Kwabena Boahen: Making a computer that works like the brain

96,468 views ใƒป 2008-07-30

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: hyuna choi ๊ฒ€ํ† : Sunphil Ga
00:18
I got my first computer when I was a teenager growing up in Accra,
0
18330
5000
์ œ๊ฐ€ ์ฒ˜์Œ์œผ๋กœ ์ปดํ“จํ„ฐ๋ฅผ ๋ฐ›์€ ๊ฒƒ์€ ์•„ํฌ๋ผ์—์„œ ์‚ด๊ณ  ์žˆ๋˜ 10๋Œ€ ๋•Œ์ž…๋‹ˆ๋‹ค.
00:23
and it was a really cool device.
1
23330
3000
์ปดํ“จํ„ฐ๋Š” ์ •๋ง ๋ฉ‹์ง„ ์žฅ์น˜์˜€์ฃ .
00:26
You could play games with it. You could program it in BASIC.
2
26330
5000
๊ฒŒ์ž„์„ ํ•˜๊ฑฐ๋‚˜ BASIC์„ ์ด์šฉํ•ด ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“ค ์ˆ˜๋„ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
00:31
And I was fascinated.
3
31330
2000
์ €๋Š” ์™„์ „ํžˆ ๋งคํ˜น๋˜์–ด
00:33
So I went into the library to figure out how did this thing work.
4
33330
6000
์ด ๊ธฐ๊ณ„๊ฐ€ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ๋„์„œ๊ด€์— ๊ฐ”์Šต๋‹ˆ๋‹ค.
00:39
I read about how the CPU is constantly shuffling data back and forth
5
39330
5000
์ €๋Š” CPU๊ฐ€ ๊ธฐ์–ต์žฅ์น˜ ์‚ฌ์ด, RAM๊ณผ ALU: ์‚ฐ์ˆ  ๋…ผ๋ฆฌ ์žฅ์น˜) ์‚ฌ์ด์—์„œ,
00:44
between the memory, the RAM and the ALU,
6
44330
4000
์–ด๋–ป๊ฒŒ ๋Š์ž„์—†์ด ์ •๋ณด๋ฅผ
00:48
the arithmetic and logic unit.
7
48330
2000
์•ž, ๋’ค๋กœ ๋Œ์–ด๋‚ด๋Š”์ง€์— ๋Œ€ํ•ด ์ฝ์—ˆ์Šต๋‹ˆ๋‹ค.
00:50
And I thought to myself, this CPU really has to work like crazy
8
50330
4000
๊ทธ๋ฆฌ๊ณ , ์ €๋Š” '์‹œ์Šคํ…œ์„ ํ†ตํ•˜์—ฌ ๋ชจ๋“  ์ž๋ฃŒ๋“ค์„ ์ง€์†์ ์œผ๋กœ ์ „๋‹ฌ์‹œํ‚ค๊ธฐ ์œ„ํ•ด
00:54
just to keep all this data moving through the system.
9
54330
4000
์ด CPU๊ฐ€ ๋ฏธ์นœ ๊ฒƒ์ฒ˜๋Ÿผ ์ผํ•ด์•ผ ํ•˜๋Š”๊ตฌ๋‚˜'์ƒ๊ฐํ–ˆ์—ˆ์ฃ .
00:58
But nobody was really worried about this.
10
58330
3000
ํ•˜์ง€๋งŒ ์•„๋ฌด๋„ ์ด ์ ์— ๋Œ€ํ•ด์„œ ๊ฑฑ์ •ํ•˜์ง€ ์•Š๋”๊ตฐ์š”.
01:01
When computers were first introduced,
11
61330
2000
์ฒ˜์Œ์— ์ปดํ“จํ„ฐ๊ฐ€ ๋„์ž…๋˜์—ˆ์„ ๋•Œ
01:03
they were said to be a million times faster than neurons.
12
63330
3000
์‚ฌ๋žŒ๋“ค์€ ์ปดํ“จํ„ฐ๊ฐ€ ์‹ ๊ฒฝ์„ธํฌ ๋ณด๋‹ค ๋ฐฑ๋งŒ ๋ฐฐ๋Š” ๋น ๋ฅด๋‹ค๊ณ  ๋งํ–ˆ์Šต๋‹ˆ๋‹ค.
01:06
People were really excited. They thought they would soon outstrip
13
66330
5000
์‚ฌ๋žŒ๋“ค์€ ๊ต‰์žฅํžˆ ํฅ๋ถ„ํ•ด์„œ, ๊ทธ๋“ค์ด ๊ณง ๋‘๋‡Œ์˜ ๋Šฅ๋ ฅ์„
01:11
the capacity of the brain.
14
71330
3000
๋”ฐ๋ผ์žก์„ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
01:14
This is a quote, actually, from Alan Turing:
15
74330
3000
์—ฌ๊ธฐ ์•Œ๋ž€ ํŠœ๋ง์œผ๋กœ ๋ถ€ํ„ฐ ๋”ฐ์˜จ ๋ง์ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:17
"In 30 years, it will be as easy to ask a computer a question
16
77330
4000
30๋…„ ์•ˆ์—, ์ปดํ“จํ„ฐ์—๊ฒŒ ์งˆ๋ฌธ์„ ๋˜์ง€๋Š” ๊ฒƒ์ด ์‚ฌ๋žŒ์—๊ฒŒ ์งˆ๋ฌธํ•˜๋Š” ๊ฒƒ๋งŒํผ
01:21
as to ask a person."
17
81330
2000
์‰ฌ์›Œ์งˆ ๊ฒƒ์ด๋‹ค."
01:23
This was in 1946. And now, in 2007, it's still not true.
18
83330
7000
2007๋…„์ธ ์ง€๊ธˆ, ์ด๊ฒƒ์€ ์‚ฌ์‹ค์ด ์•„๋‹ˆ์ฃ .
01:30
And so, the question is, why aren't we really seeing
19
90330
4000
๋ฌธ์ œ๋Š”, ๋‡Œ์—์„œ ๋ณผ์ˆ˜ ์žˆ๋Š” ์ด ๋Šฅ๋ ฅ๋“ค์„ ์™œ ์šฐ๋ฆฌ๋Š”
01:34
this kind of power in computers that we see in the brain?
20
94330
4000
์ปดํ“จํ„ฐ์—์„œ ๋ณผ ์ˆ˜ ์—†๋Š” ๊ฒƒ์ผ๊นŒ์š”?์ด์ฃ .
01:38
What people didn't realize, and I'm just beginning to realize right now,
21
98330
4000
์‚ฌ๋žŒ๋“ค์ด ๊นจ๋‹ซ์ง€ ๋ชปํ•œ ๊ฒƒ์€, ๊ทธ๋ฆฌ๊ณ  ์ œ๊ฐ€ ์ด์ œ ๋ง‰ ๊นจ๋‹ซ๊ธฐ ์‹œ์ž‘ํ•œ ๊ฒƒ์€
01:42
is that we pay a huge price for the speed
22
102330
2000
์šฐ๋ฆฌ๊ฐ€ ์ปดํ“จํ„ฐ์˜ ํฐ ์ด์ ์œผ๋กœ ๊ผฝ๋Š” ์Šคํ”ผ๋“œ๋ฅผ ์œ„ํ•ด
01:44
that we claim is a big advantage of these computers.
23
104330
4000
๋งค์šฐ ํฐ ๋Œ€๊ฐ€๋ฅผ ์ง€๋ถˆํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
01:48
Let's take a look at some numbers.
24
108330
2000
๋ช‡ ๊ฐ€์ง€ ์ˆซ์ž๋“ค์„ ๋ด…์‹œ๋‹ค.
01:50
This is Blue Gene, the fastest computer in the world.
25
110330
4000
์ด๊ฒƒ์€ ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ๋น ๋ฅธ ์ปดํ“จํ„ฐ์ธ ๋ธ”๋ฃจ ์ง„์ž…๋‹ˆ๋‹ค.
