Kwabena Boahen: Making a computer that works like the brain

96,587 views ใƒป 2008-07-30

TED


ูŠุฑุฌู‰ ุงู„ู†ู‚ุฑ ู†ู‚ุฑู‹ุง ู…ุฒุฏูˆุฌู‹ุง ููˆู‚ ุงู„ุชุฑุฌู…ุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุฃุฏู†ุงู‡ ู„ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ.

ุงู„ู…ุชุฑุฌู…: Mohamed Achraf BEN MOHAMED ุงู„ู…ุฏู‚ู‘ู‚: Anwar Dafa-Alla
00:18
I got my first computer when I was a teenager growing up in Accra,
0
18330
5000
ุญุตู„ุช ุนู„ู‰ ุฃูˆู„ ุญุงุณูˆุจ ุนู†ุฏู…ุง ูƒู†ุช ู…ุฑุงู‡ู‚ุง ููŠ ุฃูƒุฑุง ุŒ
00:23
and it was a really cool device.
1
23330
3000
ูˆูƒุงู† ุฌู‡ุงุฒุง ุฑุงุฆุนุง ุญู‚ุง.
00:26
You could play games with it. You could program it in BASIC.
2
26330
5000
ูŠู…ูƒู†ูƒ ุฃู† ู†ุณุชุนู…ู„ู‡ ู„ุชุดุบูŠู„ ุฃู„ุนุงุจุŒ ูŠู…ูƒู†ูƒ ุจุฑู…ุฌุชู‡ ุจุงุณุชุนู…ุงู„ ู„ุบุฉ ุงู„ุจุงุณูŠูƒ.
00:31
And I was fascinated.
3
31330
2000
ูˆู‚ุฏ ูƒู†ุช ู…ูุชูˆู†ุง ุจู‡.
00:33
So I went into the library to figure out how did this thing work.
4
33330
6000
ู„ุฐู„ูƒ ุฐู‡ุจุช ุฅู„ู‰ ุงู„ู…ูƒุชุจุฉ ู„ู…ุนุฑูุฉ ูƒูŠู ูŠุนู…ู„ ู‡ุฐุง ุงู„ุดูŠุก.
00:39
I read about how the CPU is constantly shuffling data back and forth
5
39330
5000
ู‚ุฑุฃุช ูƒูŠู ุชู†ู‚ู„ ูˆุญุฏุฉ ุงู„ู…ุนุงู„ุฌุฉ ุงู„ู…ุฑูƒุฒูŠุฉ ุจุดูƒู„ ู…ุณุชู…ุฑ ุงู„ุจูŠุงู†ุงุช ุฐู‡ุงุจุง ูˆุฅูŠุงุจุง
00:44
between the memory, the RAM and the ALU,
6
44330
4000
ุจูŠู† ุงู„ุฐุงูƒุฑุฉ ุŒ RAM ูˆ ALU ุŒ
00:48
the arithmetic and logic unit.
7
48330
2000
ูˆุญุฏุฉ ุงู„ุนู…ู„ูŠุงุช ุงู„ุญุณุงุจูŠุฉ ูˆุงู„ู…ู†ุทู‚ูŠุฉ.
00:50
And I thought to myself, this CPU really has to work like crazy
8
50330
4000
ูˆู‚ู„ุช ู„ู†ูุณูŠ ุŒ ุนู„ู‰ ูˆุญุฏุฉ ุงู„ู…ุนุงู„ุฌุฉ ุงู„ู…ุฑูƒุฒูŠุฉ ุฃู† ุชุนู…ู„ ุจุฌู†ูˆู†
00:54
just to keep all this data moving through the system.
9
54330
4000
ูู‚ุท ู„ู„ุญูุงุธ ุนู„ู‰ ุฌู…ูŠุน ู‡ุฐู‡ ุงู„ุจูŠุงู†ุงุช ุงู„ุชูŠ ุชู…ุฑ ุนุจุฑ ุงู„ู†ุธุงู….
00:58
But nobody was really worried about this.
10
58330
3000
ูˆู„ูƒู† ู„ุง ุฃุญุฏ ูƒุงู† ูŠุดุนุฑ ุจุงู„ู‚ู„ู‚ ุงุฒุงุก ู‡ุฐุง ุงู„ูˆุงู‚ุน.
01:01
When computers were first introduced,
11
61330
2000
ุนู†ุฏู…ุง ุนุฑุถุช ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ู„ุฃูˆู„ ู…ุฑุฉ ุŒ
01:03
they were said to be a million times faster than neurons.
12
63330
3000
ู‚ูŠู„ ุงู†ู‡ุง ุณุชูƒูˆู† ุฃุณุฑุน ู…ู„ูŠูˆู† ู…ุฑุฉ ู…ู† ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ.
01:06
People were really excited. They thought they would soon outstrip
13
66330
5000
ูˆ ู‚ุฏ ุจู‡ุฑ ุงู„ู†ุงุณ ุญู‚ุงุŒ ูƒุงู†ูˆุง ูŠุนุชู‚ุฏูˆู† ุฃู†ู‡ู… ุณูˆู ูŠุชุฌุงูˆุฒูˆู† ู‚ุฑูŠุจุง
01:11
the capacity of the brain.
14
71330
3000
ู‚ุฏุฑุฉ ุงู„ุฏู…ุงุบ.
01:14
This is a quote, actually, from Alan Turing:
15
74330
3000
ู‡ุฐุง ุงู‚ุชุจุงุณ ู…ู† ุขู„ุงู† ุชูˆุฑู†ุฌ :
01:17
"In 30 years, it will be as easy to ask a computer a question
16
77330
4000
"ููŠ ุบุถูˆู† 30 ุณู†ุฉุŒ ุณูŠูƒูˆู† ู…ู† ุงู„ุณู‡ู„ ุฃู† ู†ุณุฃู„ ุฌู‡ุงุฒ ูƒู…ุจูŠูˆุชุฑุŒ
01:21
as to ask a person."
17
81330
2000
ูƒู…ุง ู†ุณุฃู„ ุฃูŠ ุดุฎุต ".
01:23
This was in 1946. And now, in 2007, it's still not true.
18
83330
7000
ู‡ุฐุง ูƒุงู† ููŠ ุนุงู… 1946. ูˆุงู„ุขู† ููŠ ุนุงู… 2007 ุŒ ู„ุง ูŠุฒุงู„ ู‡ุฐุง ุบูŠุฑ ุตุญูŠุญ.
01:30
And so, the question is, why aren't we really seeing
19
90330
4000
ูˆุงู„ุณุคุงู„ ู‡ูˆ ุŒ ู„ู…ุงุฐุง ู„ุง ูŠู…ูƒู†ู†ุง ุฑุคูŠุฉ
01:34
this kind of power in computers that we see in the brain?
20
94330
4000
ู‡ุฐู‡ ุงู„ุฏุฑุฌุฉ ู…ู† ุงู„ุทุงู‚ุฉ ููŠ ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ูƒุงู„ุชูŠ ู†ุฑุงู‡ุง ููŠ ุงู„ุฏู…ุงุบุŸ
01:38
What people didn't realize, and I'm just beginning to realize right now,
21
98330
4000
ู…ุง ู„ุง ูŠุฏุฑูƒู‡ ุงู„ู†ุงุณ ุŒ ูˆู…ุง ุจุฏุฃุช ุฃุฏุฑูƒู‡ ุฃู†ุง ู„ู„ุชูˆุŒ
01:42
is that we pay a huge price for the speed
22
102330
2000
ู‡ูˆ ุฃู†ู†ุง ู†ุฏูุน ุซู…ู†ุง ูƒุจูŠุฑุง ู„ู„ุณุฑุนุฉ ุŒ
01:44
that we claim is a big advantage of these computers.
23
104330
4000
ูˆู‡ูˆ ู…ุง ู†ุฏุนูŠ ุฃู†ู‡ ุงู„ู…ูŠุฒุฉ ุงู„ูƒุจูŠุฑุฉ ู„ู‡ุฐู‡ ุงู„ุญูˆุงุณูŠุจ.
01:48
Let's take a look at some numbers.
24
108330
2000
ุฏุนูˆู†ุง ู†ู„ู‚ูŠ ู†ุธุฑุฉ ุนู„ู‰ ุจุนุถ ุงู„ุฃุฑู‚ุงู….
01:50
This is Blue Gene, the fastest computer in the world.
25
110330
4000
ู‡ุฐุง ู‡ูˆ ุจู„ูˆ ุฌูŠู† ุŒ ุงู„ูƒู…ุจูŠูˆุชุฑ ุงู„ุฃุณุฑุน ููŠ ุงู„ุนุงู„ู….
01:54
It's got 120,000 processors; they can basically process
26
114330
5000
ูŠุญุชูˆูŠ ุนู„ู‰ 120ุŒ000 ู…ุนุงู„ุฌุงุ› ูŠู…ูƒู†ู‡ ุนู…ู„ูŠุง ู…ุนุงู„ุฌุฉ
01:59
10 quadrillion bits of information per second.
27
119330
3000
10 ูƒุฏุฑูŠู„ูŠูˆู† ุจุช ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช ููŠ ุงู„ุซุงู†ูŠุฉ ุงู„ูˆุงุญุฏุฉ.
02:02
That's 10 to the sixteenth. And they consume one and a half megawatts of power.
28
122330
7000
ู‡ุฐุง ูŠู…ุซู„ 10 ู‚ูˆุฉ 16. ูƒู…ุง ุฃู†ู‡ุง ุชุณุชู‡ู„ูƒ ู…ูŠุฌุงูˆุงุช ูˆู†ุตู ู…ู† ุงู„ูƒู‡ุฑุจุงุก
02:09
So that would be really great, if you could add that
29
129330
3000
ุณูŠูƒูˆู† ุนุธูŠู…ุง ุญู‚ุง ุŒ ู„ูˆ ุชู…ูƒู†ุง ู…ู† ุงุถุงูุฉ ู‡ุฐุง
02:12
to the production capacity in Tanzania.
30
132330
2000
ู„ู‚ุฏุฑุฉ ุงู„ุฅู†ุชุงุฌ ููŠ ุชู†ุฒุงู†ูŠุง.
02:14
It would really boost the economy.
31
134330
2000
ุจุงู„ุชุฃูƒูŠุฏ ุณูŠุนุฒุฒ ู‡ุฐุง ุงู„ุงู‚ุชุตุงุฏ.
02:16
Just to go back to the States,
32
136330
4000
ุจุงู„ุนูˆุฏุฉ ุฅู„ู‰ ุงู„ูˆู„ุงูŠุงุช ุงู„ู…ุชุญุฏุฉุŒ
02:20
if you translate the amount of power or electricity
33
140330
2000
ุงุฐุง ู‚ุงุฑู†ุง ูƒู…ูŠุฉ ุงู„ุทุงู‚ุฉ ุฃูˆ ุงู„ูƒู‡ุฑุจุงุก
02:22
this computer uses to the amount of households in the States,
34
142330
3000
ุงู„ุชูŠ ูŠุณุชุฎุฏู…ู‡ุง ู‡ุฐุง ุงู„ูƒู…ุจูŠูˆุชุฑ ุจู…ุง ุชุณุชู‡ู„ูƒู‡ ุงู„ุฃุณุฑ ููŠ ุงู„ูˆู„ุงูŠุงุช ุงู„ู…ุชุญุฏุฉ ุŒ
02:25
you get 1,200 households in the U.S.
35
145330
4000
ุชุญุตู„ ุนู„ู‰ 1ุŒ200 ุฃุณุฑุฉ ููŠ ุงู„ูˆู„ุงูŠุงุช ุงู„ู…ุชุญุฏุฉ ุŒ
02:29
That's how much power this computer uses.
