ˜๋Ÿผ ์›€์ง์ธ๋‹ค๊ณ  ๋ง์”€๋“œ๋ ธ์—ˆ์ฃ  --
08:33
they're bouncing along as they move. And you can see that
134
513330
4000
๋ชจ๋‘ ์›€์ง์ด๋ฉด์„œ ํŠ€๊ณ  ์žˆ๊ณ , ์ง€๊ธˆ ๋ณด์‹œ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ
08:37
in this ghost crab, from the beaches of Panama and North Carolina.
135
517330
3000
์ด ํŒŒ๋‚˜๋งˆ์™€ ๋ถ์บ๋กค๋ผ์ด๋‚˜์˜ ํ•ด๋ณ€์—์„œ ์˜จ ์œ ๋ น๊ฒŒ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค.
08:40
It goes up to four meters per second when it runs.
136
520330
3000
๋›ธ ๋•Œ์˜ ์†๋„๊ฐ€ ์ดˆ์† 4๋ฏธํ„ฐ๊นŒ์ง€ ์˜ฌ๋ผ๊ฐ€์ฃ .
08:43
It actually leaps into the air, and has aerial phases
137
523330
3000
์‚ฌ์‹ค ์ด๊ฒƒ์€ ๊ณต์ค‘์œผ๋กœ ๋›ด ํ›„, ํ—ˆ๊ณต์— ์ž ์‹œ ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋Š” ๋™์ž‘์ž…๋‹ˆ๋‹ค.
08:46
when it does it, like a horse, and you'll see it's bouncing here.
138
526330
4000
๋ง์ฒ˜๋Ÿผ์š”. ์—ฌ๊ธฐ ์ด๋ ‡๊ฒŒ ํŠ€์–ด ์˜ค๋ฅด๋Š”๊ฒŒ ๋ณด์ด์‹œ์ฃ .
08:50
What we discovered is whether you look at the leg of a human
139
530330
3000
์šฐ๋ฆฌ๋Š” ๋ฆฌ์ฒ˜๋“œ ๊ฐ™์€ ์‚ฌ๋žŒ์˜ ๋‹ค๋ฆฌ๋‚˜, ๋ฐ”ํ€ด๋ฒŒ๋ ˆ์˜ ๊ฒƒ์ด๋‚˜,
08:53
like Richard, or a cockroach, or a crab, or a kangaroo,
140
533330
6000
๊ฒŒ์˜ ๊ฒƒ์ด๋‚˜, ์บฅ๊ฑฐ๋ฃจ์˜ ๊ฒƒ์ด๋‚˜.. ์ง€๊ธˆ๊นŒ์ง€ ๋ณด์•„์˜จ ๋ชจ๋“  ๊ฒƒ์˜
08:59
the relative leg stiffness of that spring is the same for everything we've seen so far.
141
539330
5000
๋‹ค๋ฆฌ์˜ ์ƒ๋Œ€์ ์ธ ์Šคํ”„๋ง ๊ฐ•์„ฑ์€ ๋ชจ๋‘ ๋™์ผํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•„๋ƒˆ์Šต๋‹ˆ๋‹ค.
09:04
Now, what good are springy legs then? What can they do?
142
544330
2000
์Šคํ”„๋ง ๊ฐ™์€ ๋‹ค๋ฆฌ์˜ ์žฅ์ ์€ ๋ฌด์—‡์ด๊ณ , ๋ฌด์—‡์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฑธ๊นŒ์š”?
09:06
Well, we wanted to see if they allowed the animals
143
546330
2000
์šฐ๋ฆฌ๋Š” ๊ทธ๊ฒƒ์ด ๋™๋ฌผ๋“ค์—๊ฒŒ ๋” ๋‚˜์€ ์•ˆ์ •์„ฑ๊ณผ
09:08
to have greater stability and maneuverability.
144
548330
3000
๊ธฐ๋™์„ฑ์„ ์ฃผ๋Š”์ง€ ์•Œ์•„ ๋ณด๊ณ  ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค.
09:11
So, we built a terrain that had obstacles three times the hip height
145
551330
4000
๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ๊ด€์ฐฐํ•˜๊ณ ์ž ํ•˜๋Š” ๋™๋ฌผ ๋†’์ด์˜ 3๋ฐฐ๋‚˜ ๋˜๋Š”
09:15
of the animals that we're looking at.
146
555330
1000
์žฅ์• ๋ฌผ์ง€์—ญ์„ ๋งŒ๋“ค์–ด ๊ด€์ฐฐํ–ˆ์Šต๋‹ˆ๋‹ค.
09:16
And we were certain they couldn't do this. And here's what they did.
147
556330
4000
๋‹น์—ฐํžˆ ๋„˜์ง€ ๋ชปํ•˜๋ฆฌ๋ผ ์˜ˆ์ƒํ–ˆ์ง€๋งŒ, ๊ทธ๋“ค์ด ํ•ด๋‚ธ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์‹œ์ฃ .
09:20
The animal ran over it and it didn't even slow down!
148
560330
3000
๋™๋ฌผ์€ ์žฅ์• ๋ฌผ์„ ๋›ฐ์–ด ๋„˜์—ˆ๊ณ , ์‹ฌ์ง€์–ด ๊ฐ์†ํ•˜์ง€๋„ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
09:23
It didn't decrease its preferred speed at all.
149
563330
2000
๋‹ฌ๋ฆฌ๋˜ ์†๋„๋ฅผ ์ „ํ˜€ ์ค„์ด์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
09:25
We couldn't believe that it could do this. It said to us
150
565330
3000
์šฐ๋ฆฌ๋Š” ๊ทธ๊ฒƒ์ด ๊ทธ๋ ‡๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฏฟ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
09:28
that if you could build a robot with very simple, springy legs,
151
568330
5000
์ด ๊ฒฐ๊ณผ๊ฐ€ ์‹œ์‚ฌํ•˜๋Š” ๊ฒƒ์€, ๋งŒ์•ฝ ๋กœ๋ด‡์—๊ฒŒ ๋งค์šฐ ๊ฐ„๋‹จํ•œ ์Šคํ”„๋ง ๊ฐ™์€ ๋‹ค๋ฆฌ๋ฅผ ๋งŒ๋“ค์–ด์ค€๋‹ค๋ฉด,
09:33
you could make it as maneuverable as any that's ever been built.
152
573330
6000
์ง€๊ธˆ๊นŒ์ง€์˜ ์–ด๋–ค ๊ฒƒ๋ณด๋‹ค๋„ ๋ฐฉํ–ฅ ์กฐ์ข…์ด ์‰ฌ์šด ๋กœ๋ด‡์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
09:39
Here's the first example of that. This is the Stanford
153
579330
2000
๊ทธ ์ฒซ ๋ฒˆ์งธ ์˜ˆ๊ฐ€ ๋ฐ”๋กœ, ์Šคํƒ ํฌ๋“œ๋Œ€ํ•™์˜ ํ˜•์ƒ์นจ์ฐฉ์ œ์กฐ๋ฒ•(SDM)์„
09:41
Shape Deposition Manufactured robot, named Sprawl.
154
581330
3000
ํ™œ์šฉํ•ด์„œ ๋งŒ๋“  Sprawl์ด๋ผ๋Š” ์ด๋ฆ„์˜ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
09:44
It has six legs -- there are the tuned, springy legs.