01:54
It's got 120,000 processors; they can basically process
26
114330
5000
์ด๊ฒƒ์€ 12๋งŒ ๊ฐœ์˜ ํ”„๋กœ์„ธ์„œ๋“ค๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๊ณ , ๊ธฐ๋ณธ์ ์œผ๋กœ
01:59
10 quadrillion bits of information per second.
27
119330
3000
1์ดˆ์— ๋งŒ์กฐ ๋น„ํŠธ์˜ ์ •๋ณด๋“ค์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:02
That's 10 to the sixteenth. And they consume one and a half megawatts of power.
28
122330
7000
10์˜ 16 ์ œ๊ณฑ์„ ๋ง์ด์ฃ . ๊ทธ๋ฆฌ๊ณ  1.5 ๋ฉ”๊ฐ€์™€ํŠธ์˜ ์ „๋ ฅ์„ ์†Œ๋น„ํ•˜์ฃ .
02:09
So that would be really great, if you could add that
29
129330
3000
๋งŒ์ผ ๊ทธ ์ „๋ ฅ์„ ํƒ„์ž๋‹ˆ์•„์—์„œ
02:12
to the production capacity in Tanzania.
30
132330
2000
๋ฌผ๊ฑด์„ ์ƒ์‚ฐํ•˜๋Š” ๋ฐ ์“ด๋‹ค๋ฉด ์ •๋ง ๊ต‰์žฅํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:14
It would really boost the economy.
31
134330
2000
์•„๋งˆ ๊ฒฝ์ œ๋ฅผ ์—„์ฒญ๋‚˜๊ฒŒ ์‹ ์žฅ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒ ์ฃ .
02:16
Just to go back to the States,
32
136330
4000
๊ฐ„๋žตํžˆ ๋ฏธ๊ตญ์˜ ์ƒํ™ฉ์— ๋งž์ถฐ ์ƒ๊ฐํ•ด๋ณด์ฃ .
02:20
if you translate the amount of power or electricity
33
140330
2000
๋งŒ์•ฝ ์ด ์ปดํ“จํ„ฐ ์ „๋ ฅ ์‚ฌ์šฉ๋Ÿ‰์„
02:22
this computer uses to the amount of households in the States,
34
142330
3000
๋ฏธ๊ตญ์˜ ๊ฐ€์ •์ง‘๋“ค ํ‰๊ท  ์‚ฌ์šฉ๋Ÿ‰์— ๋น„๊ตํ•˜๋ฉด,
02:25
you get 1,200 households in the U.S.
35
145330
4000
์•ฝ 1200 ๊ฐ€๊ตฌ๋“ค์ด ์†Œ๋ชจํ•˜๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•ฉ๋‹ˆ๋‹ค.
02:29
That's how much power this computer uses.
36
149330
2000
์ปดํ“จํ„ฐ ํ•œ ๋Œ€๊ฐ€ ๊ทธ ์ •๋„์˜ ์ „๋ ฅ์„ ์ด์šฉํ•˜๋Š” ๊ฑฐ์ฃ .
02:31
Now, let's compare this with the brain.
37
151330
3000
์ด์ œ, ๋‘๋‡Œ๋ฅผ ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค.
02:34
This is a picture of, actually Rory Sayres' girlfriend's brain.
38
154330
5000
์ด ์‚ฌ์ง„์€ ๋กœ๋ฆฌ ์‚ฌ์ด์–ด์Šค(Rory Sayres)์˜ ์—ฌ์ž์นœ๊ตฌ ๋‡Œ๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:39
Rory is a graduate student at Stanford.
39
159330
2000
๋กœ๋ฆฌ๋Š” ์Šคํƒ ํฌ๋“œ์˜ ๋Œ€ํ•™์›์ƒ์ธ๋ฐ
02:41
He studies the brain using MRI, and he claims that
40
161330
4000
MRI๋ฅผ ์ด์šฉํ•ด ๋‘๋‡Œ๋ฅผ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์ฃ , ๊ทธ๋Š”
02:45
this is the most beautiful brain that he has ever scanned.
41
165330
3000
์ด ์‚ฌ์ง„์ด ์ง€๊ธˆ๊นŒ์ง€ ์Šค์บ”ํ•œ ๋‘๋‡Œ ์ค‘ ๊ฐ€์žฅ ์•„๋ฆ„๋‹ค์šด ๋‡Œ๋ผ๊ณ  ์ฃผ์žฅํ–ˆ์ฃ .
02:48
(Laughter)
42
168330
2000
(์›ƒ์Œ)
02:50
So that's true love, right there.
43
170330
3000
๋ฐ”๋กœ ๊ทธ ๊ณณ์— ์ง„์ •ํ•œ ์‚ฌ๋ž‘์ด ์žˆ๋„ค์š”.
02:53
Now, how much computation does the brain do?
44
173330
3000
์ž, ๋‘๋‡Œ๋Š” ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ๊ณ„์‚ฐ ํ™œ๋™์„ ํ• ๊นŒ์š”?
02:56
I estimate 10 to the 16 bits per second,
45
176330
2000
1์ดˆ์— 10์˜ 16์ œ๊ณฑ ๋น„ํŠธ ์ •๋„์ผ ๊ฒƒ์ด๋ผ๊ณ  ์˜ˆ์ƒํ•ฉ๋‹ˆ๋‹ค.
02:58
which is actually about very similar to what Blue Gene does.
46
178330
4000
๋ธ”๋ฃจ ์ง„์˜ ์ˆ˜ํ–‰ ์†๋„์™€ ๋น„์Šทํ•œ ์ˆ˜์ค€์ด์ฃ .
03:02
So that's the question. The question is, how much --
47
182330
2000
์งˆ๋ฌธ์€, ๋‡Œ๊ฐ€ ์–ผ๋งˆ๋‚˜ ๋งŽ์ด,
03:04
they are doing a similar amount of processing, similar amount of data --
48
184330
3000
๋น„์Šทํ•œ ์–‘์˜ ์ •๋ณด ์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด --
03:07
the question is how much energy or electricity does the brain use?
49
187330
5000
์ฆ‰, ๋‘๋‡Œ๋Š” ์–ผ๋งˆ๋‚˜ ๋งŽ์€ ์–‘์˜ ์—๋„ˆ์ง€ ์ „๋ ฅ์„ ์†Œ๋ชจํ• ๊นŒ์š”?
03:12
And it's actually as much as your laptop computer:
50
192330
3000
์‹ค์ œ๋กœ, ์—ฌ๋Ÿฌ๋ถ„์˜ ๋…ธํŠธ๋ถ ์ปดํ“จํ„ฐ ์ „๋ ฅ๋Ÿ‰ ๊ณผ ๊ฐ™์ฃ :
03:15
it's just 10 watts.
51
195330
2000
10 ์™€ํŠธ ์ž…๋‹ˆ๋‹ค.
03:17
So what we are doing right now with computers
52
197330
3000
๋‹ค์‹œ ๋งํ•ด 1200 ๊ฐ€๊ตฌ์˜ ์ „๋ ฅ ์†Œ๋ชจ๋Ÿ‰์œผ๋กœ
03:20
with the energy consumed by 1,200 houses,
53
200330
3000
๋ธ”๋ฃจ์ง„ ์ปดํ“จํ„ฐ๋ฅผ ๊ตฌ๋™ํ•  ๋•Œ
03:23
the brain is doing with the energy consumed by your laptop.
54
203330
5000
๋‘๋‡Œ๋Š” ๋‹จ์ง€ ๋…ธํŠธ๋ถ ์ •๋„์˜ ์—๋„ˆ์ง€๋กœ ๋น„์Šทํ•œ ์ผ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
03:28
So the question is, how is the brain able to achieve this kind of efficiency?