36
149330
2000
ู‡ุฐุง ู…ุฏู‰ ุงู„ู‚ูˆุฉ ุงู„ุชูŠ ูŠุณุชุฎุฏู…ู‡ุง ู‡ุฐุง ุงู„ูƒู…ุจูŠูˆุชุฑ.
02:31
Now, let's compare this with the brain.
37
151330
3000
ุงู„ุขู† ุŒ ุฏุนูˆู†ุง ู†ู‚ุงุฑู† ู‡ุฐุง ู…ุน ุงู„ุฏู…ุงุบ.
02:34
This is a picture of, actually Rory Sayres' girlfriend's brain.
38
154330
5000
ู‡ุฐู‡ ุตูˆุฑุฉ ุฏู…ุงุบ ุตุฏูŠู‚ุฉ ุฑูˆุฑูŠ ุณุงูŠุฑุณ .
02:39
Rory is a graduate student at Stanford.
39
159330
2000
ุฑูˆุฑูŠ ู‡ูˆ ุทุงู„ุจ ุฏุฑุงุณุงุช ุนู„ูŠุง ููŠ ุฌุงู…ุนุฉ ุณุชุงู†ููˆุฑุฏ.
02:41
He studies the brain using MRI, and he claims that
40
161330
4000
ู‚ุงู… ุจุฏุฑุงุณุฉ ุงู„ุฏู…ุงุบ ุจุงุณุชุฎุฏุงู… ุงู„ุชุตูˆูŠุฑ ุจุงู„ุฑู†ูŠู† ุงู„ู…ุบู†ุงุทูŠุณูŠ ุŒ ูˆูŠุฏุนูŠ ุฃู†
02:45
this is the most beautiful brain that he has ever scanned.
41
165330
3000
ู‡ุฐุง ู‡ูˆ ุฃุฌู…ู„ ุฏู…ุงุบ ู‚ุงู… ุจู…ุณุญู‡ ุถูˆุฆูŠุง.
02:48
(Laughter)
42
168330
2000
(ุถุญูƒ)
02:50
So that's true love, right there.
43
170330
3000
ู‡ุฐุง ู…ุง ู†ุณู…ูŠู‡ ุงู„ุญุจ ุงู„ุญู‚ูŠู‚ูŠ.
02:53
Now, how much computation does the brain do?
44
173330
3000
ุงู„ุขู† ุŒ ูƒู… ูŠู‚ุฏุฑ ุนุฏุฏ ุงู„ุนู…ู„ูŠุงุช ุงู„ุญุณุงุจูŠุฉ ุงู„ุชูŠ ูŠุณุชุทูŠุน ุงู„ุฏู…ุงุบ ุงู„ู‚ูŠุงู… ุจู‡ุงุŸ
02:56
I estimate 10 to the 16 bits per second,
45
176330
2000
ุงู‚ุฏุฑ ู‡ุฐุง ู…ู† 10 ู‚ูˆุฉ 16 ุจุช ููŠ ุงู„ุซุงู†ูŠุฉ
02:58
which is actually about very similar to what Blue Gene does.
46
178330
4000
ูˆ ู‡ุฐุง ููŠ ุงู„ูˆุงู‚ุน ู…ุดุงุจู‡ ุฌุฏุง ู„ู…ุง ูŠุณุชุทูŠุน ุจู„ูˆ ุฌูŠู† ุงู„ู‚ูŠุงู… ุจู‡.
03:02
So that's the question. The question is, how much --
47
182330
2000
ุงุฐู† ู‡ุฐุง ู‡ูˆ ุงู„ุณุคุงู„. ุงู„ุณุคุงู„ ู‡ูˆ ุŒ ูƒู… --
03:04
they are doing a similar amount of processing, similar amount of data --
48
184330
3000
ุนู„ู…ุง ุงู†ู‡ู… ูŠุณุชู‡ู„ูƒูˆู† ูƒู…ูŠุฉ ู…ู…ุงุซู„ุฉ ู…ู† ุงู„ุทุงู‚ุฉ ูˆูƒู…ูŠุฉ ู…ู…ุงุซู„ุฉ ู…ู† ุงู„ุจูŠุงู†ุงุช --
03:07
the question is how much energy or electricity does the brain use?
49
187330
5000
ุงู„ุณุคุงู„ ู‡ูˆ ูƒู… ู…ู† ุงู„ุทุงู‚ุฉ ุฃูˆ ุงู„ูƒู‡ุฑุจุงุก ูŠุณุชู‡ู„ูƒ ุงู„ุฏู…ุงุบุŸ
03:12
And it's actually as much as your laptop computer:
50
192330
3000
ุงู†ู‡ ููŠ ุงู„ูˆุงู‚ุน ูŠุณุชู‡ู„ูƒ ู†ูุณ ุงู„ู‚ุฏุฑ ุงู„ุฐูŠ ูŠุณุชู‡ู„ูƒู‡ ุงู„ูƒู…ุจูŠูˆุชุฑ ุงู„ู…ุญู…ูˆู„ :
03:15
it's just 10 watts.
51
195330
2000
ูู‚ุท 10 ูˆุงุท.
03:17
So what we are doing right now with computers
52
197330
3000
ู„ุฐู„ูƒ ู…ุง ู†ู‚ูˆู… ุจู‡ ุงู„ุขู† ู…ุน ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ุŒ
03:20
with the energy consumed by 1,200 houses,
53
200330
3000
ู…ุน ุงู„ุทุงู‚ุฉ ุงู„ุชูŠ ูŠุณุชู‡ู„ูƒู‡ุง 1ุŒ200 ู…ู†ุฒู„ ุŒ
03:23
the brain is doing with the energy consumed by your laptop.
54
203330
5000
ูŠู‚ูˆู… ุจู‡ ุงู„ุฏู…ุงุบ ู…ุณุชู‡ู„ูƒุง ุงู„ุทุงู‚ุฉ ุงู„ุชูŠ ูŠุณุชู‡ู„ูƒู‡ุง ุฌู‡ุงุฒ ูƒู…ุจูŠูˆุชุฑ ู…ุญู…ูˆู„.
03:28
So the question is, how is the brain able to achieve this kind of efficiency?
55
208330
3000
ู„ุฐุง ูุฅู† ุงู„ุณุคุงู„ ู‡ูˆ ุŒ ูƒูŠู ูŠุชู…ูƒู† ุงู„ุฏู…ุงุบ ู…ู† ุชุญู‚ูŠู‚ ู‡ุฐุง ุงู„ู…ุณุชูˆู‰ ู…ู† ุงู„ูƒูุงุกุฉุŸ
03:31
And let me just summarize. So the bottom line:
56
211330
2000
ูˆุงุณู…ุญูˆุง ู„ูŠ ุฃู† ุฃู„ุฎุต. ุจุงู„ู†ู‡ุงูŠุฉ ุงุฐู† :
03:33
the brain processes information using 100,000 times less energy
57
213330
4000
ูŠู‚ูˆู… ุงู„ุฏู…ุงุบ ุจู…ุนุงู„ุฌุฉ ุงู„ู…ุนู„ูˆู…ุงุช ุจุงุณุชุฎุฏุงู… 100ุŒ000 ู…ุฑุฉ ุงู‚ู„ ู…ู† ุงู„ุทุงู‚ุฉ
03:37
than we do right now with this computer technology that we have.
58
217330
4000
ู…ู…ุง ู†ุณุชุทูŠุน ุงู„ู‚ูŠุงู… ุจู‡ ุญุงู„ูŠุง ู…ุน ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ูƒู…ุจูŠูˆุชุฑ ุงู„ุชูŠ ู„ุฏูŠู†ุง.
03:41
How is the brain able to do this?
59
221330
2000
ูƒูŠู ูŠู…ูƒู† ู„ู„ุฏู…ุงุบ ุฃู† ูŠูุนู„ ุจุฐู„ูƒุŸ
03:43
Let's just take a look about how the brain works,
60
223330
3000
ุฏุนูˆู†ุง ู†ู„ู‚ูŠ ู†ุธุฑุฉ ุญูˆู„ ูƒูŠููŠุฉ ุนู…ู„ ุงู„ุฏู…ุงุบ ุŒ
03:46
and then I'll compare that with how computers work.
61
226330
4000
ูˆุจุนุฏ ุฐู„ูƒ ุณูˆู ู†ู‚ุงุฑู† ุฐู„ูƒ ู…ุน ูƒูŠููŠุฉ ุนู…ู„ ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ.
03:50
So, this clip is from the PBS series, "The Secret Life of the Brain."
62
230330
4000
ู‡ุฐุง ู…ู‚ุทุน ู…ู† ู…ุณู„ุณู„ ุชู„ูุฒูŠูˆู†ูŠ ุŒ "ุงู„ุญูŠุงุฉ ุงู„ุณุฑูŠุฉ ู„ู„ุฏู…ุงุบ".
03:54
It shows you these cells that process information.
63
234330
3000
ุชุจูŠู† ู„ู†ุง ุงู„ุฎู„ุงูŠุง ุงู„ุชูŠ ุชู‚ูˆู… ุจุนู…ู„ูŠุฉ ู…ุนุงู„ุฌุฉ ุงู„ู…ุนู„ูˆู…ุงุช.
03:57
They are called neurons.
64
237330
1000
ูˆู‡ูŠ ุชุณู…ู‰ ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ.
03:58
They send little pulses of electricity down their processes to each other,
65
238330
6000
ูˆู‡ูŠ ุชุฑุณู„ ู†ุจุถุฉ ุตุบูŠุฑุฉ ู…ู† ุงู„ูƒู‡ุฑุจุงุก ู„ุจุนุถู‡ู…ุง ุงู„ุจุนุถ ุŒ
04:04
and where they contact each other, those little pulses
66
244330
2000
ูˆุญูŠุซ ูŠุชุตู„ ุจุนุถู‡ุง ุจุจุนุถ ุŒ ุชุชู…ูƒู† ู‡ุฐู‡ ุงู„ู†ุจุถุงุช ุงู„ูƒู‡ุฑุจุงุฆูŠุฉ ุงู„ุตุบูŠุฑุฉ
04:06
of electricity can jump from one neuron to the other.
67
246330
2000
ู…ู† ุงู„ู‚ูุฒ ู…ู† ุฎู„ูŠุฉ ุฅู„ู‰ ุฃุฎุฑู‰.
04:08
That process is called a synapse.
68
248330
3000
ู‡ุฐู‡ ุงู„ุนู…ู„ูŠุฉ ุชุณู…ู‰ ุงู„ู…ุดุจูƒ.
04:11
You've got this huge network of cells interacting with each other --
69
251330
2000
ูˆ ู„ุฏูŠู†ุง ู‡ุฐู‡ ุงู„ุดุจูƒุฉ ุงู„ู‡ุงุฆู„ุฉ ู…ู† ุงู„ุฎู„ุงูŠุง ุงู„ุชูŠ ุชุชูุงุนู„ ู…ุน ุจุนุถู‡ุง ุงู„ุจุนุถ ุŒ
04:13
about 100 million of them,
70
253330
2000
ุญูˆุงู„ูŠ 100 ู…ู„ูŠูˆู† ู…ู†ู‡ู… ุŒ
04:15
sending about 10 quadrillion of these pulses around every second.
71
255330
4000
ุชู‚ูˆู… ุจุงุฑุณุงู„ ู†ุญูˆ 10 ูƒูˆุงุฏุฑูŠู„ูŠูˆู† ู…ู† ู‡ุฐู‡ ุงู„ู†ุจุถุงุช ูƒู„ ุซุงู†ูŠุฉ.
04:19
And that's basically what's going on in your brain right now as you're watching this.
72
259330
6000
ูˆู‡ุฐุง ุจุงู„ุถุจุท ู…ุง ูŠุญุฏุซ ููŠ ุฃุฏู…ุบุชูƒู… ุญุงู„ูŠุง ุจูŠู†ู…ุง ุชุดุงู‡ุฏูˆู† ู‡ุฐุง.