155
584330
6000
6๊ฐœ์˜ ๋‹ค๋ฆฌ๊ฐ€ ์žˆ๊ณ  -- ์กฐ์ •๋œ ์Šคํ”„๋ง ๋‹ค๋ฆฌ๋“ค์ž…๋‹ˆ๋‹ค.
09:50
It moves in a gait that an insect uses, and here it is
156
590330
3000
๊ณค์ถฉ์˜ ๊ฑธ์Œ๊ฑธ์ด ๊ทธ๋Œ€๋กœ ์›€์ง์ด๋Š”๋ฐ์š”,
09:53
going on the treadmill. Now, what's important about this robot,
157
593330
7000
์ด์ œ ๋Ÿฌ๋‹๋จธ์‹  ์œ„์— ์˜ฌ๋ผ๊ฐ€๋„ค์š”. ์—ฌ๊ธฐ์„œ ์ด ๋กœ๋ด‡์— ๋Œ€ํ•ด ์ค‘์š”ํ•œ ์ ์€,
10:00
compared to other robots, is that it can't see anything,
158
600330
3000
๋‹ค๋ฅธ ๋กœ๋ด‡๋“ค๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ์•„๋ฌด๊ฒƒ๋„ ๋ณผ ์ˆ˜ ์—†๊ณ ,
10:03
it can't feel anything, it doesn't have a brain, yet it can maneuver
159
603330
6000
์•„๋ฌด๊ฒƒ๋„ ๋Š๋‚„ ์ˆ˜ ์—†๊ณ , ๋‡Œ๋„ ์—†์ง€๋งŒ, ์žฅ์• ๋ฌผ๋“ค์„ ํ”ผํ•ด
10:09
over these obstacles without any difficulty whatsoever.
160
609330
6000
์›€์ง์ด๋Š” ๋ฐ์— ์•„๋ฌด๋Ÿฐ ์–ด๋ ค์›€์ด ์—†๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
10:15
It's this technique of building the properties into the form.
161
615330
4000
์ด๊ฒƒ์ด ๋ฐ”๋กœ ์–ด๋– ํ•œ ํ˜•ํƒœ์— ์†์„ฑ์„ ๋ถ€์—ฌํ•˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.
10:19
This is a graduate student. This is what he's doing to his thesis project --
162
619330
3000
์ด๊ฒƒ์€ ํ•œ ๋Œ€ํ•™์›์ƒ์ด ํ•™์œ„๋…ผ๋ฌธ ํ”„๋กœ์ ํŠธ๋กœ ๋งŒ๋“ค๊ณ  ์žˆ๋Š” ๊ฒƒ์ธ๋ฐ์š”,
10:22
very robust, if a graduate student
163
622330
2000
์‚ฌ์‹ค, ๋Œ€ํ•™์›์ƒ์˜ ํ•™์œ„๋…ผ๋ฌธ ํ”„๋กœ์ ํŠธ์น˜๊ณ ๋Š”
10:24
does that to his thesis project.
164
624330
2000
์ข€ ํž˜๋“  ๊ณผ์ œ์ฃ .
10:26
(Laughter)
165
626330
1000
(์›ƒ์Œ)
10:27
This is from McGill and University of Michigan. This is the RHex,
166
627330
4000
์ด๊ฒƒ์€ ๋งฅ๊ธธ๊ณผ ๋ฏธ์‹œ์นธ ๋Œ€ํ•™์—์„œ ๋งŒ๋“ , RHex ์ธ๋ฐ,
10:31
making its first outing in a demo.
167
631330
3000
์ฒซ๋ฒˆ์งธ ๋ฐ๋ชจ ์‹คํ—˜์„ ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
10:34
(Laughter)
168
634330
4000
(์›ƒ์Œ)
10:38
Same principle: it only has six moving parts,
169
638330
5000
๊ฐ™์€ ์›๋ฆฌ์ž…๋‹ˆ๋‹ค. ์›€์ง์ด๋Š” ๋ถ€๋ถ„์€ ๋‹จ 6๊ตฐ๋ฐ ์ž…๋‹ˆ๋‹ค.
10:43
six motors, but it has springy, tuned legs. It moves in the gait of the insect.
170
643330
6000
6๊ฐœ์˜ ๋ชจํ„ฐ, ํ•˜์ง€๋งŒ ์Šคํ”„๋ง๊ฐ™์€ ์ž˜ ์กฐ์ ˆ๋œ ๋‹ค๋ฆฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณค์ถฉ์˜ ๊ฑธ์Œ๊ฑธ์ด์ฒ˜๋Ÿผ ์›€์ง์ด์ฃ .
10:49
It has the middle leg moving in synchrony with the front,
171
649330
4000
๊ฐ€์šด๋ฐ ๋‹ค๋ฆฌ๊ฐ€ ๋ฐ˜๋Œ€์ชฝ์˜ ์•ž๋‹ค๋ฆฌ, ๋’ท๋‹ค๋ฆฌ์™€ ๋™์‹œ์— ๊ฐ™์ด ์›€์ง์ด์ฃ .
10:53
and the hind leg on the other side. Sort of an alternating tripod,
172
653330
4000
๋‹ค๋ฆฌ ์„ธ ๊ฐœ์”ฉ ์„œ๋กœ ๊ต์ฐจํ•˜๋ฉด์„œ ์›€์ง์ธ๋‹ค๊ณ  ๋ณด์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค.
10:57
and they can negotiate obstacles just like the animal.
173
657330
4000
๊ทธ๋ฆฌ๊ณ  ์ง„์งœ ๋™๋ฌผ๋“ค์ฒ˜๋Ÿผ ์žฅ์• ๋ฌผ์„ ๋„˜์–ด๋‹ค๋‹ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:01
(Laughter)
174
661330
6000
(์›ƒ์Œ)
11:07
(Voice: Oh my God.)
175
667330
1000
[์„ธ์ƒ์—!]
11:08
(Applause)
176
668330
5000
(๋ฐ•์ˆ˜)
11:13
Robert Full: It'll go on different surfaces -- here's sand --
177
673330
2000
๋‹ค๋ฅธ ์ง€๋ฉด์—์„œ๋„ ๊ฑฐ์นจ์—†์Šต๋‹ˆ๋‹ค, ์—ฌ๊ธฐ๋Š” ๋ชจ๋ž˜๋„ค์š”,
11:15
although we haven't perfected the feet yet, but I'll talk about that later.
178
675330
5000
์•„์ง ๋ฐœ์„ ์™„์„ฑํ•˜์ง€๋Š” ๋ชปํ–ˆ์ง€๋งŒ, ๋‚˜์ค‘์— ์•Œ๋ ค๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
11:20
Here's RHex entering the woods.
179
680330
3000
RHex๊ฐ€ ์ˆฒ์œผ๋กœ ๋“ค์–ด๊ฐ€๋„ค์š”.