55
208330
3000
์ด์ œ ๋‹ค์Œ ์งˆ๋ฌธ์ž…๋‹ˆ๋‹ค. ์–ด๋–ป๊ฒŒ ๋‘๋‡Œ๋Š” ์ด๋ ‡๊ฒŒ ๋›ฐ์–ด๋‚œ ํšจ์œจ์„ฑ์„ ๋‹ฌ์„ฑํ•œ ๊ฑธ๊นŒ์š”?
03:31
And let me just summarize. So the bottom line:
56
211330
2000
์ œ๊ฐ€ ํ•œ ๋ฒˆ ์š”์•ฝํ•ด๋ณด์ฃ . ๋‹ค์Œ ์ค„์ž…๋‹ˆ๋‹ค:
03:33
the brain processes information using 100,000 times less energy
57
213330
4000
๋‘๋‡Œ๋Š” ์šฐ๋ฆฌ๊ฐ€ ํ˜„์žฌ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ๋กœ ๋งŒ๋“  ์ปดํ“จํ„ฐ์—์„œ ์†Œ๋ชจํ•˜๋Š” ์—๋„ˆ์ง€๋ณด๋‹ค
03:37
than we do right now with this computer technology that we have.
58
217330
4000
10๋งŒ ๋ฐฐ๋‚˜ ์ ์€ ์—๋„ˆ์ง€๋กœ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
03:41
How is the brain able to do this?
59
221330
2000
๋‘๋‡Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ทธ๋Ÿด ์ˆ˜ ์žˆ์„๊นŒ์š”?
03:43
Let's just take a look about how the brain works,
60
223330
3000
๋‘๋‡Œ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€๋ฅผ ๋จผ์ € ์‚ดํŽด๋ด…์‹œ๋‹ค.
03:46
and then I'll compare that with how computers work.
61
226330
4000
๊ทธ๋ฆฌ๊ณ  ์ด ์ž‘๋™์„ ์ปดํ“จํ„ฐ์˜ ์ž‘๋™ ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•ด๋ด…์‹œ๋‹ค.
03:50
So, this clip is from the PBS series, "The Secret Life of the Brain."
62
230330
4000
์ด๊ฒƒ์€ PBS(Public Broadcasting Service) ์‹œ๋ฆฌ์ฆˆ์ธ "๋‘๋‡Œ์˜ ๋น„๋ฐ€์Šค๋Ÿฐ ์‚ถ"์—์„œ ๊ฐ€์ ธ์˜จ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
03:54
It shows you these cells that process information.
63
234330
3000
์ง€๊ธˆ ์ •๋ณด๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ์„ธํฌ๋“ค์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์ฃ .
03:57
They are called neurons.
64
237330
1000
๊ทธ ์„ธํฌ๋“ค์€ ์‹ ๊ฒฝ์„ธํฌ(๋‰ด๋Ÿฐ)๋ผ๊ณ  ๋ถˆ๋ฆฝ๋‹ˆ๋‹ค.
03:58
They send little pulses of electricity down their processes to each other,
65
238330
6000
์ด ์„ธํฌ๋“ค์€ ๋งค์šฐ ์ž‘์€ ์ „๊ธฐ์  ์‹ ํ˜ธ๋ฅผ ์„œ๋กœ์—๊ฒŒ ๋ณด๋‚ด๊ณ 
04:04
and where they contact each other, those little pulses
66
244330
2000
์„œ๋กœ ์ธ์ ‘ํ•œ ๋ถ€๋ถ„์—์„œ ์ด ์ž‘์€ ์‹ ํ˜ธ๋Š”
04:06
of electricity can jump from one neuron to the other.
67
246330
2000
ํ•œ ์‹ ๊ฒฝ์„ธํฌ์—์„œ ๋‹ค๋ฅธ ์‹ ๊ฒฝ์„ธํฌ๋กœ ์˜ฎ๊ฒจ๊ฐ‘๋‹ˆ๋‹ค.
04:08
That process is called a synapse.
68
248330
3000
์ด ๊ณผ์ •์„ ์‹œ๋ƒ…์Šค๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
04:11
You've got this huge network of cells interacting with each other --
69
251330
2000
์ด๋Ÿฐ ๋ฐฉ์‹์œผ๋กœ ์„œ๋กœ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”, ์•ฝ 1 ์–ต ๊ฐœ์— ๋‹ฌํ•˜๋Š” ์„ธํฌ๋“ค์€
04:13
about 100 million of them,
70
253330
2000
๊ฑฐ๋Œ€ํ•œ ๋„คํŠธ์›Œํฌ๋ฅผ ํ˜•์„ฑํ•˜๊ณ ,
04:15
sending about 10 quadrillion of these pulses around every second.
71
255330
4000
1 ์ดˆ์— ๋งŒ์กฐ ๋ฒˆ ์ •๋„์˜ ์ด ์ „๊ธฐ์  ์‹ ํ˜ธ๋ฅผ ๋ฐฉ์ถœํ•ฉ๋‹ˆ๋‹ค.
04:19
And that's basically what's going on in your brain right now as you're watching this.
72
259330
6000
์ง€๊ธˆ ๋ณด์‹œ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ์ด๊ฒƒ์ด ๋‡Œ์—์„œ ๊ธฐ๋ณธ์ ์œผ๋กœ ์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š” ํ˜„์ƒ์ž…๋‹ˆ๋‹ค.
04:25
How does that compare with the way computers work?
73
265330
2000
์ด๋Ÿฐ ๊ณผ์ •์„ ์ปดํ“จํ„ฐ์˜ ์ž‘๋™ ๋ฐฉ์‹๊ณผ ์–ด๋–ป๊ฒŒ ๋น„๊ตํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
04:27
In the computer, you have all the data
74
267330
2000
์ค‘์•™ ์ฒ˜๋ฆฌ์žฅ์น˜๋ฅผ ๊ฑฐ์ณ์„œ
04:29
going through the central processing unit,
75
269330
2000
๋ชจ๋“  ์ •๋ณด๊ฐ€ ์ €์žฅ๋˜์–ด ์žˆ๋Š” ์ปดํ“จํ„ฐ์—์„œ๋Š”,
04:31
and any piece of data basically has to go through that bottleneck,
76
271330
3000
์–ด๋–ค ์ •๋ณด๋ผ๋„ ์ด ์ข์€ ๊ด€๋ฌธ์„ ๋ฐ˜๋“œ์‹œ ํ†ต๊ณผํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
04:34
whereas in the brain, what you have is these neurons,
77
274330
4000
๋ฐ˜๋ฉด, ์—ฌ๋Ÿฌ๋ถ„์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋‡Œ์˜ ์ด ์‹ ๊ฒฝ์„ธํฌ๋“ค์—์„œ๋Š”
04:38
and the data just really flows through a network of connections
78
278330
4000
์ด ์ •๋ณด๋“ค์ด ๊ทธ์ € ์‹ ๊ฒฝ์„ธํฌ๋“ค ์‚ฌ์ด์— ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š” ๋„คํŠธ์›Œํฌ๋“ค์„ ํ†ตํ•ด ํ˜๋Ÿฌ๊ฐ‘๋‹ˆ๋‹ค.
04:42
among the neurons. There's no bottleneck here.
79
282330
2000
๋‡Œ์—์„œ๋Š” ์ค‘์•™์ฒ˜๋ฆฌ ์žฅ์น˜์™€ ๊ฐ™์€ ์ข์€ ๊ด€๋ฌธ์ด ์กด์žฌํ•˜์ง€ ์•Š์ฃ .
04:44
It's really a network in the literal sense of the word.
80
284330
4000
๊ทธ๊ฒƒ์€ ๋ฌธ์ž ๊ทธ๋Œ€๋กœ ๋„คํŠธ์›Œํฌ(๋ณต์žกํ•œ ์—ฐ๊ฒฐ๋ง)์ž…๋‹ˆ๋‹ค.