04:25
How does that compare with the way computers work?
73
265330
2000
ูƒูŠู ูŠู…ูƒู† ุฃู† ู†ู‚ุงุฑู† ุจูŠู† ู‡ุฐุง ูˆุทุฑูŠู‚ุฉ ุนู…ู„ ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ุŸ
04:27
In the computer, you have all the data
74
267330
2000
ููŠ ุฌู‡ุงุฒ ุงู„ูƒู…ุจูŠูˆุชุฑ ูƒู„ ุงู„ุจูŠุงู†ุงุช
04:29
going through the central processing unit,
75
269330
2000
ุชู…ุฑ ุนุจุฑ ูˆุญุฏุฉ ุงู„ู…ุนุงู„ุฌุฉ ุงู„ู…ุฑูƒุฒูŠุฉ ุŒ
04:31
and any piece of data basically has to go through that bottleneck,
76
271330
3000
ูˆุฃูŠ ุฌุฒุก ู…ู† ุงู„ุจูŠุงู†ุงุช ุนู„ูŠู‡ุง ุงู„ู…ุฑูˆุฑ ุนุจุฑ ุนู†ู‚ ุงู„ุฒุฌุงุฌุฉ.
04:34
whereas in the brain, what you have is these neurons,
77
274330
4000
ููŠ ุญูŠู† ุฃู†ู‡ ููŠ ุงู„ุฏู…ุงุบ ุŒ ู„ุฏูŠูƒ ู‡ุฐู‡ ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ
04:38
and the data just really flows through a network of connections
78
278330
4000
ูˆ ุงู„ุจูŠุงู†ุงุช ุชุชุฏูู‚ ุฎู„ุงู„ ุดุจูƒุฉ ุงุชุตุงู„ุงุช
04:42
among the neurons. There's no bottleneck here.
79
282330
2000
ุนุจุฑ ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ ุŒ ูˆู„ุง ู…ูƒุงู† ู„ุฃูŠ ุงุฎุชู†ุงู‚ ู‡ู†ุงูƒ.
04:44
It's really a network in the literal sense of the word.
80
284330
4000
ุงู†ู‡ุง ุญู‚ุง ุดุจูƒุฉ ุจุงู„ู…ุนู†ู‰ ุงู„ุญุฑููŠ ู„ู„ูƒู„ู…ุฉ.
04:48
The net is doing the work in the brain.
81
288330
4000
ุงู„ุดุจูƒุฉ ุชู‚ูˆู… ุจุงู„ุนู…ู„ ููŠ ุงู„ุฏู…ุงุบ.
04:52
If you just look at these two pictures,
82
292330
2000
ุงุฐุง ุฃู„ู‚ูŠู†ุง ู†ุธุฑุฉ ุนู„ู‰ ู‡ุฐูŠู† ุงู„ุตูˆุฑุชูŠู† ุŒ
04:54
these kind of words pop into your mind.
83
294330
2000
ูŠุฎุทุฑ ุจุจุงู„ูƒ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ูƒู„ู…ุงุช.
04:56
This is serial and it's rigid -- it's like cars on a freeway,
84
296330
4000
ู‡ุฐุง ู…ุชุณู„ุณู„ ูˆู‡ูˆ ุฌุงู…ุฏ : ุงู†ู‡ุง ุชุดุจู‡ ุณูŠุงุฑุงุช ุนู„ู‰ ุงู„ุทุฑูŠู‚ ุงู„ุณุฑูŠุน --
05:00
everything has to happen in lockstep --
85
300330
3000
ูƒู„ ุดูŠุก ูŠุฌุจ ุฃู† ูŠุญุฏุซ ุจุฏูˆู† ุชููƒูŠุฑ.
05:03
whereas this is parallel and it's fluid.
86
303330
2000
ููŠ ุญูŠู† ุฃู† ู‡ุฐุง ู…ุชูˆุงุฒูŠ ูˆ ุณู„ุณ.
05:05
Information processing is very dynamic and adaptive.
87
305330
3000
ู…ุนุงู„ุฌุฉ ุงู„ู…ุนู„ูˆู…ุงุช ุญูŠูˆูŠุฉ ุฌุฏุง ูˆู‚ุงุจู„ุฉ ู„ู„ุชูƒูŠู.
05:08
So I'm not the first to figure this out. This is a quote from Brian Eno:
88
308330
4000
ู„ุณุช ุฃูˆู„ ู…ู† ุงูƒุชุดู ู‡ุฐุง. ู‡ุฐุง ุงู‚ุชุจุงุณ ู…ู† ุจุฑุงูŠู† ุฅูŠู†ูˆ :
05:12
"the problem with computers is that there is not enough Africa in them."
89
312330
4000
"ุงู„ู…ุดูƒู„ุฉ ู…ุน ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ู‡ูˆ ุฃู†ู‡ุง ู„ุง ุชุดุจู‡ ุงูุฑูŠู‚ูŠุง ูƒุซูŠุฑุง".
05:16
(Laughter)
90
316330
6000
(ุถุญูƒ)
05:22
Brian actually said this in 1995.
91
322330
3000
ู‚ุงู„ ุจุฑูŠุงู† ู‡ุฐุง ููŠ ุนุงู… 1995.
05:25
And nobody was listening then,
92
325330
3000
ูˆู„ุง ุฃุญุฏ ูƒุงู† ูŠุณุชู…ุน ู„ุฐู„ูƒ ุŒ
05:28
but now people are beginning to listen
93
328330
2000
ูˆู„ูƒู† ุงู„ุขู† ุจุฏุฃ ุงู„ู†ุงุณ ุจุงู„ุงุณุชู…ุงุน
05:30
because there's a pressing, technological problem that we face.
94
330330
5000
ู„ุงู† ู‡ู†ุงูƒ ู…ุดูƒู„ุฉ ุชูƒู†ูˆู„ูˆุฌูŠุฉ ู…ู„ุญุฉ ู†ูˆุงุฌู‡ู‡ุง ุงู„ุขู†.
05:35
And I'll just take you through that a little bit in the next few slides.
95
335330
5000
ูˆุณุฃุจูŠู† ู„ูƒู… ุฐู„ูƒ ู…ู† ุฎู„ุงู„ ุจุนุถ ุงู„ุดุฑุงุฆุญ ุงู„ู‚ู„ูŠู„ุฉ ุงู„ู‚ุงุฏู…ุฉ.
05:40
This is -- it's actually really this remarkable convergence
96
340330
4000
ู‡ุฐุง -- ุงู†ู‡ ูŠู…ุซู„ ุญู‚ุง ู‡ุฐุง ุงู„ุชู‚ุงุฑุจ ุงู„ู…ู„ุญูˆุธ
05:44
between the devices that we use to compute in computers,
97
344330
5000
ุจูŠู† ุงู„ุฃุฌู‡ุฒุฉ ุงู„ุชูŠ ู†ุณุชุฎุฏู…ู‡ุง ู„ุญุณุงุจ ููŠ ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ุŒ
05:49
and the devices that our brains use to compute.
98
349330
4000
ูˆุงู„ุฃุฌู‡ุฒุฉ ุงู„ุชูŠ ุชุณุชุฎุฏู…ู‡ุง ุฃุฏู…ุบุชู†ุง ู„ู„ุญุณุงุจ.
05:53
The devices that computers use are what's called a transistor.
99
353330
4000
ุงู„ุฃุฌู‡ุฒุฉ ุงู„ุชูŠ ุชุณุชุฎุฏู…ู‡ุง ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ ู‡ูŠ ู…ุง ูŠุณู…ู‰ ุฌู‡ุงุฒ ุงู„ุชุฑุงู†ุฒุณุชูˆุฑ.
05:57
This electrode here, called the gate, controls the flow of current
100
357330
4000
ู‡ุฐุง ุงู„ู‚ุทุจ ู‡ู†ุง ุŒ ูŠุฏุนุง ุงู„ุจูˆุงุจุฉ ุŒ ู„ู„ุชุญูƒู… ููŠ ุงู„ุชุฏูู‚
06:01
from the source to the drain -- these two electrodes.
101
361330
3000
ู…ู† ุงู„ู…ุตุฏุฑ ุงู„ู‰ ุงู„ู…ุณุฑุจ ุŒ ูˆู‡ุฐูŠู† ุงู„ู‚ุทุจูŠู†.
06:04
And that current, electrical current,
102
364330
2000
ู‡ุฐุง ุงู„ุชูŠุงุฑ ุงู„ูƒู‡ุฑุจุงุฆูŠ ุŒ
06:06
is carried by electrons, just like in your house and so on.
103
366330
6000
ุชุญู…ู„ู‡ ุงู„ุงู„ูƒุชุฑูˆู†ุงุช ุŒ ุชู…ุงู…ุง ูƒู…ุง ููŠ ุจูŠุชูƒ ุŒ ูˆู‡ู„ู… ุฌุฑุง.
06:12
And what you have here is, when you actually turn on the gate,
104
372330
5000
ูˆู‡ู†ุง ุŒ ุนู†ุฏู…ุง ุชูุชุญ ุงู„ุจูˆุงุจุฉ ุŒ
06:17
you get an increase in the amount of current, and you get a steady flow of current.
105
377330
4000
ูŠู…ูƒู†ูƒ ุงู„ุญุตูˆู„ ุนู„ู‰ ุฒูŠุงุฏุฉ ููŠ ูƒู…ูŠุฉ ุงู„ุชุฏูู‚ ุŒ ูˆูŠู…ูƒู†ูƒ ุงู„ุญุตูˆู„ ุนู„ู‰ ุชุฏูู‚ ู…ุณุชู…ุฑ.
06:21
And when you turn off the gate, there's no current flowing through the device.
106
381330
4000
ูˆุนู†ุฏู…ุง ุชู‚ูˆู… ุจุฅูŠู‚ุงู ุชุดุบูŠู„ ุงู„ุจูˆุงุจุฉ ุŒ ู„ู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุชุชุฏูู‚ ู…ู† ุฎู„ุงู„ ุงู„ุฌู‡ุงุฒ.
06:25
Your computer uses this presence of current to represent a one,
107
385330
5000
ุงู„ูƒู…ุจูŠูˆุชุฑ ูŠุณุชุฎุฏู… ูˆุฌูˆุฏ ู‡ุฐุง ุงู„ุชุฏูู‚ ู„ูŠู…ุซู„ ุงู„ุฑู‚ู… ูˆุงุญุฏุŒ
06:30
and the absence of current to represent a zero.
108
390330
4000
ูˆุนุฏู… ูˆุฌูˆุฏู‡ ู„ุชู…ุซูŠู„ ุงู„ุฑู‚ู… ุตูุฑ.
06:34
Now, what's happening is that as transistors are getting smaller and smaller and smaller,
109
394330
6000
ุงู„ุขู† ุŒ ู…ุง ูŠุญุฏุซ ู‡ูˆ ุฃู†ู‡ ูŠุชู… ุงู„ุญุตูˆู„ ุนู„ู‰ ุชุฑุงู†ุฒุณุชูˆุฑุงุช ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ุŒ
06:40
they no longer behave like this.
110
400330
2000
ู„ุฐู„ูƒ ู„ู… ุชุนุฏ ุชุชุตุฑู ุนู„ู‰ ู‡ุฐุง ุงู„ู†ุญูˆ.
06:42
In fact, they are starting to behave like the device that neurons use to compute,
111
402330
5000
ููŠ ุงู„ูˆุงู‚ุน ุŒ ุฃู†ู‡ุง ุจุฏุฃุช ุชุชุตุฑู ู…ุซู„ ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉุŒ
06:47
which is called an ion channel.
112
407330
2000
ูˆู‡ูˆ ู…ุง ูŠุณู…ู‰ ู‚ู†ุงุฉ ุงู„ุฃูŠูˆู†.