11:23
(Laughter)
180
683330
2000
(์›ƒ์Œ)
11:38
Again, this robot can't see anything, it can't feel anything,
181
698330
4000
๋‹ค์‹œ ๋งํ•˜์ง€๋งŒ ์ด ๋กœ๋ด‡์€ ์•„๋ฌด๊ฒƒ๋„ ๋ณผ์ˆ˜ ์—†๊ณ , ์•„๋ฌด๊ฒƒ๋„ ๋Š๋‚„ ์ˆ˜ ์—†๊ณ , ๋‡Œ๋„ ์—†์Šต๋‹ˆ๋‹ค.
11:42
it has no brain. It's just working with a tuned mechanical system,
182
702330
6000
์ด๊ฒƒ์€ ๋‹จ์ง€ ์กฐ์ ˆ๋œ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ๊ณผ ๋งค์šฐ ๋‹จ์ˆœํ•œ ๋ถ€ํ’ˆ๋“ค๋กœ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.
11:48
with very simple parts, but inspired from the fundamental dynamics of the animal.
183
708330
10000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ์€ ๋™๋ฌผ๋“ค์˜ ๊ธฐ๋ณธ์  ์›€์ง์ž„์œผ๋กœ๋ถ€ํ„ฐ ์˜๊ฐ์„ ๋ฐ›์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:58
(Voice: Ah, I love him, Bob.) RF: Here's it going down a pathway.
184
718330
8000
[์•„, ์ €๊ฑฐ ๊ดœ์ฐฎ์€๋ฐ์š”, Bob.] ์ด์ œ ๊ธธ๋ชฉ์„ ์ง€๋‚˜๊ฐ€๋„ค์š”.
12:06
I presented this to the jet propulsion lab at NASA, and they said
185
726330
3000
์ €๋Š” ์ด๊ฒƒ์„ NASA์˜ ์ œํŠธ์ถ”์ง„์—ฐ๊ตฌ์†Œ์—์„œ ๋ฐœํ‘œํ•œ ์ ์ด ์žˆ๋Š”๋ฐ์š”,
12:09
that they had no ability to go down craters to look for ice,
186
729330
4000
๊ทธ๋“ค ๋ง์ด, ์ž๊ธฐ๋“ค ์žฅ๋น„๋กœ๋Š” ํ™”์„ฑ์˜ ์–ผ์Œ์ด๋‚˜ ์ƒ๋ช…์ฒด๋ฅผ ์ฐพ๊ธฐ์œ„ํ•ด
12:13
and life, ultimately, on Mars. And he said --
187
733330
4000
๋ถ„ํ™”๊ตฌ ์†์„ ๋‚ด๋ ค๊ฐˆ ๋Šฅ๋ ฅ์ด ์—†๋‹ค๊ณ  ํ•˜๋”๊ตฐ์š”.
12:17
especially with legged-robots, because they're way too complicated.
188
737330
2000
ํŠนํžˆ ๋ถ„ํ™”๊ตฌ ์ง€๋ฉด์ด ๋„ˆ๋ฌด ๋ณต์žกํ•ด์„œ, ๋‹ค๋ฆฌ ๋‹ฌ๋ฆฐ ๋กœ๋ด‡์˜ ๊ฒฝ์šฐ๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค๊ตฌ์š”.
12:19
Nothing can do that. And I talk next. I showed them this video
189
739330
5000
๊ทธ๋ž˜์„œ ๋‹ค์Œ์œผ๋กœ ์ œ๊ฐ€ ์–˜๊ธฐํ–ˆ์ฃ . ๊ทธ๋“ค์„ ์„ค๋“ํ•˜๊ธฐ ์œ„ํ•ด์„œ
12:24
with the simple design of RHex here. And just to convince them
190
744330
3000
RHex์˜ ๊ฐ„๋‹จํ•œ ๋””์ž์ธ์„ ์†Œ๊ฐœํ•œ ๋™์˜์ƒ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ,
12:27
we should go to Mars in 2011, I tinted the video orange
191
747330
4000
์šฐ๋ฆฌ๊ฐ€ 2011๋…„์—๋Š” ํ™”์„ฑ์œผ๋กœ ๊ฐ€์•ผ ํ•œ๋‹ค๊ณ ์š”. ์˜์ƒ์ด ์ฃผํ™ฉ์ƒ‰์ธ ์ด์œ ๋Š”
12:31
just to give them the sense of being on Mars.
192
751330
3000
ํ™”์„ฑ์— ์˜จ ๊ฒƒ ๊ฐ™์€ ๋Š๋‚Œ์„ ์ฃผ๊ธฐ ์œ„ํ•ด ๊ทธ๋Ÿฐ๊ฑฐ์—์š”.
12:34
(Laughter)
193
754330
1000
(์›ƒ์Œ)
12:35
(Applause)
194
755330
6000
(๋ฐ•์ˆ˜)
12:43
Another reason why animals have extraordinary performance,
195
763330
3000
๋™๋ฌผ๋“ค์ด ์–ด๋””๋“  ๊ฐˆ ์ˆ˜ ์žˆ๋Š” ์ด ๋†€๋ผ์šด ๋Šฅ๋ ฅ์„ ๊ฐ–๊ฒŒ ๋œ ์ด์œ ๋Š”,
12:46
and can go anywhere, is because they have an effective interaction
196
766330
3000
๊ทธ๋“ค์ด ํ™˜๊ฒฝ๊ณผ ํšจ๊ณผ์ ์œผ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
12:49
with the environment. The animal I'm going to show you,
197
769330
3000
๋‹ค์Œ์œผ๋กœ ์—ฌ๋Ÿฌ๋ถ„์—๊ฒŒ ๋ณด์—ฌ๋“œ๋ฆด ๋™๋ฌผ์€
12:52
that we studied to look at this, is the gecko.
198
772330
4000
์šฐ๋ฆฌ๊ฐ€ ์—ฐ๊ตฌํ–ˆ๋˜ ๋„๋งˆ๋ฑ€์ž…๋‹ˆ๋‹ค.
12:56
We have one here and notice its position. It's holding on.
199
776330
7000
์—ฌ๊ธฐ ํ•œ ๋งˆ๋ฆฌ ์žˆ๋Š”๋ฐ์š”. ์ž์„ธ์— ์ฃผ๋ชฉํ•˜์„ธ์š”. ๋”ฑ ๋ถ™์–ด์žˆ์ฃ .
13:03
Now I'm going to challenge you. I'm going show you a video.
200
783330
3000
๊ทธ๋Ÿผ, ๋ฌธ์ œ ํ•˜๋‚˜ ๋“œ๋ฆฌ์ง€์š”. ๋น„๋””์˜ค๋ฅผ ํ•˜๋‚˜ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
13:06
One of the animals is going to be running on the level,
201
786330
2000
์ด ๋„๋งˆ๋ฑ€ ์ค‘ ํ•˜๋‚˜๋Š” ์ˆ˜ํ‰์„ ๋‹ฌ๋ฆฌ๋Š” ๊ฑฐ๊ณ ,
13:08
and the other one's going to be running up a wall. Which one's which?
202
788330
4000
ํ•˜๋‚˜๋Š” ๋ฒฝ์„ ํƒ€๊ณ  ์˜ค๋ฅด๋Š” ๊ฒ๋‹ˆ๋‹ค. ๊ตฌ๋ณ„ํ•˜์‹ค ์ˆ˜ ์žˆ๊ฒ ์–ด์š”?