04:48
The net is doing the work in the brain.
81
288330
4000
๊ทธ ์—ฐ๊ฒฐ๋ง๋“ค์ด ๋‘๋‡Œ ์•ˆ์—์„œ ์ •๋ณด๋“ค์„ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
04:52
If you just look at these two pictures,
82
292330
2000
๋‹ค์Œ์˜ ๋‘ ์‚ฌ์ง„๋“ค์„ ๋ฐ”๋ผ๋ณด๊ธฐ๋งŒ ํ•ด๋„
04:54
these kind of words pop into your mind.
83
294330
2000
๋‹ค์Œ์˜ ๋‹จ์–ด๋“ค์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ๋งˆ์Œ ์†์— ๋– ์˜ค๋ฆ…๋‹ˆ๋‹ค.
04:56
This is serial and it's rigid -- it's like cars on a freeway,
84
296330
4000
์ด๊ฒƒ์€ ๋งค์šฐ ์—ฐ์‡„์ ์ด๊ณ  ๊ฒฌ๊ณ ํ•ฉ๋‹ˆ๋‹ค: ๋งˆ์น˜ ๊ณ ์†๋„๋กœ ์œ„์˜ ์ฐจ๋“ค์ฒ˜๋Ÿผ์š”.
05:00
everything has to happen in lockstep --
85
300330
3000
๋ชจ๋“  ๊ฒƒ์ด ์ •ํ™•ํžˆ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ๋ฐœ์ƒํ•˜์ฃ .
05:03
whereas this is parallel and it's fluid.
86
303330
2000
๋ฐ˜๋ฉด์— ์ด๊ฒƒ์€ ๋ณ‘๋ ฌ์ ์ด๊ณ  ๋˜ ์œ ๋™์ ์ž…๋‹ˆ๋‹ค.
05:05
Information processing is very dynamic and adaptive.
87
305330
3000
์ •๋ณด ์ฒ˜๋ฆฌ๋Š” ๋งค์šฐ ์—ญ๋™์ ์ด๊ณ  ์ ์‘์ ์ž…๋‹ˆ๋‹ค.
05:08
So I'm not the first to figure this out. This is a quote from Brian Eno:
88
308330
4000
์ œ๊ฐ€ ์ด๊ฒƒ์„ ์ฒ˜์Œ ์•Œ์•„๋‚ธ ์‚ฌ๋žŒ์€ ์•„๋‹™๋‹ˆ๋‹ค. ์—ฌ๊ธฐ, ๋ธŒ๋ผ์ด์–ธ ์—๋…ธ์˜ ๋”ฐ์˜จ ๋ง์ž…๋‹ˆ๋‹ค:
05:12
"the problem with computers is that there is not enough Africa in them."
89
312330
4000
"์ปดํ“จํ„ฐ์˜ ๋ฌธ์ œ์ ์€ ๊ทธ ์•ˆ์— ์•„ํ”„๋ฆฌ์นด ์ธ(์ƒˆ๋กœ์šด ์„ ๊ฒฌ)๋“ค์ด ๋ถ€์กฑํ•˜๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค."
05:16
(Laughter)
90
316330
6000
(์›ƒ์Œ)
05:22
Brian actually said this in 1995.
91
322330
3000
๋ธŒ๋ผ์ด์–ธ์ด ์ด ์–˜๊ธธ ํ•œ ๊ฒƒ์€ 1995๋…„์ž…๋‹ˆ๋‹ค.
05:25
And nobody was listening then,
92
325330
3000
๊ทธ ๋•Œ๋Š” ์•„๋ฌด๋„ ๊ทธ ๋ง์„ ๊ท€๋‹ด์•„ ๋“ฃ์ง€ ์•Š์•˜์ฃ .
05:28
but now people are beginning to listen
93
328330
2000
ํ•˜์ง€๋งŒ ์ง€๊ธˆ, ์‚ฌ๋žŒ๋“ค์ด ์ด ์–˜๊ธฐ์— ๊ท€ ๊ธฐ์šธ์ด๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:30
because there's a pressing, technological problem that we face.
94
330330
5000
๊ธด๊ธ‰ํ•œ ๊ธฐ์ˆ ์  ๋ฌธ์ œ์ ๋“ค์— ์šฐ๋ฆฌ๊ฐ€ ์ง๋ฉดํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
05:35
And I'll just take you through that a little bit in the next few slides.
95
335330
5000
๋‹ค์Œ ์Šฌ๋ผ์ด๋“œ๋“ค์—์„œ ๊ทธ ๋ฌธ์ œ์ ๋“ค์„ ๋ช‡ ๊ฐ€์ง€ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
05:40
This is -- it's actually really this remarkable convergence
96
340330
4000
์‹ค์ œ๋กœ, ์ด๊ฒƒ์€ ์ •๋ง๋กœ ๋†€๋ผ์šด ๊ธฐ์ˆ ์˜ ์œตํ•ฉ์ž…๋‹ˆ๋‹ค,
05:44
between the devices that we use to compute in computers,
97
344330
5000
์ฆ‰, ์ปดํ“จํ„ฐ๊ฐ€ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋Š” ์žฅ์น˜์™€
05:49
and the devices that our brains use to compute.
98
349330
4000
๋‡Œ๊ฐ€ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋Š” ์žฅ์น˜ ์‚ฌ์ด์˜ ์œตํ•ฉ์ธ ๊ฒƒ์ด์ฃ .
05:53
The devices that computers use are what's called a transistor.
99
353330
4000
์ปดํ“จํ„ฐ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” ์ด ์žฅ์น˜๋ฅผ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
05:57
This electrode here, called the gate, controls the flow of current
100
357330
4000
์—ฌ๊ธฐ ์ด ๊ฒŒ์ดํŠธ๋ผ๊ณ  ๋ถˆ๋ฆฌ๋Š” ์ „๊ทน์€ ์†Œ์Šค๊ฐ€ ๋ฐฐ์ˆ˜๋กœ๋กœ ๊ฐ€๊ธฐ ๊นŒ์ง€
06:01
from the source to the drain -- these two electrodes.
101
361330
3000
์ „๋ฅ˜์˜ ํ๋ฆ„์„ ์กฐ์ ˆํ•ฉ๋‹ˆ๋‹ค.
06:04
And that current, electrical current,
102
364330
2000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ „๋ฅ˜๋Š”
06:06
is carried by electrons, just like in your house and so on.
103
366330
6000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ง‘์ด๋‚˜ ๋‹ค๋ฅธ ๊ณณ์—์„œ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ „์ž์— ์˜์— ์˜ฎ๊ฒจ์ง‘๋‹ˆ๋‹ค.
06:12
And what you have here is, when you actually turn on the gate,
104
372330
5000
์ด์ œ ์—ฌ๊ธฐ์—์„œ,๊ฒŒ์ดํŠธ๋ฅผ ์—ด๋ฉด,
06:17
you get an increase in the amount of current, and you get a steady flow of current.
105
377330
4000
์—ฌ๋Ÿฌ๋ถ„์€ ์ƒˆ๋กœ ๋“ค์–ด์˜ค๋Š” ์ „๋ฅ˜๋งŒํผ ์ฆ๊ฐ€๋œ ์ „๋ฅ˜๋ฅผ ์ง€์†์ ์œผ๋กœ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
06:21
And when you turn off the gate, there's no current flowing through the device.
106
381330
4000
๋ฐ˜๋Œ€๋กœ ๊ฒŒ์ดํŠธ๋ฅผ ๋‹ซ์„ ๋•Œ๋ฉด, ์žฅ์น˜๋ฅผ ํ†ตํ•˜๋Š” ์ „๋ฅ˜๊ฐ€ ์—†๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด์ฃ .