06:49
And this is a little protein molecule.
113
409330
2000
ูˆู‡ุฐุง ุฌุฒุก ุตุบูŠุฑ ู…ู† ุงู„ุจุฑูˆุชูŠู†.
06:51
I mean, neurons have thousands of these.
114
411330
4000
ูŠุนู†ูŠ ุŒ ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ ู„ุฏูŠู‡ุง ุงู„ุขู„ุงู ู…ู†ู‡ุง.
06:55
And it sits in the membrane of the cell and it's got a pore in it.
115
415330
4000
ูˆู‡ูŠ ุชูˆุฌุฏ ููŠ ุบุดุงุก ุงู„ุฎู„ูŠุฉ ุŒ ูˆุจูŠู†ู‡ู…ุง ู…ุณุงู….
06:59
And these are individual potassium ions
116
419330
3000
ูˆู‡ุฐู‡ ุงูŠูˆู†ุงุช ุจูˆุชุงุณูŠูˆู… ุงู„ูุฑุฏูŠุฉ ุŒ
07:02
that are flowing through that pore.
117
422330
2000
ุงู„ุชูŠ ุชุชุฏูู‚ ู…ู† ุฎู„ุงู„ ุชู„ูƒ ุงู„ู…ุณุงู….
07:04
Now, this pore can open and close.
118
424330
2000
ุงู„ุขู† ุŒ ูŠู…ูƒู† ู„ู‡ุฐู‡ ุงู„ู…ุณุงู… ุฃู† ุชูุชุญ ูˆุชุบู„ู‚.
07:06
But, when it's open, because these ions have to line up
119
426330
5000
ูˆู„ูƒู† ุŒ ุนู†ุฏู…ุง ูŠูƒูˆู† ู…ูุชูˆุญุง ุŒ ูˆุฐู„ูƒ ู„ุฃู† ู‡ุฐู‡ ุงู„ุฃูŠูˆู†ุงุช ูŠุฌุจ ุฃู† ุชุตุทู
07:11
and flow through, one at a time, you get a kind of sporadic, not steady --
120
431330
5000
ูˆุชุชุฏูู‚ ูˆุงุญุฏุฉ ุจุนุฏ ุงู„ุงุฎุฑู‰ุŒ ูŠู…ูƒู†ูƒ ุงู„ุญุตูˆู„ ุนู„ู‰ ู†ูˆุน ู…ุชูุฑู‚ ุŒ ูˆุบูŠุฑ ุซุงุจุช --
07:16
it's a sporadic flow of current.
121
436330
3000
ุงู†ู‡ ุชุฏูู‚ ู…ุชูุฑู‚ ู„ู„ูƒู‡ุฑุจุงุก.
07:19
And even when you close the pore -- which neurons can do,
122
439330
3000
ูˆุญุชู‰ ุนู†ุฏ ุฅุบู„ุงู‚ ุงู„ู…ุณุงู… -- ูˆู‡ูˆ ู…ุง ูŠู…ูƒู† ู„ู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ ุฃู† ุชูุนู„ู‡ ุŒ
07:22
they can open and close these pores to generate electrical activity --
123
442330
5000
ูŠู…ูƒู†ู‡ู… ูุชุญ ูˆุฅุบู„ุงู‚ ู‡ุฐู‡ ุงู„ู…ุณุงู…ุงุช ู„ุชูˆู„ูŠุฏ ุงู„ู†ุดุงุท ุงู„ูƒู‡ุฑุจุงุฆูŠ --
07:27
even when it's closed, because these ions are so small,
124
447330
3000
ุญุชู‰ ุนู†ุฏู…ุง ุชูƒูˆู† ู…ุบู„ู‚ุฉุŒ ูˆุฐู„ูƒ ู„ุฃู† ู‡ุฐู‡ ุงู„ุฃูŠูˆู†ุงุช ุตุบูŠุฑุฉ ู„ู„ุบุงูŠุฉ ุŒ
07:30
they can actually sneak through, a few can sneak through at a time.
125
450330
3000
ูŠู…ูƒู†ู‡ู… ูุนู„ูŠุง ุนู† ุทุฑูŠู‚ ุงู„ุชุณู„ู„ ุŒ ุนุฏุฏ ู‚ู„ูŠู„ ูŠู…ูƒู†ู‡ ุงู„ุชุณู„ู„ ุนุจุฑู‡ุง ููŠ ูˆู‚ุช ูˆุงุญุฏ.
07:33
So, what you have is that when the pore is open,
126
453330
3000
ู…ุง ู†ุญุตู„ ุนู„ูŠู‡ ู‡ูˆ ุฃู†ู‡ ุนู†ุฏู…ุง ูŠุชู… ูุชุญ ุงู„ู…ุณุงู… ุŒ
07:36
you get some current sometimes.
127
456330
2000
ูŠู…ูƒู†ูƒ ุงู„ุญุตูˆู„ ุฃุญูŠุงู†ุง ุนู„ู‰ ุจุนุถ ุงู„ุชุฏูู‚.
07:38
These are your ones, but you've got a few zeros thrown in.
128
458330
3000
ู‡ุฐู‡ ุจุนุถ ู…ู†ู‡ุงุŒ ูˆู„ูƒู†ู†ุง ุญุตู„ู†ุง ุนู„ู‰ ุจุนุถ ุงู„ุฃุตูุงุฑ.
07:41
And when it's closed, you have a zero,
129
461330
4000
ูˆุนู†ุฏู…ุง ุชูƒูˆู† ู…ุบู„ู‚ุฉ ุŒ ู†ุญุตู„ ุนู„ู‰ ุงู„ุตูุฑ ุŒ
07:45
but you have a few ones thrown in.
130
465330
3000
ูˆู„ูƒู† ู„ุฏูŠูƒ ุนุฏุฏ ู‚ู„ูŠู„ ู…ู†ู‡ุงุŒ ุญุณู†ุง.
07:48
Now, this is starting to happen in transistors.
131
468330
3000
ุงู„ุขู†ุŒ ุจุฏุฃ ูŠุญุฏุซ ู‡ุฐุง ููŠ ุงู„ุชุฑุงู†ุฒุณุชูˆุฑุงุช.
07:51
And the reason why that's happening is that, right now, in 2007 --
132
471330
5000
ูˆุงู„ุณุจุจ ููŠ ุฐู„ูƒ ู‡ูˆ ุฃู†ู‡ุŒ ุงู„ู‰ ุญุฏ ุงู„ุขู† ููŠ ุนุงู… 2007 ุŒ
07:56
the technology that we are using -- a transistor is big enough
133
476330
4000
ุจุงู„ู†ุณุจุฉ ู„ู„ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ุชูŠ ู†ุณุชุฎุฏู…ู‡ุง ุŒ ุงู„ุชุฑุงู†ุฒุณุชูˆุฑ ู‡ูŠ ูƒุจูŠุฑุฉ ุจู…ุง ูŠูƒููŠ
08:00
that several electrons can flow through the channel simultaneously, side by side.
134
480330
5000
ู„ู„ุณู…ุงุญ ู„ู„ุฅู„ูƒุชุฑูˆู†ุงุช ุฃู† ุชุชุฏูู‚ ุนุจุฑ ุงู„ู‚ู†ุงุฉ ููŠ ูˆู‚ุช ูˆุงุญุฏ ุŒ ุฌู†ุจุง ุงู„ู‰ ุฌู†ุจ.
08:05
In fact, there's about 12 electrons can all be flowing this way.
135
485330
4000
ููŠ ุงู„ูˆุงู‚ุน ุŒ ู‡ู†ุงูƒ ุญูˆุงู„ูŠ 12 ุฅู„ูƒุชุฑูˆู†ุง ูŠู…ูƒู†ู‡ุง ุฃู† ุชุชุฏูู‚ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ.
08:09
And that means that a transistor corresponds
136
489330
2000
ูˆู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ุชุฑุงู†ุฒุณุชูˆุฑ ูŠู‚ุงุจู„
08:11
to about 12 ion channels in parallel.
137
491330
3000
ู†ุญูˆ 12 ู‚ู†ุงุฉ ุฃูŠูˆู† ู…ุชูˆุงุฒูŠุฉ.
08:14
Now, in a few years time, by 2015, we will shrink transistors so much.
138
494330
5000
ุงู„ุขู†ุŒูˆ ููŠ ุบุถูˆู† ุณู†ูˆุงุช ู‚ู„ูŠู„ุฉุŒ ุจุญู„ูˆู„ ุนุงู… 2015ุŒุณูˆู ุชุชู‚ู„ุต ุงู„ุชุฑุงู†ุฒุณุชูˆุฑุงุช ูƒุซูŠุฑุง.
08:19
This is what Intel does to keep adding more cores onto the chip.
139
499330
5000
ู‡ุฐุง ู…ุง ุชูุนู„ู‡ ุฅู†ุชู„ ู„ุฅุถุงูุฉ ุงู„ู…ุฒูŠุฏ ู…ู† ุงู„ู†ูˆู‰ ููŠ ุงู„ุดุฑูŠุญุฉ ุŒ
08:24
Or your memory sticks that you have now can carry one gigabyte
140
504330
3000
ุฃูˆ ุนุตูŠ ุงู„ุฐุงูƒุฑุฉ ุงู„ุชูŠ ู„ุฏูŠูƒ ุงู„ุขู† ูŠู…ูƒู† ุฃู† ุชุฎุฒู† ูˆุงุญุฏ ุบูŠุบุงุจุงูŠุช
08:27
of stuff on them -- before, it was 256.
141
507330
2000
ู…ู† ุงู„ุงุดูŠุงุก ุนู„ูŠู‡ุง -- ููŠ ุงู„ู…ุงุถูŠ ูƒุงู†ุช ุณุนุชู‡ุง 256.
08:29
Transistors are getting smaller to allow this to happen,
142
509330
3000
ุงู„ุชุฑุงู†ุฒุณุชูˆุฑุงุช ุตุงุฑุช ุฃุตุบุฑ ูุฃุตุบุฑ ู„ู„ุณู…ุงุญ ู„ู‡ุฐุง ุฃู† ูŠุญุฏุซ ุŒ
08:32
and technology has really benefitted from that.
143
512330
3000
ูˆุงู„ุชูƒู†ูˆู„ูˆุฌูŠุง ู‚ุฏ ุงุณุชูุงุฏุช ู…ู† ุฐู„ูƒ ุญู‚ุง.
08:35
But what's happening now is that in 2015, the transistor is going to become so small,
144
515330
5000
ูˆู„ูƒู† ู…ุง ูŠุญุฏุซ ุงู„ุขู† ู‡ูˆ ุฃู† ููŠ ุนุงู… 2015 ุŒ ุงู„ุชุฑุงู†ุฒุณุชูˆุฑ ุณุชุตุจุญ ุตุบูŠุฑุฉ ุจุฏุฑุฌุฉ ุŒ
08:40
that it corresponds to only one electron at a time
145
520330
3000
ุฃู†ู‡ ูŠู…ูƒู† ู„ุฅู„ูƒุชุฑูˆู† ูˆุงุญุฏ
08:43
can flow through that channel,
146
523330
2000
ุฃู† ูŠุชุฏูู‚ ู…ู† ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ู‚ู†ุงุฉ ุŒ
08:45
and that corresponds to a single ion channel.
147
525330
2000
ูˆู‡ุฐุง ู…ุง ูŠู…ุซู„ ู‚ู†ุงุฉ ุฃูŠูˆู† ูˆุงุญุฏุฉ.
08:47
And you start having the same kind of traffic jams that you have in the ion channel.