13:12
They're going at a meter a second. How many think the one on the left
203
792330
5000
๋„๋งˆ๋ฑ€์€ ์ดˆ๋‹น 1๋ฏธํ„ฐ๋ฅผ ์›€์ง์ด๋Š”๋ฐ์š”. ์™ผ์ชฝ๋„๋งˆ๋ฑ€์ด ๋ฒฝ์„ ๊ธฐ์–ด์˜ค๋ฅธ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋Š” ๋ถ„์€
13:17
is running up the wall?
204
797330
2000
๋ช‡ ๋ถ„์ด๋‚˜ ๋˜์‹œ๋‚˜์š”?
13:19
(Applause)
205
799330
4000
(๋ฐ•์ˆ˜)
13:23
Okay. The point is it's really hard to tell, isn't it? It's incredible,
206
803330
5000
์ข‹์Šต๋‹ˆ๋‹ค. ์ด ์‹œ์ ์—์„œ๋Š” ๋งค์šฐ ๋ถ„๊ฐ„ํ•˜๊ธฐ ํž˜๋“ค์ง€์š”, ๊ทธ๋ ‡์ฃ ? ์ •๋ง ๋†€๋ž์Šต๋‹ˆ๋‹ค.
13:28
we looked at students do this and they couldn't tell.
207
808330
2000
ํ•™์ƒ๋“ค์—๊ฒŒ๋„ ๊ฐ™์€ ์งˆ๋ฌธ์„ ํ–ˆ์—ˆ๋Š”๋ฐ ๊ทธ๋“ค๋„ ๋ถ„๊ฐ„์„ ๋ชปํ•˜๋”๊ตฐ์š”.
13:30
They can run up a wall at a meter a second, 15 steps per second,
208
810330
3000
๋„๋งˆ๋ฑ€์€ ์ดˆ๋‹น 1m ์†๋„๋กœ ๋ฒฝ์„ ์˜ค๋ฅด๊ณ , 15๊ฑธ์Œ์„ ๊ฑท์ง€๋งŒ,
13:33
and they look like they're running on the level. How do they do this?
209
813330
4000
์—ฌ์ „ํžˆ ์ˆ˜ํ‰์œผ๋กœ ๋›ฐ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค. ์–ด๋–ป๊ฒŒ ํ•˜๋Š” ๊ฑธ๊นŒ์š”?
13:37
It's just phenomenal. The one on the right was going up the hill.
210
817330
6000
์ •๋ง ๊ฒฝ์ด๋กญ์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ์˜ค๋ฅธ์ชฝ์— ์žˆ๋Š”๊ฒŒ ๋ฒฝ์„ ์˜ค๋ฅด๋Š” ๊ฒ๋‹ˆ๋‹ค.
13:43
How do they do this? They have bizarre toes. They have toes
211
823330
4000
์–˜๋“ค์ด ์ด๊ฑธ ์–ด๋–ป๊ฒŒ ํ•˜๋ƒํ•˜๋ฉด -- ๊ทธ๋“ค์€ ํŠน์ดํ•œ ๋ฐœ๊ฐ€๋ฝ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค -- ์ด๋“ค์˜ ๋ฐœ๊ฐ€๋ฝ์€
13:47
that uncurl like party favors when you blow them out,
212
827330
4000
์ž…์œผ๋กœ ๋ถˆ๋ฉด, ๋ฌด์Šจ ํŒŒํ‹ฐ์—์„œ ์„ ๋ฌผ ๋‚˜๋ˆ ์ฃผ๋“ฏ ๋ฌด์–ธ๊ฐ€๋ฅผ ํ’€์–ด๋‚ด๋Š”๋ฐ,
13:51
and then peel off the surface, like tape.
213
831330
3000
๊ทธ๋ฆฌ๊ณ  ํ‘œ๋ฉด์— ํ…Œ์ดํ”„ ์ฒ˜๋Ÿผ ์–‡๊ฒŒ ๋ฒ—๊ฒจ๋ƒ…๋‹ˆ๋‹ค.
13:54
Like if we had a piece of tape now, we'd peel it this way.
214
834330
2000
๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ํ…Œ์ดํ”„๊ฐ€ ์žˆ๋‹ค๋ฉด ์ด๋Ÿฐ ์‹์œผ๋กœ ๋ฒ—๊ฒจ๋‚ด๊ฒ ์ง€์š”.
13:56
They do this with their toes. It's bizarre! This peeling inspired
215
836330
7000
๊ฒƒ์„ ๋ฐœ๊ฐ€๋ฝ์œผ๋กœ ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค. ์ •๋ง ํŠน์ดํ•˜์ฃ .
14:03
iRobot -- that we work with -- to build Mecho-Geckos.
216
843330
3000
iRobot์‚ฌ๋Š” ์ด ๋™์ž‘์— ํžŒํŠธ๋ฅผ ์–ป์–ด์„œ Mecho-Gecko ๋กœ๋ด‡์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
14:06
Here's a legged version and a tractor version, or a bulldozer version.
217
846330
7000
๋‹ค๋ฆฌ๋ฅผ ๋‹จ ๋ฒ„์ „๊ณผ ๊ฒฌ์ธ์ฐจ ๋ฒ„์ „, ๋˜๋Š” ๋ถˆ๋„์ € ๋ฒ„์ „์ด ์žˆ์ฃ .
14:13
Let's see some of the geckos move with some video,
218
853330
2000
๋„๋งˆ๋ฑ€๋“ค์˜ ์›€์ง์ž„์„ ๋‹ด์€ ์˜์ƒ ๋ช‡๊ฐœ๋ฅผ ๋ณธ ํ›„,
14:15
and then I'll show you a little bit of a clip of the robots.
219
855330
3000
๋กœ๋ด‡๋“ค์„ ์ž ๊น ๋ณด์—ฌ๋“œ๋ฆด๊ป˜์š”.
14:18
Here's the gecko running up a vertical surface. There it goes,
220
858330
3000
์ด๊ฑด ์ˆ˜์ง๋ฉด์„ ๋›ฐ์–ด๊ฐ€๋Š” ๋„๋งˆ๋ฑ€์ž…๋‹ˆ๋‹ค. ์ง€๋‚˜๊ฐ”์ฃ ,
14:21
in real time. There it goes again. Obviously, we have to slow this down a little bit.
221
861330
7000
์‹ค์‹œ๊ฐ„์ž…๋‹ˆ๋‹ค. ๋˜ ์ง€๋‚˜๊ฐ”๋„ค์š”. ์•„๋ฌด๋ž˜๋„ ์ข€ ๋Š๋ฆฌ๊ฒŒ ํ•ด์•ผ๊ฒ ์–ด์š”.
14:28
You can't use regular cameras.
222
868330
2000
๊ทธ๋ƒฅ ๋ณดํ†ต ์นด๋ฉ”๋ผ๋กœ๋Š” ์•ˆ๋ฉ๋‹ˆ๋‹ค.
14:30
You have to take 1,000 pictures per second to see this.
223
870330
3000
์ด๊ฑธ ๋ณด๋ ค๋ฉด ์ดˆ๋‹น 1,000์žฅ์˜ ์‚ฌ์ง„์„ ์ฐ์–ด์•ผ ํ•˜๋Š”๋ฐ์š”
14:33
And here's some video at 1,000 frames per second.