06:25
Your computer uses this presence of current to represent a one,
107
385330
5000
์—ฌ๋Ÿฌ๋ถ„์˜ ์ปดํ“จํ„ฐ๋Š” ์ „๋ฅ˜๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ฒƒ์„ 1๋กœ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
06:30
and the absence of current to represent a zero.
108
390330
4000
๊ทธ๋ฆฌ๊ณ  ์ „๋ฅ˜๊ฐ€ ์—†๋Š” ๊ฒƒ์„ 0์œผ๋กœ ๋‚˜ํƒ€๋‚ด์ฃ .
06:34
Now, what's happening is that as transistors are getting smaller and smaller and smaller,
109
394330
6000
์ด์ œ, ๋‹ค์Œ์œผ๋กœ ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ์ ์  ๋” ์ž‘์•„์ง€๊ณ  ๋˜ ์ž‘์•„์ง€๋ฉด,
06:40
they no longer behave like this.
110
400330
2000
์ด์ œ ๋”์ด์ƒ ์ด๋Ÿฐ ์‹์œผ๋กœ ์ž‘๋™ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
06:42
In fact, they are starting to behave like the device that neurons use to compute,
111
402330
5000
์‹ค์ œ๋กœ ๊ทธ๊ฒƒ๋“ค์€ ์‹ ๊ฒฝ์„ธํฌ๊ฐ€ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์žฅ์น˜์™€ ๋น„์Šทํ•˜๊ฒŒ
06:47
which is called an ion channel.
112
407330
2000
ํ–‰๋™ํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค, ์ด์˜จ ์ฑ„๋„์ด๋ผ๊ณ  ํ•˜์ฃ .
06:49
And this is a little protein molecule.
113
409330
2000
์ด๊ฒƒ์€ ์ž‘์€ ๋‹จ๋ฐฑ์งˆ ๋ถ„์ž์ž…๋‹ˆ๋‹ค.
06:51
I mean, neurons have thousands of these.
114
411330
4000
์‹ ๊ฒฝ์„ธํฌ๋Š” ์ˆ˜์ฒœ๊ฐœ์˜ ์ด์˜จ ์ฑ„๋„๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ์ฃ .
06:55
And it sits in the membrane of the cell and it's got a pore in it.
115
415330
4000
์ด๊ฒƒ๋“ค์€ ์„ธํฌ๋ง‰์— ๋ผ์–ด์žˆ์œผ๋ฉด์„œ ๊ตฌ๋ฉ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
06:59
And these are individual potassium ions
116
419330
3000
์ด๊ฒƒ๋“ค์€ ๊ฐ๊ฐ์˜ ์นผ๋ฅจ ์ด์˜จ๋“ค์ž…๋‹ˆ๋‹ค.
07:02
that are flowing through that pore.
117
422330
2000
์ด์˜จ ์ฑ„๋„์˜ ๊ตฌ๋ฉ์„ ํ†ตํ•ด ํ๋ฅด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
07:04
Now, this pore can open and close.
118
424330
2000
์ด ๊ตฌ๋ฉ์€ ์—ด๋ ธ๋‹ค ๋‹ซํ˜”๋‹ค ํ•˜์ฃ .
07:06
But, when it's open, because these ions have to line up
119
426330
5000
๊ทธ๋Ÿฐ๋ฐ ์ด์˜จ๋“ค์ด ๊ตฌ๋ฉ ์•ˆ์—์„œ ์ผ๋ ฌ๋กœ ๋Š˜์–ด์„œ์•ผ๋งŒ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•œ ๋ฒˆ ์—ด๋ ธ์„ ๋•Œ
07:11
and flow through, one at a time, you get a kind of sporadic, not steady --
120
431330
5000
ํ•˜๋‚˜์”ฉ๋งŒ ํ†ต๊ณผํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ง€์†์ ์ด์ง€ ์•Š๊ณ  ์‚ฐ๋ฐœ์ ์ด์ฃ .
07:16
it's a sporadic flow of current.
121
436330
3000
์ „๋ฅ˜๊ฐ€ ์‚ฐ๋ฐœ์ ์ด๋ผ๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.
07:19
And even when you close the pore -- which neurons can do,
122
439330
3000
์‹ฌ์ง€์–ด ์ด ๊ตฌ๋ฉ์ด ๋‹ซํ˜”์„ ๋•Œ -- ์‹ ๊ฒฝ์„ธํฌ๊ฐ€ ํ•˜๋Š” ์ผ์ด์ฃ ,
07:22
they can open and close these pores to generate electrical activity --
123
442330
5000
์‹ ๊ฒฝ์„ธํฌ๋“ค์€ ์ „๊ธฐ์  ํ™œ์„ฑ์„ ๋งŒ๋“ค์–ด๋‚ด๊ธฐ ์œ„ํ•ด ์ด ๊ตฌ๋ฉ๋“ค์„ ์—ด์—ˆ๋‹ค ๋‹ซ์•˜๋‹ค ํ•˜์ฃ .
07:27
even when it's closed, because these ions are so small,
124
447330
3000
์•„๋ฌดํŠผ, ์ด ๊ตฌ๋ฉ์ด ๋‹ซํ˜”์„ ๋•Œ, ์ด์˜จ๋“ค์€ ๋งค์šฐ ์ž‘๊ธฐ ๋•Œ๋ฌธ์—
07:30
they can actually sneak through, a few can sneak through at a time.
125
450330
3000
์ƒˆ์–ด๋‚˜๊ฐˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•œ ๋ฒˆ์— ์•„์ฃผ ์กฐ๊ธˆ์”ฉ์ด์š”.
07:33
So, what you have is that when the pore is open,
126
453330
3000
๋”ฐ๋ผ์„œ ๊ตฌ๋ฉ์ด ์—ด๋ ธ์„ ๋•Œ์—๋Š”
07:36
you get some current sometimes.
127
456330
2000
๊ฐ€๋”์”ฉ ์ „๋ฅ˜๋ฅผ ๋ฐ›์„ ์ˆ˜ ์žˆ๊ณ ,
07:38
These are your ones, but you've got a few zeros thrown in.
128
458330
3000
์ด๋•Œ 1์„ ๋ณผ ์ˆ˜ ์žˆ์ฃ . ํ•˜์ง€๋งŒ ๊ฐ€๋” 0์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
07:41
And when it's closed, you have a zero,
129
461330
4000
๋ฐ˜๋Œ€๋กœ ๊ตฌ๋ฉ์ด ๋‹ซํ˜”์„ ๋•Œ๋Š”, 0์„ ๋ฐ›์Šต๋‹ˆ๋‹ค.
07:45
but you have a few ones thrown in.
130
465330
3000
ํ•˜์ง€๋งŒ ๊ฐ€๋” 1์„ ์–ป๊ฒ ์ฃ .
07:48
Now, this is starting to happen in transistors.
131
468330
3000
์ด๊ฒƒ์ด ํ˜„์žฌ ํŠธ๋žœ์ง€์Šคํ„ฐ์—์„œ ์ผ์–ด๋‚˜๊ธฐ ์‹œ์ž‘ํ•œ ์ผ์ž…๋‹ˆ๋‹ค.
07:51
And the reason why that's happening is that, right now, in 2007 --
132
471330
5000
์ด ํ˜„์ƒ์ด ์ผ์–ด๋‚œ ์ด์œ ๋Š”, 2007๋…„ ํ˜„์žฌ,
07:56
the technology that we are using -- a transistor is big enough
133
476330
4000
์šฐ๋ฆฌ๊ฐ€ ์ด์šฉํ•˜๊ณ  ์žˆ๋Š” ๊ธฐ์ˆ ์—์„œ ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ์ถฉ๋ถ„ํžˆ ํฌ๊ณ 
08:00
that several electrons can flow through the channel simultaneously, side by side.
134
480330
5000
๋ช‡ ๊ฐœ์˜ ์ „์ž๋“ค์ด ํ•จ๊ป˜ ์ฑ„๋„์„ ๋™์‹œ์— ์ง€๋‚˜๊ฐˆ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
08:05
In fact, there's about 12 electrons can all be flowing this way.