148
527330
4000
ูˆูŠุตุจุญ ู„ุฏูŠูƒ ู†ูุณ ุงู„ู†ูˆุน ู…ู† ุงู„ุงุฎุชู†ุงู‚ุงุช ุงู„ู…ุฑูˆุฑูŠุฉ ุงู„ุชูŠ ู„ุฏูŠูƒ ููŠ ู‚ู†ุงุฉ ุงู„ุฃูŠูˆู† ุŒ
08:51
The current will turn on and off at random,
149
531330
3000
ุงู„ุญุงู„ูŠุฉ ุณูˆู ุชุดุชุบู„ ูˆุชุชูˆู‚ู ุนุดูˆุงุฆูŠุง ุŒ
08:54
even when it's supposed to be on.
150
534330
2000
ุญุชู‰ ุนู†ุฏู…ุง ูƒุงู† ู…ู† ุงู„ู…ูุชุฑุถ ุฃู† ุชุดุชุบู„.
08:56
And that means your computer is going to get
151
536330
2000
ูˆูŠุนู†ูŠ ุฐู„ูƒ ุฃู† ุฌู‡ุงุฒ ุงู„ูƒู…ุจูŠูˆุชุฑ ุงู„ุฎุงุต ุจูƒ ุณุชุตุจุญ
08:58
its ones and zeros mixed up, and that's going to crash your machine.
152
538330
4000
ูˆุงู„ุขุญุงุฏ ูˆุงู„ุฃุตูุงุฑ ููŠู‡ ู…ุฎุชู„ุทุฉ ุŒ ูˆู‡ุฐุง ุณูˆู ูŠุญุทู… ุงู„ุฌู‡ุงุฒ.
09:02
So, we are at the stage where we
153
542330
4000
ู„ุฐู„ูƒ ุŒ ูˆู†ุญู† ููŠ ู…ุฑุญู„ุฉ ู„ุง ูŠู…ูƒู†ู†ุง ููŠู‡ุง
09:06
don't really know how to compute with these kinds of devices.
154
546330
3000
ุฃู† ู†ุนุฑู ุญู‚ุง ูƒูŠู ู†ุดุบู„ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ุฃุฌู‡ุฒุฉ.
09:09
And the only kind of thing -- the only thing we know right now
155
549330
3000
ูˆุงู„ุดูŠุก ุงู„ูˆุญูŠุฏ ุงู„ุฐูŠ ู†ุนุฑูู‡ ุงู„ู‰ ุญุฏ ุงู„ุขู† ุŒ
09:12
that can compute with these kinds of devices are the brain.
156
552330
3000
ูˆ ุงู„ุฐูŠ ูŠู…ูƒู†ู‡ ุฃู† ูŠุดุชุบู„ ู…ุน ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ุฃุฌู‡ุฒุฉ ุŒ ู‡ูˆ ุงู„ุฏู…ุงุบ.
09:15
OK, so a computer picks a specific item of data from memory,
157
555330
4000
ุญุณู†ุง ุŒ ูุฌู‡ุงุฒ ุงู„ูƒู…ุจูŠูˆุชุฑ ูŠุฎุชุงุฑ ุนู†ุตุฑ ู…ุนูŠู† ู…ู† ุงู„ุจูŠุงู†ุงุช ู…ู† ุงู„ุฐุงูƒุฑุฉ ุŒ
09:19
it sends it into the processor or the ALU,
158
559330
3000
ูˆูŠุฑุณู„ู‡ุง ุงู„ู‰ ุงู„ู…ุนุงู„ุฌ ุฃูˆ ู„ู„ูˆุญุฏุฉ ุงู„ุญุณุงุจูŠุฉ ูˆ ุงู„ู…ู†ุทู‚ูŠุฉ ุŒ
09:22
and then it puts the result back into memory.
159
562330
2000
ูˆู…ู† ุซู… ูŠุนูŠุฏ ุงู„ู†ุชูŠุฌุฉ ุฅู„ู‰ ุงู„ุฐุงูƒุฑุฉ.
09:24
That's the red path that's highlighted.
160
564330
2000
ู‡ุฐุง ู‡ูˆ ู…ุณุงุฑ ู‡ุฐุง ุงู„ุถูˆุก ุงู„ุฃุญู…ุฑ.
09:26
The way brains work, I told you all, you have got all these neurons.
161
566330
4000
ุทุฑูŠู‚ุฉ ุนู…ู„ ุงู„ุฏู…ุงุบ ุŒ ู„ุฏูŠู†ุง ูƒู„ ู‡ุฐู‡ ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ.
09:30
And the way they represent information is
162
570330
2000
ูˆุงู„ุทุฑูŠู‚ุฉ ุงู„ุชูŠ ุชุนุฑุถ ุจู‡ุง ุงู„ู…ุนู„ูˆู…ุงุช
09:32
they break up that data into little pieces
163
572330
2000
ูŠุชู… ุชู‚ุณูŠู… ุชู„ูƒ ุงู„ุจูŠุงู†ุงุช ุฅู„ู‰ ู‚ุทุน ุตุบูŠุฑุฉ
09:34
that are represented by pulses and different neurons.
164
574330
3000
ูˆุงู„ุชูŠ ุชู…ุซู„ู‡ุง ู…ุฎุชู„ู ุงู„ู†ุจุถุงุช ูˆุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ.
09:37
So you have all these pieces of data
165
577330
2000
ุจุญูŠุซ ูŠูƒูˆู† ู„ุฏูŠูƒ ูƒู„ ู‡ุฐู‡ ุงู„ู‚ุทุน ู…ู† ุงู„ุจูŠุงู†ุงุช
09:39
distributed throughout the network.
166
579330
2000
ู…ูˆุฒุนุฉ ุนู„ู‰ ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุดุจูƒุฉ.
09:41
And then the way that you process that data to get a result
167
581330
3000
ูˆู…ู† ุซู… ุงู„ุทุฑูŠู‚ุฉ ุงู„ุชูŠ ูŠู…ูƒู†ูƒ ู…ุนุงู„ุฌุฉ ุชู„ูƒ ุงู„ุจูŠุงู†ุงุช ู„ู„ุญุตูˆู„ ุนู„ู‰ ู†ุชูŠุฌุฉ
09:44
is that you translate this pattern of activity into a new pattern of activity,
168
584330
4000
ู‡ูˆ ุจุชุฑุฌู…ุฉ ู‡ุฐุง ุงู„ู†ู…ุท ู…ู† ุงู„ู†ุดุงุท ุฅู„ู‰ ู†ู…ุท ุฌุฏูŠุฏ ู…ู† ุงู„ู†ุดุงุท ุŒ
09:48
just by it flowing through the network.
169
588330
3000
ุงู†ู‡ ูู‚ุท ู…ู† ุฎู„ุงู„ ุชุฏูู‚ู‡ ุนุจุฑ ุงู„ุดุจูƒุฉ.
09:51
So you set up these connections
170
591330
2000
ู„ุฐู„ูƒ ุชู†ุดุฆ ู‡ุฐู‡ ุงู„ุงุชุตุงู„ุงุช ุŒ
09:53
such that the input pattern just flows
171
593330
3000
ู…ุซู„ ุชุฏูู‚ ู†ู…ุท ุงู„ุฅุฏุฎุงู„
09:56
and generates the output pattern.
172
596330
2000
ูˆูŠูˆู„ุฏ ู†ู…ุท ุงู„ุงู†ุชุงุฌ.
09:58
What you see here is that there's these redundant connections.
173
598330
4000
ู…ุง ู†ุฑุงู‡ ู‡ู†ุง ู‡ูˆ ุงู† ู‡ู†ุงูƒ ูˆุตู„ุงุช ู…ุชูƒุฑุฑุฉ .
10:02
So if this piece of data or this piece of the data gets clobbered,
174
602330
4000
ุญุชู‰ ุฅุฐุง ูู‚ุฏ ุฌุฒุก ู…ู† ู‡ุฐู‡ ุงู„ุจูŠุงู†ุงุช ุฃูˆ ู‚ุทุนุฉ ู…ู† ุงู„ุจูŠุงู†ุงุช ุŒ
10:06
it doesn't show up over here, these two pieces can activate the missing part
175
606330
5000
ูู„ู† ูŠุธู‡ุฑ ุฐู„ูƒ ู‡ู†ุง ุŒ ูŠู…ูƒู† ู„ู‡ุฐู‡ ุงู„ู‚ุทุน ุงุณุชุญุฏุงุซ ุงู„ุฌุฒุก ุงู„ู…ูู‚ูˆุฏ
10:11
with these redundant connections.
176
611330
2000
ู…ุน ู‡ุฐู‡ ุงู„ูˆุตู„ุงุช ุงู„ู…ุชูƒุฑุฑุฉ
10:13
So even when you go to these crappy devices
177
613330
2000
ุญุชู‰ ุนู†ุฏู…ุง ุชุชุนุงู…ู„ ู…ุน ู‡ุฐู‡ ุงู„ุฃุฌู‡ุฒุฉ
10:15
where sometimes you want a one and you get a zero, and it doesn't show up,
178
615330
3000
ููŠ ุจุนุถ ุงู„ุฃุญูŠุงู† ุŒ ุญูŠุซ ุชุฑูŠุฏ ุงู„ุฑู‚ู… ูˆุงุญุฏ ูˆุชุญุตู„ ุนู„ู‰ ุงู„ุตูุฑ ุŒ
10:18
there's redundancy in the network
179
618330
2000
ู‡ู†ุงูƒ ุชูƒุฑุงุฑ ููŠ ุงู„ุดุจูƒุฉ
10:20
that can actually recover the missing information.
180
620330
3000
ูŠุฌุนู„ ู…ู† ุงู„ู…ู…ูƒู† ู…ู† ุงุณุชุนุงุฏุฉ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู…ูู‚ูˆุฏุฉ.
10:23
It makes the brain inherently robust.
181
623330
3000
ูˆู‡ุฐุง ูŠุฌุนู„ ุงู„ุฏู…ุงุบ ุจุทุจูŠุนุชู‡ ู‚ูˆูŠุง.
10:26
What you have here is a system where you store data locally.
182
626330
3000
ู…ุง ู„ุฏูŠู†ุง ู‡ู†ุง ู‡ูˆ ู†ุธุงู… ุญูŠุซ ูŠุชู… ุชุฎุฒูŠู† ุงู„ุจูŠุงู†ุงุช ู…ุญู„ูŠุง.
10:29
And it's brittle, because each of these steps has to be flawless,
183
629330
4000
ูˆู‡ุฐุง ู†ุธุงู… ู‡ุดุŒ ูˆุฐู„ูƒ ู„ุฃู† ูƒู„ ุฎุทูˆุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฎุทูˆุงุช ูŠุฌุจ ุฃู† ุชูƒูˆู† ุฎุงู„ูŠุฉ ู…ู† ุงู„ุนูŠูˆุจ ุŒ
10:33
otherwise you lose that data, whereas in the brain, you have a system
184
633330
3000
ูˆุฅู„ุง ุณุชูู‚ุฏ ุงู„ุจูŠุงู†ุงุช. ููŠ ุญูŠู† ุฃู†ู‡ ููŠ ุงู„ุฏู…ุงุบ ุŒ ู„ุฏูŠู†ุง ู†ุธุงู…
10:36
that stores data in a distributed way, and it's robust.
185
636330
4000
ูŠู‚ูˆู… ุจุชุฎุฒูŠู† ุงู„ุจูŠุงู†ุงุช ุนู† ุทุฑูŠู‚ ุชูˆุฒูŠุนู‡ุง ุŒ ูˆู‡ุฐุง ู†ุธุงู… ู‚ูˆูŠ.
10:40
What I want to basically talk about is my dream,
186
640330
4000
ู…ุง ุฃุฑูŠุฏ ุฃู† ุฃุชุญุฏุซ ุนู†ู‡ ุจุงู„ุฃุณุงุณ ู‡ูˆ ุญู„ู…ูŠ ุŒ
10:44
which is to build a computer that works like the brain.