224
873330
3000
์—ฌ๊ธฐ 1์ดˆ๋‹น 1,000ํ”„๋ ˆ์ž„์˜ ๋น„๋””์˜ค๋ฅผ ๋ณด์‹œ์ฃ .
14:36
Now, I want you to look at the animal's back.
225
876330
2000
์—ฌ๊ธฐ์„œ ์ด ๋™๋ฌผ์˜ ๋“ฑ์„ ์ฃผ๋ชฉํ•˜์…จ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค.
14:38
Do you see how much it's bending like that? We can't figure that out --
226
878330
3000
๋“ฑ์ด ํœ˜์–ด์ง€๋Š” ๊ฒŒ ๋ณด์ด์ฃ ? ์šฐ๋ฆฌ๋Š” ์•„์ง ๊ทธ ์ด์œ ๋ฅผ ์ฐพ์ง€๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.
14:41
that's an unsolved mystery. We don't know how it works.
227
881330
3000
์•„์ง ํ’€์ง€ ๋ชปํ•œ ๋ฏธ์Šคํ…Œ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ € ๋™์ž‘์ด ๋ฌด์Šจ ์—ญํ• ์„ ํ•˜๋Š”์ง€ ๋ชฐ๋ผ์š”.
14:44
If you have a son or a daughter that wants to come to Berkeley,
228
884330
3000
๋งŒ์•ฝ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ž๋…€๋“ค์ด ๋ฒ„ํด๋ฆฌ๋Œ€์— ๊ฐ€๋ คํ•œ๋‹ค๋ฉด,
14:47
come to my lab and we'll figure this out. Okay, send them to Berkeley
229
887330
4000
์ œ ์—ฐ๊ตฌ์‹ค์—์„œ ํ•จ๊ป˜ ํ•ด๊ฒฐํ•˜๋ฉด ์ข‹๊ฒ ๋„ค์š”. ์ž, ๋ฒ„ํด๋ฆฌ๋กœ ๋ณด๋‚ด์„ธ์š”.
14:51
because that's the next thing I want to do. Here's the gecko mill.
230
891330
3000
์ œ ๋‹ค์Œ๋ชฉํ‘œ๊ฐ€ ๊ทธ ์ด์œ ๋ฅผ ์ฐพ๋Š” ๊ฒ๋‹ˆ๋‹ค. ์ด๊ฑด ๋„๋งˆ๋ฑ€ ๋Ÿฌ๋‹๋จธ์‹  ์ด๊ตฌ์š”.
14:54
(Laughter)
231
894330
1000
(์›ƒ์Œ)
14:55
It's a see-through treadmill with a see-through treadmill belt,
232
895330
3000
ํˆฌ๋ช…ํ•œ ๋ฒจํŠธ๋กœ ๋งŒ๋“  ๋Ÿฌ๋‹๋จธ์‹ ์ธ๋ฐ์š”,
14:58
so we can watch the animal's feet, and videotape them
233
898330
3000
๋™๋ฌผ๋“ค์˜ ๋ฐœ์„ ๋ณผ ์ˆ˜ ์žˆ์–ด์„œ, ๋น„๋””์˜ค ๋…นํ™”๋ฅผ ํ•œํ›„
15:01
through the treadmill belt, to see how they move.
234
901330
3000
์–ด๋–ป๊ฒŒ ์›€์ง์ด๋‚˜ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:04
Here's the animal that we have here, running on a vertical surface.
235
904330
4000
์ง€๊ธˆ ๋ณด์‹œ๋Š” ๋™๋ฌผ์€ ์ˆ˜์ง๋ฉด์„ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋Š”๋ฐ,
15:08
Pick a foot and try to watch a toe, and see if you can see what the animal's doing.
236
908330
6000
๋‹ค๋ฆฌ ํ•˜๋‚˜๋ฅผ ๊ณจ๋ผ ๋ฐœ๊ฐ€๋ฝ์„ ์œ ์‹ฌํžˆ ๋ณด์‹œ๋ฉด, ๋ญ˜ ํ•˜๋Š”์ง€ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:14
See it uncurl and then peel these toes.
237
914330
2000
๊ทธ๊ฒƒ์ด ์ด ๋ฐœ๊ฐ€๋ฝ๋“ค์„ ํŽด๊ณ , ๋ฒ—์–ด๋‚ด๋Š” ๊ฒƒ์„ ๋ณด์„ธ์š”.
15:16
It can do this in 14 milliseconds. It's unbelievable.
238
916330
7000
์ด ๋™์ž‘์„ 0.014์ดˆ๋งŒ์— ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋†€๋ž์ฃ .
15:23
Here are the robots that they inspire, the Mecho-Geckos from iRobot.
239
923330
4000
์ด๊ฒƒ์„ ๋ฐ”ํƒ•์œผ๋กœ ๋งŒ๋“ , iRobot์‚ฌ์˜ Mecho-Gecko์ž…๋‹ˆ๋‹ค.
15:27
First we'll see the animals toes peeling -- look at that.
240
927330
5000
๋จผ์ € ๋ฐœ๊ฐ€๋ž์„ ๋ฒ—๊ฒจ๋‚ด๋Š” ๋™์ž‘์„ ๋ณด์‹œ์ฃ  -- ์ €๊ฑฐ ์ข€ ๋ณด์„ธ์š”.
15:32
And here's the peeling action of the Mecho-Gecko.
241
932330
4000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์ด Mecho-Gecko์˜ ๋ฒ—๊ฒจ๋‚ด๊ธฐ ๋™์ž‘์ž…๋‹ˆ๋‹ค.
15:36
It uses a pressure-sensitive adhesive to do it.
242
936330
3000
๋กœ๋ด‡์€ ์••๋ ฅ๊ฐ์ง€ ์ ‘์ฐฉ๊ธฐ๋ฅผ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค.
15:39
Peeling in the animal. Peeling in the Mecho-Gecko --
243
939330
3000
๋™๋ฌผ์˜ ๋ฒ—๊ฒจ๋‚ด๊ธฐ ๋™์ž‘๊ณผ, Mecho-Gecko์˜ ๋ฒ—๊ฒจ๋‚ด๊ธฐ ๋™์ž‘์ž…๋‹ˆ๋‹ค.
15:42
that allows them climb autonomously. Can go on the flat surface,
244
942330
3000
ํ‰ํ‰ํ•œ ๋ฉด๋„ ์Šค์Šค๋กœ ํƒ€๊ณ  ์˜ฌ๋ผ๊ฐˆ ์ˆ˜ ์žˆ๊ณ ,
15:45
transition to a wall, and then go onto a ceiling.
245
945330
3000
๋ฒฝ์—์„œ๋„ ์ด๋™ํ•˜๊ณ , ์ฒœ์žฅ๋„ ๊ฐˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:48
There's the bulldozer version. Now, it doesn't use pressure-sensitive glue.
246
948330
6000
์ด๊ฑด ๋ถˆ๋„์ € ๋ฒ„์ „์ž…๋‹ˆ๋‹ค. ์ด๊ฑด ์••๋ ฅ๊ฐ์ง€ ์ ‘์ฐฉ๊ธฐ๋ฅผ ์ด์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
15:54
The animal does not use that.
247
954330
2000
๋™๋ฌผ์€ ๊ทธ๊ฒƒ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์ฃ .