135
485330
4000
์‚ฌ์‹ค, 12๊ฐœ์˜ ์ „์ž๋“ค์ด ์ด๋Ÿฐ ์‹์œผ๋กœ ํ•œ ๋ฒˆ์— ์ง€๋‚˜๊ฐˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:09
And that means that a transistor corresponds
136
489330
2000
์ด๊ฒƒ์€ ํŠธ๋žœ์ง€์Šคํ„ฐ๊ฐ€ ์•ฝ 12๊ฐœ์˜ ์ด์˜จ ์ฑ„๋„๋“ค์ด
08:11
to about 12 ion channels in parallel.
137
491330
3000
๋ณ‘๋ ฌ๋กœ ์žˆ๋Š” ๊ฒƒ๊ณผ ๋น„์Šทํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
08:14
Now, in a few years time, by 2015, we will shrink transistors so much.
138
494330
5000
์ด์ œ, ๋ช‡ ๋…„์ด ์ง€๋‚˜ 2015๋…„ ์ฏค์ด๋ฉด ์šฐ๋ฆฌ๋Š” ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๋งค์šฐ ์ž‘๊ฒŒ ์ค„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:19
This is what Intel does to keep adding more cores onto the chip.
139
499330
5000
์ด ๊ฒƒ์€ ์ธํ…”์ด ๊ณ„์† ํ•ด์„œ ๋” ๋งŽ์€ ์ฝ”์–ด๋“ค์„ ์นฉ์— ์ถ”๊ฐ€ ํ•˜๊ฑฐ๋‚˜, ํ˜น์€
08:24
Or your memory sticks that you have now can carry one gigabyte
140
504330
3000
๋ฉ”๋ชจ๋ฆฌ ์Šคํ‹ฑ์„ ์œ„ํ•œ ์ž‘์—…์ด์ฃ , ์ด์ „์— 256๋ฉ”๊ฐ€ ํฌ๊ธฐ์˜€๋˜ ์ด๊ฒƒ์ด
08:27
of stuff on them -- before, it was 256.
141
507330
2000
1๊ธฐ๊ฐ€ ํฌ๊ธฐ์˜ ์ž๋ฃŒ๋ฅผ ์ „๋‹ฌ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:29
Transistors are getting smaller to allow this to happen,
142
509330
3000
ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ์ด ์ผ์ด ์ผ์–ด๋‚˜๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋” ์ž‘์•„์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:32
and technology has really benefitted from that.
143
512330
3000
๊ทธ๋ฆฌ๊ณ  ๊ธฐ์ˆ ์€ ๊ทธ ๊ณผ์ •์—์„œ ํฌ๊ฒŒ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ์ฃ .
08:35
But what's happening now is that in 2015, the transistor is going to become so small,
144
515330
5000
ํ•˜์ง€๋งŒ ํ˜„์žฌ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ๋Š” ์—ฐ๊ตฌ๋Š” 2015๋…„์—, ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ •๋ง ์ž‘๊ฒŒ ๋งŒ๋“ค ๊ฒƒ์ž…๋‹ˆ๋‹ค,
08:40
that it corresponds to only one electron at a time
145
520330
3000
์ด ๊ธฐ๊ธฐ๋Š” ํ•œ ๋ฒˆ์— ์˜ค์ง ํ•œ ์ „์ž์— ์‘๋‹ตํ•˜๋ฉฐ,
08:43
can flow through that channel,
146
523330
2000
์ฑ„๋„์„ ํ†ตํ•ด ํ๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
08:45
and that corresponds to a single ion channel.
147
525330
2000
์ฆ‰, ํ•˜๋‚˜์˜ ์ด์˜จ ์ฑ„๋„์— ์‘๋‹ตํ•˜๋Š” ๊ฒƒ์ด์ฃ .
08:47
And you start having the same kind of traffic jams that you have in the ion channel.
148
527330
4000
๊ทธ๋Ÿผ ์—ฌ๋Ÿฌ๋ถ„์€ ์ด์˜จ์ฑ„๋„์—์„œ ์ผ์–ด๋‚ฌ๋˜ ๊ฒƒ๊ณผ ๋น„์Šทํ•œ ๊ตํ†ต ์ฒด์ฆ์„ ๋ณด๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
08:51
The current will turn on and off at random,
149
531330
3000
์ „๋ฅ˜๊ฐ€ ์ž„์˜๋กœ ํ˜๋ €๋‹ค ๊บผ์กŒ๋‹ค ํ•˜๊ฒ ์ฃ .
08:54
even when it's supposed to be on.
150
534330
2000
๊ณ„์† ํ˜๋Ÿฌ์•ผ ํ•˜๋Š” ์ƒํ™ฉ์—์„œ ๋ง์ž…๋‹ˆ๋‹ค.
08:56
And that means your computer is going to get
151
536330
2000
์ด๊ฒƒ์€ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ปดํ“จํ„ฐ๊ฐ€
08:58
its ones and zeros mixed up, and that's going to crash your machine.
152
538330
4000
1๊ณผ 0๋“ค์ด ๋’ค์„ž์—ฌ์„œ ๊ธฐ๊ธฐ๋ฅผ ์†์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
09:02
So, we are at the stage where we
153
542330
4000
์ด์ฒ˜๋Ÿผ, ์šฐ๋ฆฌ๋Š” ์ง€๊ธˆ ์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ์žฅ์น˜๋“ค์„
09:06
don't really know how to compute with these kinds of devices.
154
546330
3000
์–ด๋–ป๊ฒŒ ์šด์˜์‹œ์ผœ์•ผ ํ• ์ง€ ๋ชจ๋ฅด๋Š” ๋‹จ๊ณ„์— ์™€์žˆ์Šต๋‹ˆ๋‹ค.
09:09
And the only kind of thing -- the only thing we know right now
155
549330
3000
์šฐ๋ฆฌ๊ฐ€ ์—ฌ๊ธฐ์„œ ์•Œ๊ณ  ์žˆ๋Š” ์ •ํ™•ํ•œ ๋‹จ ํ•œ ๊ฐ€์ง€๋Š”
09:12
that can compute with these kinds of devices are the brain.
156
552330
3000
์ด๋Ÿฐ ์‹์œผ๋กœ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์žฅ์น˜๊ฐ€ ๋ฐ”๋กœ ์šฐ๋ฆฌ์˜ ๋‡Œ๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:15
OK, so a computer picks a specific item of data from memory,
157
555330
4000
์ข‹์•„์š”, ์ปดํ“จํ„ฐ๋Š” ๋ฉ”๋ชจ๋ฆฌ๋กœ๋ถ€ํ„ฐ ํŠน์ •ํ•œ ์ž๋ฃŒ๋ฅผ ๊ณ ๋ฆ…๋‹ˆ๋‹ค.
09:19
it sends it into the processor or the ALU,
158
559330
3000
๊ทธ๋ฆฌ๊ณ ๋Š” ๊ทธ๊ฒƒ์„ ํ”„๋กœ์„ธ์„œ๋‚˜ ์‚ฐ์ˆ  ๋…ผ๋ฆฌ ์žฅ์น˜( arithmetic logic unit )๋กœ ๋ณด๋ƒ…๋‹ˆ๋‹ค.
09:22
and then it puts the result back into memory.
159
562330
2000
๊ทธ๋ฆฌ๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์‹œ ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋Œ๋ ค ๋ณด๋ƒ…๋‹ˆ๋‹ค.
09:24
That's the red path that's highlighted.
160
564330
2000
๋นจ๊ฐ„์ƒ‰ ๊ฒฝ๋กœ๋Š” ๊ฐ•์กฐ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:26
The way brains work, I told you all, you have got all these neurons.