187
644330
3000
ุงู„ู…ุชู…ุซู„ ููŠ ุจู†ุงุก ุฌู‡ุงุฒ ูƒู…ุจูŠูˆุชุฑ ูŠุนู…ู„ ู…ุซู„ ุงู„ุฏู…ุงุบ.
10:47
This is something that we've been working on for the last couple of years.
188
647330
4000
ู‡ุฐุง ู…ุง ูƒู†ุง ู†ุนู…ู„ ุนู„ู‰ ุชุญู‚ูŠู‚ู‡ ููŠ ุงู„ุนุงู…ูŠู† ุงู„ู…ุงุถูŠูŠู†.
10:51
And I'm going to show you a system that we designed
189
651330
3000
ูˆุณุฃุจูŠู† ู„ูƒู… ุงู„ู†ุธุงู… ุงู„ุฐูŠ ุตู…ู…ู†ุงู‡
10:54
to model the retina,
190
654330
3000
ูƒู†ู…ูˆุฐุฌ ู„ุดุจูƒูŠุฉ ุงู„ุนูŠู† ุŒ
10:57
which is a piece of brain that lines the inside of your eyeball.
191
657330
5000
ูˆู‡ูŠ ุชู…ุซู„ ู‚ุทุนุฉ ู…ู† ุงู„ุฏู…ุงุบ ุฏุงุฎู„ ู…ู‚ู„ุฉ ุงู„ุนูŠู†.
11:02
We didn't do this by actually writing code, like you do in a computer.
192
662330
6000
ู†ุญู† ู„ู… ู†ู‚ู… ุจุฐู„ูƒ ู…ู† ุฎู„ุงู„ ูƒุชุงุจุฉ ุจุฑู†ุงู…ุฌ ุŒ ูƒู…ุง ู†ูุนู„ ููŠ ุฌู‡ุงุฒ ุงู„ูƒู…ุจูŠูˆุชุฑ.
11:08
In fact, the processing that happens
193
668330
3000
ููŠ ุงู„ูˆุงู‚ุน ุŒ ุงู„ู…ุนุงู„ุฌุฉ ุงู„ุชูŠ ุชุญุฏุซ
11:11
in that little piece of brain is very similar
194
671330
2000
ููŠ ุชู„ูƒ ุงู„ู‚ุทุนุฉ ุงู„ุตุบูŠุฑุฉ ู…ู† ุงู„ุฏู…ุงุบ ู‡ูŠ ู…ุดุงุจู‡ุฉ ุฌุฏุง
11:13
to the kind of processing that computers
195
673330
1000
ู„ู„ู…ุนุงู„ุฌุฉ ุงู„ุชูŠ ุชู‚ูˆู… ุจู‡ุง ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ
11:14
do when they stream video over the Internet.
196
674330
4000
ุนู†ุฏู…ุง ุชุจุซ ุงู„ููŠุฏูŠูˆ ุนุจุฑ ุงู„ุฅู†ุชุฑู†ุช.
11:18
They want to compress the information --
197
678330
1000
ุงู†ู‡ุง ุชุนู…ู„ ุนู„ู‰ ุถุบุท ุงู„ู…ุนู„ูˆู…ุงุช --
11:19
they just want to send the changes, what's new in the image, and so on --
198
679330
4000
ุงู†ู‡ุง ุชู‚ูˆู… ูู‚ุท ุจุงุฑุณุงู„ ุงู„ุชุบูŠูŠุฑุงุช ู…ุง ู‡ูˆ ุฌุฏูŠุฏ ููŠ ุงู„ุตูˆุฑุฉ ุŒ ูˆู‡ู„ู… ุฌุฑุง --
11:23
and that is how your eyeball
199
683330
3000
ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุชูŠ ุชู…ูƒู† ุงู„ู…ู‚ู„ุฉ.
11:26
is able to squeeze all that information down to your optic nerve,
200
686330
3000
ู…ู† ุถุบุท ูƒู„ ุชู„ูƒ ุงู„ู…ุนู„ูˆู…ุงุช ุฅู„ู‰ ุงู„ุนุตุจ ุงู„ุจุตุฑูŠ ุŒ
11:29
to send to the rest of the brain.
201
689330
2000
ู„ุชุฑุณู„ ุฅู„ู‰ ุจู‚ูŠุฉ ุงู„ู…ุฎ.
11:31
Instead of doing this in software, or doing those kinds of algorithms,
202
691330
3000
ุจุฏู„ุง ู…ู† ุงู„ู‚ูŠุงู… ุจุฐู„ูƒ ููŠ ุงู„ุจุฑู†ุงู…ุฌ ุŒ ุฃูˆ ูƒุชุงุจุฉ ุชู„ูƒ ุงู„ุฃู†ูˆุงุน ู…ู† ุงู„ุฎูˆุงุฑุฒู…ูŠุงุช ุŒ
11:34
we went and talked to neurobiologists
203
694330
3000
ุฐู‡ุจู†ุง ูˆุชุญุฏุซู†ุง ู…ุน ู…ุฎุชุตูŠู† ููŠ ุงู„ุจูŠูˆู„ูˆุฌูŠุง ุงู„ุนุตุจูŠุฉ
11:37
who have actually reverse engineered that piece of brain that's called the retina.
204
697330
4000
ุงู„ุฐูŠู† ู‚ุงู…ูˆุง ุจู‡ู†ุฏุณุฉ ุนูƒุณูŠุฉ ู„ู‡ุฐู‡ ุงู„ู‚ุทุนุฉ ู…ู† ุงู„ุฏู…ุงุบ ูˆุงู„ุชูŠ ุชุณู…ู‰ ุดุจูƒูŠุฉ ุงู„ุนูŠู†.
11:41
And they figured out all the different cells,
205
701330
2000
ูˆุงูƒุชุดููˆุง ุฌู…ูŠุน ุงู†ูˆุงุน ุงู„ุฎู„ุงูŠุง ุŒ
11:43
and they figured out the network, and we just took that network
206
703330
3000
ูˆุงูƒุชุดููˆุง ุงู„ุดุจูƒุฉ ุŒ ู†ุญู† ูู‚ุท ู‚ู…ู†ุง ุจุฃุฎุฐ ุชู„ูƒ ุงู„ุดุจูƒุฉ
11:46
and we used it as the blueprint for the design of a silicon chip.
207
706330
4000
ูˆุงุณุชุฎุฏู…ู†ุงู‡ุง ูƒู…ุฎุทุท ู„ุชุตู…ูŠู… ุฑู‚ุงู‚ุฉ ุงู„ุณูŠู„ูŠูƒูˆู†.
11:50
So now the neurons are represented by little nodes or circuits on the chip,
208
710330
6000
ุงู„ุขู† ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ ูŠุชู… ุชู…ุซูŠู„ู‡ุง ุจุนู‚ุฏ ุฃูˆ ุฏูˆุงุฆุฑ ุนู„ู‰ ุงู„ุฑู‚ุงู‚ุฉ ุŒ
11:56
and the connections among the neurons are represented, actually modeled by transistors.
209
716330
5000
ูˆุงู„ุงุชุตุงู„ุงุช ุจูŠู† ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ ุชุชู… ุนู† ุทุฑูŠู‚ ุงู„ุชุฑุงู†ุฒุณุชูˆุฑุงุช
12:01
And these transistors are behaving essentially
210
721330
2000
ูˆู‡ุฐู‡ ุงู„ุชุฑุงู†ุฒูŠุณุชูˆุฑุงุช ุชุชุตุฑู ุฃุณุงุณุง
12:03
just like ion channels behave in the brain.
211
723330
3000
ุชู…ุงู…ุง ู…ุซู„ู…ุง ุชุชุตุฑู ุงู„ู‚ู†ูˆุงุช ุงู„ุฃูŠูˆู†ูŠุฉ ููŠ ุงู„ุฏู…ุงุบ.
12:06
It will give you the same kind of robust architecture that I described.
212
726330
5000
ุณูˆู ุฃู‚ุฏู… ู†ูุณ ุงู„ู†ูˆุน ู…ู† ุงู„ุจู†ุงุก ุงู„ู‚ูˆูŠ ุงู„ุฐูŠ ูˆุตูุชู‡.
12:11
Here is actually what our artificial eye looks like.
213
731330
4000
ู‡ุฐุง ู…ุง ุชุจุฏูˆุง ุนู„ูŠู‡ ุงู„ุนูŠู† ุงู„ุงุตุทู†ุงุนูŠุฉ.
12:15
The retina chip that we designed sits behind this lens here.
214
735330
5000
ุฑู‚ุงู‚ุฉ ุงู„ุดุจูƒูŠุฉ ุงู„ุชูŠ ู‚ู…ู†ุง ุจุชุตู…ูŠู…ู‡ุง ู…ูƒุงู†ู‡ุง ูˆุฑุงุก ู‡ุฐู‡ ุงู„ุนุฏุณุฉ ู‡ู†ุง.
12:20
And the chip -- I'm going to show you a video
215
740330
2000
ูˆุฑู‚ุงู‚ุฉ โ€“ ุณุฃุนุฑุถ ุนู„ูŠูƒู… ุดุฑูŠุท ููŠุฏูŠูˆ
12:22
that the silicon retina put out of its output
216
742330
3000
ุดุจูƒูŠุฉ ุงู„ุนูŠู† ุงู„ุณูŠู„ูŠูƒูˆู†ูŠุฉ ุชุนุทูŠู†ุง ุงู„ู†ุชูŠุฌุฉ
12:25
when it was looking at Kareem Zaghloul,
217
745330
3000
ุนู†ุฏู…ุง ูƒุงู†ุช ุชู†ุธุฑ ุฃู„ู‰ ูƒุฑูŠู… ุฒุบู„ูˆู„ ุŒ
12:28
who's the student who designed this chip.
218
748330
2000
ูˆู‡ูˆ ุงู„ุทุงู„ุจ ุงู„ุฐูŠ ุตู…ู… ู‡ุฐู‡ ุงู„ุดุฑูŠุญุฉ.
12:30
Let me explain what you're going to see, OK,
219
750330
2000
ุงุณู…ุญูˆุง ู„ูŠ ุฃู† ุฃุดุฑุญ ู…ุง ุณูˆู ุชุฑูˆู†.
12:32
because it's putting out different kinds of information,
220
752330
3000
ู„ุฃู†ู‡ุง ุณุชุนุฑุถ ุฃู†ูˆุงุน ู…ุฎุชู„ูุฉ ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช ุŒ
12:35
it's not as straightforward as a camera.
221
755330
2000
ุงู†ู‡ุง ู„ูŠุณุช ุจุจุณุงุทุฉ ุงู„ูƒุงู…ูŠุฑุง.
12:37
The retina chip extracts four different kinds of information.
222
757330
3000
ุฑู‚ุงู‚ุฉ ุดุจูƒูŠุฉ ุงู„ุนูŠู† ุชุณุชุฎุฑุฌ ุฃุฑุจุนุฉ ุฃู†ูˆุงุน ู…ุฎุชู„ูุฉ ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช.
12:40
It extracts regions with dark contrast,
223
760330
3000
ุชุณุชุฎุฑุฌ ู…ู†ุงุทู‚ ุฏุงูƒู†ุฉ ุŒ
12:43
which will show up on the video as red.
224
763330
3000
ูˆุงู„ุชูŠ ุณูˆู ุชุธู‡ุฑ ููŠ ุดุฑูŠุท ุงู„ููŠุฏูŠูˆ ุจุงู„ู„ูˆู† ุงู„ุงุญู…ุฑ.
12:46
And it extracts regions with white or light contrast,
225
766330
4000
ุชุณุชุฎุฑุฌ ู…ู†ุงุทู‚ ูุงุชุญุฉ ุŒ
12:50
which will show up on the video as green.