15:56
But that's what we're limited to, at the moment.
248
956330
2000
ํ•˜์ง€๋งŒ ์—ฌ๊ธฐ์„œ ํ•œ๊ณ„์ ์— ๋ด‰์ฐฉํ•ฉ๋‹ˆ๋‹ค.
15:58
What does the animal do? The animal has weird toes.
249
958330
5000
๋™๋ฌผ์€ ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์š”? ๋™๋ฌผ์€ ์ด์ƒํ•œ ๋ฐœ๊ฐ€๋ฝ์„ ๊ฐ–๊ณ  ์žˆ์ฃ ,
16:03
And if you look at the toes, they have these little leaves there,
250
963330
4000
๊ทธ๋ฆฌ๊ณ  ๋ฐœ๊ฐ€๋ฝ์„ ๋ณด์‹œ๋ฉด, ์—ฌ๊ธฐ ์ž‘์€ ๋งํŒ๋“ค์ด ์žˆ๊ณ ,
16:07
and if you blow them up and zoom in, you'll see
251
967330
2000
๋” ํฌ๊ฒŒ ํ™•๋Œ€ํ•ด์„œ ๋ณด๋ฉด,
16:09
that's there's little striations in these leaves.
252
969330
3000
์ด ๋งํŒ๋“ค์—๋Š” ์ž‘์€ ์ค„๋ฌด๋Šฌ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
16:12
And if you zoom in 270 times, you'll see it looks like a rug.
253
972330
7000
270๋ฐฐ ํ™•๋Œ€ํ•˜๋ฉด, ๋ฌด์Šจ ์–‘ํƒ„์ž์ฒ˜๋Ÿผ ์ƒ๊ฒผ์Šต๋‹ˆ๋‹ค.
16:19
And if you blow that up, and zoom in 900 times,
254
979330
3000
๋” ํฌ๊ฒŒ, 900๋ฐฐ ํ™•๋Œ€ํ•ด๋ณด๋ฉด,
16:22
you see there are hairs there, tiny hairs. And if you look carefully,
255
982330
5000
๊ฑฐ๊ธฐ์— ํ„ธ๋“ค์ด ์žˆ๋Š”๋ฐ, ์ž‘์€ ํ„ธ๋“ค์ด์ฃ . ๊ทธ๊ฑธ ์ž์„ธํžˆ ๋ณด๋ฉด
16:27
those tiny hairs have striations. And if you zoom in on those 30,000 times,
256
987330
6000
๊ทธ ์ž‘์€ ํ„ธ๋“ค์—๋„ ์ค„๋ฌด๋Šฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฑธ 30,000๋ฐฐ ํ™•๋Œ€ํ•˜๋ฉด,
16:33
you'll see each hair has split ends.
257
993330
3000
๊ฐ ํ„ธ ๋์ด ๋‘ ๊ฐˆ๋ž˜๋กœ ๋‚˜๋ˆ ์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.
16:36
And if you blow those up, they have these little structures on the end.
258
996330
5000
ํฌ๊ฒŒ ๋ณด๋ฉด, ๋์— ์ž‘์€ ๊ตฌ์กฐ๋“ค์ด ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
16:41
The smallest branch of the hairs looks like spatulae,
259
1001330
2000
ํ„ธ์˜ ๊ฐ€์žฅ ์ž‘์€ ๊ฐ€์ง€๋Š” ์ฃผ๊ฑฑ ์ฒ˜๋Ÿผ ์ƒ๊ฒผ๊ณ 
16:43
and an animal like that has one billion of these nano-size split ends,
260
1003330
7000
ํ•œ๋งˆ๋ฆฌ๊ฐ€ ์ด๋Ÿฐ ๋‚˜๋…ธํฌ๊ธฐ์˜ ๊ฐˆ๋ผ์ง„ ๋์„ 10์–ต๊ฐœ๋‚˜ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—,
16:50
to get very close to the surface. In fact, there's the diameter of your hair --
261
1010330
5000
๋ฒฝ์— ๋‹ฌ๋ผ๋ถ™๋Š”๊ฒ๋‹ˆ๋‹ค. ์ด๊ฒŒ ์—ฌ๋Ÿฌ๋ถ„ ๋จธ๋ฆฌ์นด๋ฝ์˜ ์ง๊ฒฝ์ด๊ณ ,
16:55
a gecko has two million of these, and each hair has 100 to 1,000 split ends.
262
1015330
6000
๋„๋งˆ๋ฑ€์€ ์ด๋Ÿฐ ํ„ธ์„ 200๋งŒ๊ฐœ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ๊ฐ ํ„ธ์€ 100๊ฐœ์—์„œ 1000๊ฐœ์˜ ๊ฐˆ๋ž˜๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.
17:01
Think of the contact of that that's possible.
263
1021330
3000
๊ทธ๊ฒƒ๋“ค์ด ๋ถ™์–ด์žˆ๋Š”๊ฑธ ์ƒ์ƒํ•ด๋ณด์„ธ์š”. ์ถฉ๋ถ„ํžˆ ๊ฐ€๋Šฅํ•˜์ฃ .
17:04
We were fortunate to work with another group
264
1024330
2000
์šด ์ข‹๊ฒŒ๋„, ์Šคํƒ ํฌ๋“œ์˜ ๋˜ ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ง„์ด
17:06
at Stanford that built us a special manned sensor,
265
1026330
2000
์šฐ๋ฆฌ๋ฅผ ์œ„ํ•ด ํŠน๋ณ„ํ•œ ์ˆ˜๋™์„ผ์„œ๋ฅผ ๋งŒ๋“ค์–ด ์ฃผ์–ด์„œ
17:08
that we were able to measure the force of an individual hair.
266
1028330
3000
ํ„ธ ํ•˜๋‚˜์˜ ํž˜์„ ์ธก์ • ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
17:11
Here's an individual hair with a little split end there.
267
1031330
5000
์—ฌ๊ธฐ ๋งŽ์ง€ ์•Š์€ ๊ฐˆ๋ž˜๋์„ ๊ฐ€์ง„ ํ„ธ ํ•œ๊ฐ€๋‹ฅ์ด ์žˆ๋Š”๋ฐ์š”,
17:16
When we measured the forces, they were enormous.
268
1036330
2000
์ด๊ฒƒ์˜ ํž˜์„ ์ธก์ •ํ•ด๋ณด๋ฉด, ์—„์ฒญ๋‚œ ํž˜์„ ๋ฐœํœ˜ํ–ˆ์Šต๋‹ˆ๋‹ค.
17:18
They were so large that a patch of hairs about this size --
269
1038330
3000
์ด ์ •๋„ ํฌ๊ธฐ์˜ ํ„ธ๋กœ๋„ ํž˜์ด ๋„ˆ๋ฌด๋‚˜ ์„ธ์„œ,
17:21
the gecko's foot could support the weight of a small child,
270
1041330
4000
๋„๋งˆ๋ฑ€์˜ ๋ฐœ๋ฐ”๋‹ฅ์ด๋ผ๋ฉด ์•ฝ 18kg์˜ ์ž‘์€ ์–ด๋ฆฐ์•„์ด๋„
17:25
about 40 pounds, easily. Now, how do they do it?