161
566330
4000
์ด๋Ÿฐ ์‹์œผ๋กœ ๋‡Œ๊ฐ€ ์ž‘๋™ํ•˜๊ณ , ์—ฌ๋Ÿฌ๋ถ„ ๋ชจ๋‘ ์ด๋Ÿฐ ๋‰ด๋Ÿฐ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:30
And the way they represent information is
162
570330
2000
์ด๊ฒƒ๋“ค์ด ์ •๋ณด๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€
09:32
they break up that data into little pieces
163
572330
2000
๋ฐ์ดํ„ฐ๋ฅผ ์ž‘์€ ์กฐ๊ฐ๋“ค๋กœ ๋‚˜๋ˆ„๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:34
that are represented by pulses and different neurons.
164
574330
3000
๊ทธ๊ฒƒ๋“ค์€ ์ „๊ธฐ์  ์‹ ํ˜ธ์™€ ๋‹ค๋ฅธ ์‹ ๊ฒฝ๋“ค๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค.
09:37
So you have all these pieces of data
165
577330
2000
์ด๋ ‡๊ฒŒ ์—ฌ๋Ÿฌ๋ถ„์€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ „๋‹ฌ ๋œ
09:39
distributed throughout the network.
166
579330
2000
๋ชจ๋“  ๋ฐ์ดํ„ฐ ์กฐ๊ฐ์„ ๊ฐ€์ง€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
09:41
And then the way that you process that data to get a result
167
581330
3000
๊ทธ๋ฆฌ๊ณ  ์ž๋ฃŒ๊ฐ€ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š” ๋ฐฉ๋ฒ•์€
09:44
is that you translate this pattern of activity into a new pattern of activity,
168
584330
4000
์ด๋Ÿฐ ํ™œ๋™ํŒจํ„ด์„ ์ƒˆ๋กœ์šด ํ™œ๋™ํŒจํ„ด์œผ๋กœ ๋ฒˆ์—ญํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:48
just by it flowing through the network.
169
588330
3000
๋‹จ์ง€ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•œ ํ๋ฆ„์œผ๋กœ ๋ง์ด์ฃ .
09:51
So you set up these connections
170
591330
2000
๊ทธ๋Ÿฌ๋ฉด ์ด๋Ÿฐ ์ ‘์†๋“ค์ด ๋งŒ๋“ค์–ด์ง€๋ฉด,
09:53
such that the input pattern just flows
171
593330
3000
์ž…๋ ฅ๊ฐ’์ด ํ๋ฅด๊ณ 
09:56
and generates the output pattern.
172
596330
2000
์ถœ๋ ฅํŒจํ„ด์„ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.
09:58
What you see here is that there's these redundant connections.
173
598330
4000
์ง€๊ธˆ, ์—ฌ๊ธฐ๋ณด์ด๋Š” ๊ฒƒ์€ ๋งŽ์€ ์ ‘์†๋“ค ์ž…๋‹ˆ๋‹ค.
10:02
So if this piece of data or this piece of the data gets clobbered,
174
602330
4000
๋งŒ์•ฝ ์ด ์ •๋ณด ์กฐ๊ฐ์ด๋‚˜ ํ˜น์€ ์ด ์ž๋ฃŒ ์กฐ๊ฐ์ด ์†์ƒ์„ ์ž…๋Š”๋‹ค๋ฉด,
10:06
it doesn't show up over here, these two pieces can activate the missing part
175
606330
5000
์—ฌ๊ธฐ์„œ ๋ณด์ด์ง€ ์•Š์ง€๋งŒ, ์ด ๋‘ ์กฐ๊ฐ๋“ค์€ ๊ทธ ์žƒ์€ ๋ถ€๋ถ„๋“ค์„ ํ™œ์„ฑํ™” ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:11
with these redundant connections.
176
611330
2000
์ด๋Ÿฐ ๋งŽ์€ ์ ‘์†๋ถ€์™€ ํ•จ๊ป˜ ๋ง์ด์ฃ .
10:13
So even when you go to these crappy devices
177
613330
2000
๊ทธ๋ž˜์„œ ์‹ฌ์ง€์–ด ์—‰ํ„ฐ๋ฆฌ ์žฅ์น˜๋“ค์„ ์‚ฌ์šฉํ•  ๋•Œ
10:15
where sometimes you want a one and you get a zero, and it doesn't show up,
178
615330
3000
๋•Œ๋•Œ๋กœ 1์„ ์›ํ•˜๋Š”๋ฐ 0์„ ์–ป๊ฒŒ๋˜๋Š”
10:18
there's redundancy in the network
179
618330
2000
๋„คํŠธ์›Œํฌ์—๋Š” ์—ฌ๋ถ„์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—
10:20
that can actually recover the missing information.
180
620330
3000
์žƒ์–ด๋ฒ„๋ฆฐ ์ •๋ณด๋ฅผ ํšŒ๋ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:23
It makes the brain inherently robust.
181
623330
3000
์ด๊ฒƒ์€ ๋‡Œ๋ฅผ ๋ณธ์งˆ์ ์œผ๋กœ ๊ฐ•ํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
10:26
What you have here is a system where you store data locally.
182
626330
3000
์—ฌ๊ธฐ์žˆ๋Š” ๊ฒƒ์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ง€์—ญ์ ์œผ๋กœ ์ €์žฅํ•˜๋Š” ์žฅ์น˜์ž…๋‹ˆ๋‹ค.
10:29
And it's brittle, because each of these steps has to be flawless,
183
629330
4000
์ด๊ฒƒ์€ ๋ถ€์„œ์ง€๊ธฐ ์‰ฝ์Šต๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด ์ด๋Ÿฐ ๊ฐ ๊ณผ์ •๋“ค์ด ์™„๋ฒฝํ•ด์•ผํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
10:33
otherwise you lose that data, whereas in the brain, you have a system
184
633330
3000
๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ์ •๋ณด๋ฅผ ์žƒ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด์— ๋‡Œ๋Š” ๋ถ„์‚ฐ๋œ ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๋Š”
10:36
that stores data in a distributed way, and it's robust.
185
636330
4000
๊ฐ•๋ ฅํ•œ ํ•˜๋‚˜์˜ ์‹œ์Šคํ…œ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
10:40
What I want to basically talk about is my dream,
186
640330
4000
์ด์ œ, ๊ทผ๋ณต์ ์œผ๋กœ ์ €๋Š” ์ €์˜ ๊ฟˆ์˜ ๊ด€ํ•ด ๋งํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค,
10:44
which is to build a computer that works like the brain.
187
644330
3000
๋‡Œ์™€ ๊ฐ™์ด ์ž‘๋™ํ•˜๋Š” ์ปดํ“จํ„ฐ๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด์ง€์š”.
10:47
This is something that we've been working on for the last couple of years.
188
647330
4000
์ด ์—ฐ๊ตฌ๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ง€๋‚œ ๋ช‡ ๋…„ ๊ฐ„ ํ•ด์™”๋˜ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
10:51
And I'm going to show you a system that we designed
189
651330
3000
์šฐ๋ฆฌ ์—ฐ๊ตฌ์ง„์ด ๋””์ž์ธํ•œ ์‹œ์Šคํ…œ์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค
10:54
to model the retina,
190
654330
3000
๋ง๋ง‰(๋ˆˆ)๋ชจ๋ธ ์ž…๋‹ˆ๋‹ค.
10:57
which is a piece of brain that lines the inside of your eyeball.
191
657330
5000
์ด๊ฒƒ์€ ๋‡Œ์˜ ๋ถ€๋ถ„์ธ๋ฐ ์•ˆ๊ตฌ ์•ˆ์ชฝ๊ณผ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
11:02
We didn't do this by actually writing code, like you do in a computer.
192
662330
6000
์ปดํ“จํ„ฐ์ฒ˜๋Ÿผ ์‹ค์ œ๋กœ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.