226
770330
2000
ูˆุงู„ุชูŠ ุณูˆู ุชุธู‡ุฑ ููŠ ุดุฑูŠุท ุงู„ููŠุฏูŠูˆ ุจุงู„ู„ูˆู† ุงู„ุงุฎุถุฑ
12:52
This is Kareem's dark eyes
227
772330
2000
ู‡ุฐู‡ ุนูŠูˆู† ูƒุฑูŠู… ุงู„ุฏุงูƒู†ุฉ
12:54
and that's the white background that you see here.
228
774330
3000
ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ุฎู„ููŠุฉ ุงู„ุจูŠุถุงุก ุงู„ุชูŠ ู†ุฑุงู‡ุง ู‡ู†ุง.
12:57
And then it also extracts movement.
229
777330
2000
ูˆู…ู† ุซู… ูุฅู†ู‡ุง ุฃูŠุถุง ุชุณุชุฎุฑุฌ ุงู„ุญุฑูƒุฉ.
12:59
When Kareem moves his head to the right,
230
779330
2000
ุนู†ุฏู…ุง ูŠุญุฑูƒ ูƒุฑูŠู… ุฑุฃุณู‡ ุฅู„ู‰ ุงู„ูŠู…ูŠู† ุŒ
13:01
you will see this blue activity there;
231
781330
2000
ุณู†ุฑู‰ ู‡ุฐุง ุงู„ู†ุดุงุท ุงู„ุฃุฒุฑู‚ ู‡ู†ุงูƒ ุŒ
13:03
it represents regions where the contrast is increasing in the image,
232
783330
3000
ุงู†ู‡ุง ุชู…ุซู„ ุงู„ู…ู†ุงุทู‚ ุงู„ุชูŠ ูŠุฒูŠุฏ ููŠู‡ุง ุงู„ู†ู‚ูŠุถ ููŠ ุงู„ุตูˆุฑุฉ ุŒ
13:06
that's where it's going from dark to light.
233
786330
3000
ุฐู„ูƒ ุญูŠุซ ุงู†ู‡ ุณูŠู…ุฑ ู…ู† ุงู„ุฏุงูƒู† ุงู„ู‰ ุงู„ูุงุชุญ.
13:09
And you also see this yellow activity,
234
789330
2000
ูˆู†ุฑู‰ ุฃูŠุถุง ู‡ุฐุง ุงู„ู†ุดุงุท ุงู„ุฃุตูุฑ ุŒ
13:11
which represents regions where contrast is decreasing;
235
791330
4000
ูˆู‡ูŠ ุชู…ุซู„ ุงู„ู…ู†ุงุทู‚ ุงู„ุชูŠ ูŠุชู†ุงู‚ุต ููŠู‡ุง ุงู„ู†ู‚ูŠุถ ููŠ ุงู„ุตูˆุฑุฉ ุŒ
13:15
it's going from light to dark.
236
795330
2000
ุงู†ู‡ ุณูŠูƒูˆู† ู…ู† ุงู„ูุงุชุญ ุฅู„ู‰ ุงู„ุบุงู…ู‚.
13:17
And these four types of information --
237
797330
3000
ูˆู‡ุฐู‡ ุงู„ุฃู†ูˆุงุน ุงู„ุฃุฑุจุนุฉ ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช --
13:20
your optic nerve has about a million fibers in it,
238
800330
4000
ู„ุฏู‰ ุงู„ุนุตุจ ุงู„ุจุตุฑูŠ ู†ุญูˆ ู…ู„ูŠูˆู† ู…ู† ุงู„ุฃู„ูŠุงู ู…ู†ู‡ุง ุŒ
13:24
and 900,000 of those fibers
239
804330
3000
ูˆ900ุŒ000 ู…ู† ุชู„ูƒ ุงู„ุฃู„ูŠุงู
13:27
send these four types of information.
240
807330
2000
ุชุฑุณู„ ู‡ุฐู‡ ุงู„ุฃู†ูˆุงุน ุงู„ุฃุฑุจุนุฉ ู…ู† ุงู„ู…ุนู„ูˆู…ุงุช.
13:29
So we are really duplicating the kind of signals that you have on the optic nerve.
241
809330
4000
ู„ุฐู„ูƒ ู†ุญู† ู†ูƒุฑุฑ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ุงุดุงุฑุงุช ุงู„ุชูŠ ู„ุฏูŠู†ุง ููŠ ุงู„ุนุตุจ ุงู„ุจุตุฑูŠ.
13:33
What you notice here is that these snapshots
242
813330
3000
ู…ุง ู†ู„ุงุญุธู‡ ููŠ ู‡ุฐู‡ ุงู„ู„ู‚ุทุงุช
13:36
taken from the output of the retina chip are very sparse, right?
243
816330
4000
ุงู„ู…ุฃุฎูˆุฐุฉ ู…ู† ุนู…ู„ ุฑู‚ุงู‚ุฉ ุงู„ุดุจูƒูŠุฉ ู‡ูŠ ุถุฆูŠู„ุฉ ุฌุฏุง.
13:40
It doesn't light up green everywhere in the background,
244
820330
2000
ู‡ูŠ ู„ุง ุชู„ูˆู† ุจุงู„ุฃุฎุถุฑ ูƒู„ ู…ูƒุงู† ููŠ ุงู„ุฎู„ููŠุฉ ุŒ
13:42
only on the edges, and then in the hair, and so on.
245
822330
3000
ูู‚ุท ุนู„ู‰ ุงู„ุญูˆุงู ุŒ ูˆู‡ู„ู… ุฌุฑุง.
13:45
And this is the same thing you see
246
825330
1000
ูˆู‡ุฐุง ู†ูุณ ุงู„ุดูŠุก ุงู„ุฐูŠ ู†ุดุงู‡ุฏู‡
13:46
when people compress video to send: they want to make it very sparse,
247
826330
4000
ุนู†ุฏู…ุง ู†ุถุบุท ุงู„ููŠุฏูŠูˆ ุจู‚ุตุฏ ุฅุฑุณุงู„ู‡ุง : ู†ุฑูŠุฏ ุฌุนู„ู‡ุง ุถุฆูŠู„ุฉ ุฌุฏุง ุŒ
13:50
because that file is smaller. And this is what the retina is doing,
248
830330
3000
ู„ุฃู† ู‡ุฐุง ุงู„ู…ู„ู ู‡ูˆ ุฃุตุบุฑ. ูˆู‡ุฐุง ู…ุง ุชู‚ูˆู… ุจู‡ ููŠ ุดุจูƒูŠุฉ ุงู„ุนูŠู† ุŒ
13:53
and it's doing it just with the circuitry, and how this network of neurons
249
833330
4000
ูˆุงู†ู‡ุง ุชูุนู„ ุฐู„ูƒ ูู‚ุท ู…ุน ุงู„ุฏูˆุงุฆุฑ ุŒ ูˆูƒูŠู ุฃู† ู‡ุฐู‡ ุงู„ุดุจูƒุฉ ู…ู† ุงู„ุฎู„ุงูŠุง ุงู„ุนุตุจูŠุฉ
13:57
that are interacting in there, which we've captured on the chip.
250
837330
3000
ุงู„ุชูŠ ู‡ูŠ ููŠ ุงู„ุชูุงุนู„ ู‡ู†ุงูƒ ุŒ ูˆุงู„ุชูŠ ู‚ู…ู†ุง ุจุงู…ุณุงูƒู‡ุง ุนู„ู‰ ุงู„ุฑู‚ุงู‚ุฉ.
14:00
But the point that I want to make -- I'll show you up here.
251
840330
3000
ูˆู„ูƒู† ุงู„ู†ู‚ุทุฉ ุงู„ุชูŠ ุฃุฑูŠุฏ ุฃู† ุฃุฐูƒุฑู‡ุง ุŒ ุณุฃุฑูŠูƒู… ู‡ู†ุง.
14:03
So this image here is going to look like these ones,
252
843330
3000
ูู‡ุฐู‡ ุงู„ุตูˆุฑุฉ ู‡ู†ุง ุณูˆู ุชุจุฏูˆ ู…ุซู„ ู‡ุฐู‡ ู‡ู†ุง ุŒ
14:06
but here I'll show you that we can reconstruct the image,
253
846330
2000
ูˆู„ูƒู† ู‡ู†ุง ุณุฃุฑูŠูƒู… ุฃู†ู‡ ุจุงู…ูƒุงู†ู†ุง ุฅุนุงุฏุฉ ุจู†ุงุก ุงู„ุตูˆุฑุฉ ุŒ
14:08
so, you know, you can almost recognize Kareem in that top part there.
254
848330
5000
ู„ุฐู„ูƒุŒ ูƒู…ุง ุชุนู„ู…ูˆู†ุŒ ูŠู…ูƒู†ูƒู… ุชู‚ุฑูŠุจุง ุงู„ุชุนุฑู ุนู„ู‰ ูƒุฑูŠู… ููŠ ุฐู„ูƒ ุงู„ุฌุฒุก ุงู„ุนู„ูˆูŠ ู‡ู†ุงูƒ.
14:13
And so, here you go.
255
853330
2000
ู‡ุฐุง ู‡ูˆ.
14:24
Yes, so that's the idea.
256
864330
3000
ู†ุนู… ุŒ ุงุฐุง ู‡ุฐู‡ ู‡ูŠ ุงู„ููƒุฑุฉ.
14:27
When you stand still, you just see the light and dark contrasts.
257
867330
2000
ุนู†ุฏู…ุง ู†ุชูˆู‚ู ุนู† ุงู„ุญุฑูƒุฉ ุŒ ุชุฑู‰ ูู‚ุท ุชู†ุงู‚ุถ ุงู„ุถูˆุก ูˆุงู„ุธู„ุงู… .
14:29
But when it's moving back and forth,
258
869330
2000
ูˆู„ูƒู† ุนู†ุฏู…ุง ุชุชุญุฑูƒ ุฐู‡ุงุจุง ูˆุฅูŠุงุจุง ุŒ
14:31
the retina picks up these changes.
259
871330
3000
ุดุจูƒูŠุฉ ุงู„ุนูŠู† ุชู„ุชู‚ุท ู‡ุฐู‡ ุงู„ุชุบูŠุฑุงุช.
14:34
And that's why, you know, when you're sitting here
260
874330
1000
ูˆู„ู‡ุฐุง ุงู„ุณุจุจ ุŒ ูˆูƒู…ุง ุชุนู„ู…ูˆู† ุŒ ุงุฐุง ูƒู†ุช ุฌุงู„ุณุง ู‡ู†ุง
14:35
and something happens in your background,
261
875330
2000
ูˆูŠุญุฏุซ ุดูŠุก ู…ุง ุฎู„ููƒ ุŒ
14:37
you merely move your eyes to it.
262
877330
2000
ูุณุชูˆุฌู‡ ู†ุธุฑูƒ ู…ุจุงุดุฑุฉ ู†ุญูˆู‡.
14:39
There are these cells that detect change
263
879330
2000
ุชูˆุฌุฏ ู‡ุฐู‡ ุงู„ุฎู„ุงูŠุง ุงู„ุญุณุงุณุฉ ู„ู„ุชุบูŠูŠุฑ
14:41
and you move your attention to it.
264
881330
2000
ูˆู‡ูŠ ุชู‚ูˆู… ุจุชูˆุฌูŠู‡ ุงู†ุชุจุงู‡ูƒู… ู†ุญูˆู‡.
14:43
So those are very important for catching somebody
265
883330
2000
ู„ุฐู„ูƒ ูู‡ูŠ ู…ู‡ู…ุฉ ุฌุฏุง ู„ุงุตุทูŠุงุฏ ุดุฎุต ู…ุง
14:45
who's trying to sneak up on you.
266
885330
2000
ูŠุญุงูˆู„ ุงู„ุชุณู„ู„ ู†ุญูˆูƒ.