271
1045330
4000
๋“ค ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค. ์ด๊ฒŒ ์–ด๋–ป๊ฒŒ ๊ฐ€๋Šฅํ• ๊นŒ์š”?
17:29
We've recently discovered this. Do they do it by friction?
272
1049330
4000
์šฐ๋ฆฐ ์ตœ๊ทผ์—์•ผ ๊ทธ ์ด์œ ๋ฅผ ์•Œ์•„๋ƒˆ์Šต๋‹ˆ๋‹ค. ๋งˆ์ฐฐ์„ ์ด์šฉํ•˜๋Š” ๊ฑธ๊นŒ์š”?
17:33
No, force is too low. Do they do it by electrostatics?
273
1053330
3000
์•„๋‹ˆ์š”, ํž˜์ด ๋„ˆ๋ฌด ์•ฝํ•ด์š”. ๊ทธ๋Ÿผ ์ •์ „๊ธฐ๋ฅผ ์ด์šฉํ•˜๋Š” ๊ฑธ๊นŒ์š”?
17:36
No, you can change the charge -- they still hold on.
274
1056330
2000
์•„๋‹ˆ์š”, ์ „ํ•˜๋ฅผ ๋ฐ”๊ฟ”๋„, ๊ทธ๋“ค์€ ๊ณ„์† ๋ถ™์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
17:38
Do they do it by interlocking? That's kind of a like a Velcro-like thing.
275
1058330
3000
์„œ๋กœ ๋งž๋ฌผ๋ฆฌ๊ฒŒ ํ•˜๋Š” ๊ฑธ๊นŒ์š”? ๋ฒจํฌ๋กœ ์ ‘์ฐฉํฌ ๊ฐ™์€ ๊ฑฐ ๋ง์ด์ฃ .
17:41
No, you can put them on molecular smooth surfaces -- they don't do it.
276
1061330
3000
์•„๋‹ˆ์š”, ๋„๋งˆ๋ฑ€์€ ์ •๋ง ๋งค๋ˆํ•œ๋ฉด์—๋„ ๋‹ฌ๋ผ๋ถ™์Šต๋‹ˆ๋‹ค. ๋‹ต์ด ์•„๋‹ˆ์ฃ .
17:44
How about suction? They stick on in a vacuum.
277
1064330
4000
ํก์ฐฉํ•˜๋Š” ๊ฑธ๊นŒ์š”? ์•„๋‡จ, ์ง„๊ณต์—๋„ ๋‹ฌ๋ผ๋ถ™์Šต๋‹ˆ๋‹ค.
17:48
How about wet adhesion? Or capillary adhesion?
278
1068330
3000
์ˆ˜๋ถ„ ์ ‘์ฐฉ์ผ๊นŒ์š”? ์•„๋‹ˆ๋ฉด ๋ชจ์„ธ๊ด€ ์ ‘์ฐฉ์ผ๊นŒ์š”?
17:51
They don't have any glue, and they even stick under water just fine.
279
1071330
3000
๊ทธ๋“ค์€ ์–ด๋–ค ์ ‘์ฐฉ์ œ๋„ ์—†๊ณ , ์‹ฌ์ง€์–ด ๋ฌผ์—์„œ๋„ ์ž˜ ๋ถ™์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
17:54
If you put their foot under water, they grab on.
280
1074330
2000
๋‹ค๋ฆฌ๋ฅผ ๋ฌผ์— ๋‹ด๊ถˆ๋„, ์ž˜ ์žก์Šต๋‹ˆ๋‹ค.
17:56
How do they do it then? Believe it or not, they grab on
281
1076330
4000
๊ทธ๋Ÿผ ์–ด๋–ป๊ฒŒ ํ•˜๋Š” ๊ฑธ๊นŒ์š”? ๋ฏฟ๊ฑฐ๋‚˜ ๋ง๊ฑฐ๋‚˜, ๋„๋งˆ๋ฑ€๋“ค์€
18:00
by intermolecular forces, by Van der Waals forces.
282
1080330
4000
๋ถ„์ž๊ฐ„์˜ ํž˜์„ ์ด์šฉํ•ฉ๋‹ˆ๋‹ค. '๋ฐ˜ ๋ฐ๋ฅด ๋ฐœ์Šค ํž˜'์ด๋ผ๋Š” ๊ฑด๋ฐ์š”.
18:04
You know, you probably had this a long time ago in chemistry,
283
1084330
2000
์•„์ฃผ ์˜ค๋ž˜์ „์— ํ™”ํ•™์‹œ๊ฐ„์— ๋ฐฐ์šฐ์…จ์„ํ…๋ฐ --
18:06
where you had these two atoms, they're close together,
284
1086330
2000
๊ฐ€๊นŒ์ด ์žˆ๋Š” ๋‘๊ฐœ์˜ ์›์ž๊ฐ€ ์žˆ๊ณ ,
18:08
and the electrons are moving around. That tiny force is sufficient
285
1088330
3000
์ „์ž๊ฐ€ ์ฃผ๋ณ€์„ ๋Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์ž‘์€ ํž˜์œผ๋กœ๋„
18:11
to allow them to do that because it's added up so many times
286
1091330
3000
๋ฒฝ์— ๋‹ฌ๋ผ๋ถ™๊ธฐ์— ์ถฉ๋ถ„ํ•˜์ฃ . ์™œ๋ƒํ•˜๋ฉด ์ด ์ž‘์€ ๊ตฌ์กฐ์•ˆ์˜ ํž˜๋“ค์ด
18:14
with these small structures.
287
1094330
3000
์—„์ฒญ๋‚˜๊ฒŒ ๋ชจ์—ฌ ๋”ํ•ด์ง€๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
18:17
What we're doing is, we're taking that inspiration of the hairs,
288
1097330
5000
์šฐ๋ฆฌ๊ฐ€ ํ•˜๊ณ  ์žˆ๋Š” ์ผ์€, ์ด ํ„ธ๋“ค์„ ๋ชจ๋ฐฉํ•ด์„œ,
18:22
and with another colleague at Berkeley, we're manufacturing them.
289
1102330
5000
๋ฒ„ํด๋ฆฌ์˜ ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ง„๋“ค๊ณผ ์ œํ’ˆ์„ ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
18:27
And just recently we've made a breakthrough, where we now believe
290
1107330
3000
๊ทธ๋ฆฌ๊ณ  ์ตœ๊ทผ์— ์šฐ๋ฆฌ๋Š” ๋ŒํŒŒ๊ตฌ๋ฅผ ๋งˆ๋ จํ–ˆ๋Š”๋ฐ, ์„ธ๊ณ„์ตœ์ดˆ๋กœ
18:30
we're going to be able to create the first synthetic, self-cleaning,
291
1110330
5000
์ž์ •๊ธฐ๋Šฅ์„ ๊ฐ€์ง„ ํ•ฉ์„ฑ ๊ฑด์‹ ์ ‘์ฐฉ์ œ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ผ ๊ฒƒ์ด๋ผ ๋ฏฟ์Šต๋‹ˆ๋‹ค.
18:35
dry adhesive. Many companies are interested in this.
292
1115330
5000
๋งŽ์€ ๊ธฐ์—…๋“ค์ด ์ด๊ฒƒ์— ๊ด€์‹ฌ์„ ๋ณด์ด๊ณ  ์žˆ์–ด์š”.