14:47
Let me just end by saying that this is what happens
267
887330
3000
ุงุณู…ุญูˆุง ู„ูŠ ุฃู† ุฃู†ู‡ูŠ ูƒู„ุงู…ูŠ ุจุงู„ู‚ูˆู„ ุฅู† ู‡ุฐุง ู‡ูˆ ู…ุง ูŠุญุฏุซ
14:50
when you put Africa in a piano, OK.
268
890330
3000
ุนู†ุฏ ู†ู‚ุญู… ุงูุฑูŠู‚ูŠุง ููŠ ุจูŠุงู†ูˆ ุŒ ู…ูˆุงูู‚.
14:53
This is a steel drum here that has been modified,
269
893330
3000
ุชู… ุชุนุฏูŠู„ ู‡ุฐุง ุงู„ุจุฑู…ูŠู„ ุงู„ุตู„ุจ ู‡ู†ุง ุŒ
14:56
and that's what happens when you put Africa in a piano.
270
896330
3000
ูˆู‡ุฐุง ู…ุง ูŠุญุฏุซ ุนู†ุฏ ูˆุถุน ุงูุฑูŠู‚ูŠุง ููŠ ุงู„ุจูŠุงู†ูˆ.
14:59
And what I would like us to do is put Africa in the computer,
271
899330
4000
ูˆู…ุง ุฃูˆุฏ ุฃู† ู†ู‚ูˆู… ุจู‡ ุŒ ู‡ูˆ ูˆุถุน ุฃูุฑูŠู‚ูŠุง ููŠ ุงู„ูƒู…ุจูŠูˆุชุฑ ุŒ
15:03
and come up with a new kind of computer
272
903330
2000
ูˆุงู„ุชูˆุตู„ ุงู„ู‰ ู†ูˆุน ุฌุฏูŠุฏ ู…ู† ุงู„ูƒู…ุจูŠูˆุชุฑ
15:05
that will generate thought, imagination, be creative and things like that.
273
905330
3000
ู…ู† ุดุฃู† ู‡ุฐุง ุฃู† ูŠูˆู„ุฏ ุงู„ููƒุฑ ูˆุงู„ุฎูŠุงู„ ุŒ ุฃู† ุชูƒูˆู† ุฎู„ุงู‚ุฉ ูˆุงุดูŠุงุก ู…ู† ู‡ุฐุง ุงู„ู‚ุจูŠู„.
15:08
Thank you.
274
908330
2000
ุดูƒุฑุง ู„ูƒู….
15:10
(Applause)
275
910330
2000
(ุชุตููŠู‚).
15:12
Chris Anderson: Question for you, Kwabena.
276
912330
2000
ูƒุฑูŠุณ ุงู†ุฏุฑุณูˆู† : ู„ุฏูŠ ุณุคุงู„ ู„ูƒ ุŒ ูƒูˆุงุจูŠู†ุง.
15:14
Do you put together in your mind the work you're doing,
277
914330
4000
ู‡ู„ ูˆุถุนุช ููŠ ุชููƒูŠุฑูƒ ูˆ ููŠู…ุง ุชูุนู„ูˆู†ู‡ ุŒ
15:18
the future of Africa, this conference --
278
918330
3000
ู…ุณุชู‚ุจู„ ุฃูุฑูŠู‚ูŠุง ุŒ ูˆู‡ุฐุง ุงู„ู…ุคุชู…ุฑ --
15:21
what connections can we make, if any, between them?
279
921330
3000
ู‡ู„ ูŠู…ูƒู† ุงูŠุฌุงุฏ ุตู„ุงุช ุŒ ุฅู† ูˆุฌุฏุช ุŒ ุจูŠู†ู‡ู…ุงุŸ
15:24
Kwabena Boahen: Yes, like I said at the beginning,
280
924330
2000
ูƒูˆุงุจูŠู†ุง ุจูˆุงู‡ู† : ู†ุนู… ุŒ ูˆูƒู…ุง ู‚ู„ุช ููŠ ุงู„ุจุฏุงูŠุฉ.
15:26
I got my first computer when I was a teenager, growing up in Accra.
281
926330
4000
ุญุตู„ุช ุนู„ู‰ ุฃูˆู„ ุญุงุณูˆุจ ู„ูŠ ุนู†ุฏู…ุง ูƒู†ุช ู…ุฑุงู‡ู‚ุง ูŠุงูุนุงุŒ ููŠ ุฃูƒุฑุง.
15:30
And I had this gut reaction that this was the wrong way to do it.
282
930330
4000
ูˆูƒุงู† ู„ุฏูŠ ุฑุฏ ูุนู„ ุบุฑูŠุฒูŠ ุจุฃู† ู‡ุฐู‡ ุทุฑูŠู‚ุฉ ุฎุงุทุฆุฉ ู„ุชุญู‚ูŠู‚ ุฐู„ูƒ.
15:34
It was very brute force; it was very inelegant.
283
934330
3000
ูƒุงู† ุนุจุงุฑุฉ ุนู† ุงู„ู‚ูˆุฉ ุงู„ุบุงุดู…ุฉ ุŒ ูˆู„ู… ูŠูƒู† ุฐู„ูƒ ุฃู†ูŠู‚ุง ุจุงู„ู…ุฑุฉ.
15:37
I don't think that I would've had that reaction,
284
937330
2000
ู„ุง ุฃุนุชู‚ุฏ ุฃู†ู†ูŠ ูƒู†ุช ุณุฃู‚ูˆู… ุจุฑุฏ ุงู„ูุนู„ ู‡ุฐุง ุŒ
15:39
if I'd grown up reading all this science fiction,
285
939330
3000
ุฅุฐุง ูƒู†ุช ู‚ุฑุฃุช ูƒู„ ู‡ุฐุง ุงู„ุฎูŠุงู„ ุงู„ุนู„ู…ูŠ ููŠ ุตุบุฑูŠ ุŒ
15:42
hearing about RD2D2, whatever it was called, and just -- you know,
286
942330
4000
ู†ุณู…ุน ุนู† RD2D2 ุŒ ุฃูŠุง ูƒุงู† ุงุณู…ู‡ ุŒ ูˆูู‚ุท -- ูƒู…ุง ุชุนู„ู…ูˆู† ุŒ
15:46
buying into this hype about computers.
287
946330
1000
ุงู„ุดุฑุงุก ููŠ ู‡ุฐุง ุงู„ุถุฌูŠุฌ ุฃุฌู‡ุฒุฉ ุงู„ูƒู…ุจูŠูˆุชุฑ.
15:47
I was coming at it from a different perspective,
288
947330
2000
ูƒู†ุช ู‚ุงุฏู…ุง ุงู„ูŠู‡ุง ู…ู† ู…ู†ุธูˆุฑ ู…ุฎุชู„ู ุŒ
15:49
where I was bringing that different perspective
289
949330
2000
ูˆ ูƒุงู† ู„ุฏูŠ ูˆุฌู‡ุฉ ู†ุธุฑ ู…ุฎุชู„ูุฉ
15:51
to bear on the problem.
290
951330
2000
ู„ู„ุชุนุงุทูŠ ู…ุน ุงู„ู…ุดูƒู„ุฉ.
15:53
And I think a lot of people in Africa have this different perspective,
291
953330
3000
ูˆุงุนุชู‚ุฏ ุงู† ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ู†ุงุณ ููŠ ุฃูุฑูŠู‚ูŠุง ู„ุฏูŠู‡ู… ูˆุฌู‡ุฉ ุงู„ู†ุธุฑ ุงู„ู…ุฎุชู„ูุฉ ู‡ุฐู‡ ุŒ
15:56
and I think that's going to impact technology.
292
956330
2000
ูˆุงู„ุชูŠ ุฃุนุชู‚ุฏ ุฃู†ู‡ุง ุณูŠูƒูˆู† ู„ู‡ุง ุฃุซุฑ ุนู„ู‰ ุงู„ุชูƒู†ูˆู„ูˆุฌูŠุง.
15:58
And that's going to impact how it's going to evolve.
293
958330
2000
ูˆุณูŠูƒูˆู† ู„ู‡ุง ุชุฃุซูŠุฑ ุนู„ู‰ ูƒูŠููŠุฉ ุชุทูˆุฑ ุงู„ุงู…ูˆุฑ.
16:00
And I think you're going to be able to see, use that infusion,
294
960330
2000
ูˆุงุนุชู‚ุฏ ุงู†ูƒ ุณุชูƒูˆู† ู‚ุงุฏุฑุง ุนู„ู‰ ุฑุคูŠุฉ ุŒ ูˆุงุณุชุฎุฏุงู… ู‡ุฐุง ุงู„ุชุณุฑูŠุจ ุŒ
16:02
to come up with new things,
295
962330
2000
ู„ุชูƒุชุดู ุฃุดูŠุงุก ุฌุฏูŠุฏุฉ ุŒ
16:04
because you're coming from a different perspective.
296
964330
3000
ู„ุฃู†ูƒ ู‚ุงุฏู… ู…ู† ู…ู†ุธูˆุฑ ู…ุฎุชู„ู.
16:07
I think we can contribute. We can dream like everybody else.
297
967330
4000
ูˆุฃุนุชู‚ุฏ ุฃู†ู†ุง ูŠู…ูƒู†ู†ุง ุฃู† ุชุณุงู‡ู… ุŒ ูŠู…ูƒู†ู†ุง ุฃู† ู†ุญู„ู… ู…ุซู„ ุฃูŠ ุดุฎุต ุขุฎุฑ.
16:11
CA: Thanks Kwabena, that was really interesting.
298
971330
2000
ูƒุฑูŠุณ ุงู†ุฏุฑุณูˆู† : ุดูƒุฑุง ูƒูˆุงุจูŠู†ุง ุŒ ูƒุงู† ู‡ุฐุง ู…ุซูŠุฑุง ู„ู„ุงู‡ุชู…ุงู… ุญู‚ุง.
16:13
Thank you.
299
973330
1000
ุดูƒุฑุง ู„ูƒ.
16:14
(Applause)
300
974330
2000
(ุชุตููŠู‚).
ุญูˆู„ ู‡ุฐุง ุงู„ู…ูˆู‚ุน

ุณูŠู‚ุฏู… ู„ูƒ ู‡ุฐุง ุงู„ู…ูˆู‚ุน ู…ู‚ุงุทุน ููŠุฏูŠูˆ YouTube ุงู„ู…ููŠุฏุฉ ู„ุชุนู„ู… ุงู„ู„ุบุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ. ุณุชุฑู‰ ุฏุฑูˆุณ ุงู„ู„ุบุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุงู„ุชูŠ ูŠุชู… ุชุฏุฑูŠุณู‡ุง ู…ู† ู‚ุจู„ ู…ุฏุฑุณูŠู† ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุนุงู„ู…. ุงู†ู‚ุฑ ู†ู‚ุฑู‹ุง ู…ุฒุฏูˆุฌู‹ุง ููˆู‚ ุงู„ุชุฑุฌู…ุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุงู„ู…ุนุฑูˆุถุฉ ุนู„ู‰ ูƒู„ ุตูุญุฉ ููŠุฏูŠูˆ ู„ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ ู…ู† ู‡ู†ุงูƒ. ูŠุชู… ุชู…ุฑูŠุฑ ุงู„ุชุฑุฌู…ุงุช ุจุงู„ุชุฒุงู…ู† ู…ุน ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ. ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒ ุฃูŠ ุชุนู„ูŠู‚ุงุช ุฃูˆ ุทู„ุจุงุช ุŒ ูŠุฑุฌู‰ ุงู„ุงุชุตุงู„ ุจู†ุง ุจุงุณุชุฎุฏุงู… ู†ู…ูˆุฐุฌ ุงู„ุงุชุตุงู„ ู‡ุฐุง.

https://forms.gle/WvT1wiN1qDtmnspy7