18:40
(Laughter)
293
1120330
3000
(์›ƒ์Œ)
18:43
We also presented to Nike even.
294
1123330
2000
์‹ฌ์ง€์–ด ๋‚˜์ดํ‚ค์—๋„ ๋ฐœํ‘œ ํ–ˆ์Šต๋‹ˆ๋‹ค.
18:45
(Laughter)
295
1125330
3000
(์›ƒ์Œ)
18:48
(Applause)
296
1128330
6000
(๋ฐ•์ˆ˜)
18:54
We'll see where this goes. We were so excited about this
297
1134330
3000
์ด๊ฑธ ์–ด๋–ป๊ฒŒ ๋ฐœ์ „์‹œํ‚ค๋Š”์ง€ ๋ณด์‹œ์ฃ . ์ด๊ฒƒ๋„ ์ฐธ ์žฌ๋ฐŒ๋Š”๋ฐ์š”.
18:57
that we realized that that small-size scale --
298
1137330
3000
์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์€ ์ด ์ •๋„๋กœ ์ž‘์€ ํฌ๊ธฐ์ด๋ฉด์„œ๋„
19:00
and where everything gets sticky, and gravity doesn't matter anymore --
299
1140330
3000
์–ด๋””์—๋‚˜ ๋‹ฌ๋ผ ๋ถ™๊ณ , ์ค‘๋ ฅ๋”ฐ์œ„๋Š” ๋”์ด์ƒ ๋ฌธ์ œ๊ฐ€ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค,
19:03
we needed to look at ants and their feet, because
300
1143330
3000
๋ฐ”๋กœ ๊ฐœ๋ฏธ์™€ ๊ทธ๊ฒƒ์˜ ๋ฐœ์„ ๊ด€์ฐฐํ•  ํ•„์š”๊ฐ€ ์žˆ๋Š”๋ฐ์š”, ์™œ๋ƒํ•˜๋ฉด
19:06
one of my other colleagues at Berkeley has built a six-millimeter silicone
301
1146330
5000
๋ฒ„ํด๋ฆฌ์˜ ์ œ ๋™๋ฃŒ ํ•˜๋‚˜๊ฐ€, ๋‹ค๋ฆฌ๋ฅผ ๊ฐ€์ง„ 6mm์งœ๋ฆฌ ์‹ค๋ฆฌ์ฝ˜ ๋กœ๋ด‡์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
19:11
robot with legs. But it gets stuck. It doesn't move very well.
302
1151330
3000
๊ทธ๋Ÿฐ๋ฐ ์•„์ง๊นŒ์ง€๋Š” ์žฅ์• ๋ฌผ์— ๊ฑธ๋ฆฌ๋ฉด, ์ž˜ ์›€์ง์ด์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
19:14
But the ants do, and we'll figure out why, so that ultimately
303
1154330
3000
ํ•˜์ง€๋งŒ ๊ฐœ๋ฏธ๋“ค์€ ๊ฐ€๋Šฅํ•˜์ฃ . ์šฐ๋ฆฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด์„œ,
19:17
we'll make this move. And imagine: you're going to be able
304
1157330
3000
์–ธ์  ๊ฐ€๋Š” ์›€์ง์ด๊ฒŒ ํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•œ๋ฒˆ ์ƒ์ƒํ•ด๋ณด์„ธ์š”.
19:20
to have swarms of these six-millimeter robots available to run around.
305
1160330
5000
์ด 6mm ๋กœ๋ด‡ ๋ฌด๋ฆฌ๋“ค์ด ์ฃผ๋ณ€์„ ๋Œ์•„๋‹ค๋‹ˆ๋Š” ๊ฒ๋‹ˆ๋‹ค.
19:25
Where's this going? I think you can see it already.
306
1165330
3000
์•ž์œผ๋กœ ์–ด๋–ค ์ผ๋“ค์ด ๋ฒŒ์–ด์งˆ๊นŒ์š”? ์ด๋ฏธ ๋ณด๊ณ  ๊ณ„์‹ ๋ฐ์š”.
19:28
Clearly, the Internet is already having eyes and ears,
307
1168330
4000
ํ‹€๋ฆผ์—†์ด ์ธํ„ฐ๋„ท์€ ์ด๋ฏธ ๋ˆˆ๊ณผ ๊ท€๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
19:32
you have web cams and so forth. But it's going to also have legs and hands.
308
1172330
4000
์›น์บ  ๊ฐ™์€ ๊ฒƒ๋“ค์ด์ฃ . ํ•˜์ง€๋งŒ ๋‹ค๋ฆฌ์™€ ํŒ”๋„ ๊ฐ–๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
19:36
You're going to be able to do programmable
309
1176330
2000
์—ฌ๋Ÿฌ๋ถ„์€ ์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ๋กœ๋ด‡๋“ค์„
19:38
work through these kinds of robots, so that you can run,
310
1178330
4000
ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , ์–ด๋””์„œ๋‚˜ ๋‹ฌ๋ฆฌ๊ณ ,
19:42
fly and swim anywhere. We saw David Kelly is at the beginning of that with his fish.
311
1182330
9000
๋‚ ๊ณ , ์ˆ˜์˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์‹œ์ž‘ํ•  ๋•Œ ๋ณด์…จ๋˜ David Kelly์™€ ๊ทธ์˜ ๋ฌผ๊ณ ๊ธฐ์ฒ˜๋Ÿผ์š”.
19:51
So, in conclusion, I think the message is clear.
312
1191330
2000
๊ฒฐ๋ก ์œผ๋กœ, ์ด๋Ÿฐ ๋ง์”€์„ ๋“œ๋ฆฌ๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.
19:53
If you need a message, if nature's not enough, if you care about
313
1193330
4000
๋งŒ์•ฝ ์–ด๋–ค ๊ตํ›ˆ์ด ํ•„์š”ํ•˜๋‹ค๋ฉด, ์ž์—ฐ๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑํ•˜๋‹ค๋ฉด,
19:57
search and rescue, or mine clearance, or medicine,
314
1197330
2000
์•„๋‹ˆ๋ฉด ์ˆ˜์ƒ‰, ๊ตฌ์กฐ์ž‘์—…, ์ง€๋ขฐ ์ œ๊ฑฐ, ์˜๋ฃŒ๋ถ„์•ผ,
19:59
or the various things we're working on, we must preserve
315
1199330
4000
๋˜๋Š” ์—ฌ๋Ÿฌ๋ถ„์ด ์†ํ•œ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ด€์‹ฌ์ด ์žˆ๋‹ค๋ฉด,
20:03
nature's designs, otherwise these secrets will be lost forever.
316
1203330
4000
์šฐ๋ฆฌ๋Š” ์ž์—ฐ์ด ๋งŒ๋“  ๊ฒƒ๋“ค์„ ๋ณด์กดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ์ง€ ์•Š์œผ๋ฉด ์ด ๋น„๋ฐ€๋“ค์€ ์˜์˜ ์‚ฌ๋ผ์งˆ๊ฒ๋‹ˆ๋‹ค.
20:07
Thank you.
317
1207330
1000
(๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค)
20:08
(Applause)
318
1208330
9000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7