11:08
In fact, the processing that happens
193
668330
3000
ํ•˜์ง€๋งŒ, ๊ทธ ๊ณผ์ •์€ ๋‡Œ์˜ ์ž‘์€ ๋ถ€๋ถ„์—์„œ
11:11
in that little piece of brain is very similar
194
671330
2000
์ผ์–ด๋‚˜๋Š”๋ฐ, ์ปดํ“จํ„ฐ๊ฐ€ ํ•˜๋Š” ๊ฒƒ๊ณผ ์œ ์‚ฌํ•˜์ฃ .
11:13
to the kind of processing that computers
195
673330
1000
์ปดํ“จํ„ฐ๋Š” ์ด์™€ ๊ฐ™์€ ์ฒ˜๋ฆฌ ๊ณผ์ •์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค
11:14
do when they stream video over the Internet.
196
674330
4000
์ธํ„ฐ๋„ท์—์„œ ๋น„๋””์˜ค๋ฅผ ์žฌ์ƒ์‹œํ‚ฌ ๋•Œ ๋ง์ž…๋‹ˆ๋‹ค.
11:18
They want to compress the information --
197
678330
1000
์ •๋ณด๋ฅผ ์••์ถ•ํ•˜๊ธฐ๋ฅผ ์›ํ•˜์ฃ  --
11:19
they just want to send the changes, what's new in the image, and so on --
198
679330
4000
๊ทธ๋ฆฌ๊ณ  ๋ณ€ํ™”๋ฅผ ๋ณด๋‚ด๊ณ  ์‹ถ์–ดํ•ฉ๋‹ˆ๋‹ค, ์ด๋ฏธ์ง€์™€ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๊ฒƒ๋“ค์„ ๋ง์ด์ฃ .
11:23
and that is how your eyeball
199
683330
3000
๊ทธ๋ฆฌ๊ณ  ์•ˆ๊ตฌ๊ฐ€ ์ž‘๋™ํ•˜๋Š” ๋ฐฉ๋ฒ•์€
11:26
is able to squeeze all that information down to your optic nerve,
200
686330
3000
๋ชจ๋“ ์ •๋ณด๋ฅผ ์••์ถ•ํ•˜์—ฌ ์‹œ์‹ ๊ฒฝ์— ๋‚ด๋ ค๋ณด๋‚ด๊ฑฐ๋‚˜,
11:29
to send to the rest of the brain.
201
689330
2000
๋‡Œ๋กœ ๋ณด๋‚ด๊ณ  ์ €์žฅํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
11:31
Instead of doing this in software, or doing those kinds of algorithms,
202
691330
3000
์†Œํ”„ํŠธ์›จ์–ด๋‚˜ ์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ž‘๋™์‹œํ‚ค๋Š” ๊ฒƒ ๋Œ€์‹ ์—
11:34
we went and talked to neurobiologists
203
694330
3000
์‹ ๊ฒฝ์ƒ๋ฌผํ•™์ž์—๊ฒŒ ๊ฐ€์„œ ์ด์•ผ๊ธฐ ํ–ˆ์Šต๋‹ˆ๋‹ค
11:37
who have actually reverse engineered that piece of brain that's called the retina.
204
697330
4000
๋ง๋ง‰์ด๋ผ๋Š” ๋ถˆ๋ฆฌ๋Š” ๋‡Œ์˜ ๋ถ€๋ถ„์„ ์—ญํ–‰ํ•˜๋ฉฐ ๋””์ž์ธํ•ด ์˜จ ์‚ฌ๋žŒ๋“ค์ž…๋‹ˆ๋‹ค.
11:41
And they figured out all the different cells,
205
701330
2000
๊ทธ๋“ค์€ ๋‹ค๋ฅธ ์„ธํฌ๋“ค์„ ์•Œ์•„๋ƒˆ๊ณ ,
11:43
and they figured out the network, and we just took that network
206
703330
3000
๋„คํŠธ์›Œํฌ๋ฅผ ์•Œ์•„๋ƒˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ทธ ๋„คํŠธ์›Œํฌ๋ฅผ ์‚ฌ์šฉํ–ˆ๊ณ ,
11:46
and we used it as the blueprint for the design of a silicon chip.
207
706330
4000
์ด๊ฒƒ์„ ์‹ค๋ฆฌ์ฝ˜์นฉ ๋””์ž์ธ์„ ์œ„ํ•œ ์ฒญ์‚ฌ์ง„์œผ๋กœ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
11:50
So now the neurons are represented by little nodes or circuits on the chip,
208
710330
6000
๊ทธ๋ž˜์„œ ์ง€๊ธˆ ์ด ๋‰ด๋Ÿฐ๋“ค์€ ์นฉ์˜ ์ž‘์€ ์ง‘ํ•ฉ์  ํ˜น์€ ํšŒ๋กœ๋ฅผ ํ†ตํ•ด ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค.
11:56
and the connections among the neurons are represented, actually modeled by transistors.
209
716330
5000
๊ทธ๋ฆฌ๊ณ  ๋‰ด๋Ÿฐ ์‚ฌ์ด์˜ ์ด๋Ÿฐ ์ ‘์†๋“ค์€ ํŠธ๋žœ์ง€์Šคํ„ฐ์— ์˜ํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.
12:01
And these transistors are behaving essentially
210
721330
2000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ ํŠธ๋žœ์ง€์Šคํ„ฐ๋“ค์€ ํ•„์ˆ˜์ ์œผ๋กœ ์ž‘๋™ํ•˜์ฃ ,
12:03
just like ion channels behave in the brain.
211
723330
3000
๋งˆ์น˜ ๋‡Œ์˜ ์ด์˜จ์ฑ„๋„์ฒ˜๋Ÿผ ๋ง์ž…๋‹ˆ๋‹ค.
12:06
It will give you the same kind of robust architecture that I described.
212
726330
5000
์ œ๊ฐ€ ์„ค๋ช…ํ–ˆ๋˜ ๊ฐ•์ธํ•œ ๊ตฌ์กฐ์™€ ๊ฐ™์€๊ตฌ์กฐ๋ฅผ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
12:11
Here is actually what our artificial eye looks like.
213
731330
4000
์—ฌ๊ธฐ ์šฐ๋ฆฌ์˜ ์ธ๊ณต ๋ˆˆ๊ณผ ๊ฐ™์€ ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค
12:15
The retina chip that we designed sits behind this lens here.
214
735330
5000
์šฐ๋ฆฌ๊ฐ€ ๋””์ž์ธํ•œ ์ด ๋ ˆํ‹ฐ๋‚˜์นฉ์€ ์—ฌ๊ธฐ ์ด ๋ Œ์ฆˆ์˜ ๋’ค์— ์žˆ์Šต๋‹ˆ๋‹ค.
12:20
And the chip -- I'm going to show you a video
215
740330
2000
๊ทธ๋ฆฌ๊ณ  ์ด ์นฉ์— ๊ด€ํ•œ ๋น„๋””์˜ค ํ•œํŽธ์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
12:22
that the silicon retina put out of its output
216
742330
3000
์‹ค๋ฆฌ์ฝ˜ ๋ ˆํ‹ฐ๋‚˜๋Š” ์ด ์นฉ์„ ๋””์ž”์ธํ•œ
12:25
when it was looking at Kareem Zaghloul,
217
745330
3000
์ผ€๋ฆผ ์ œ๊ทธํ™€ ํ•™์ƒ์„ ๋ณด์•˜์„ ๋•Œ,
12:28
who's the student who designed this chip.
218
748330
2000
์ด ์‹œ๊ฐ ์ •๋ณด์˜ ์ถœ๋ ฅ์„ ๋‚ด๋ณด๋ƒ…๋‹ˆ๋‹ค
12:30
Let me explain what you're going to see, OK,
219
750330
2000
์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์ด์ œ ๋ณด์‹œ๊ฒŒ ๋  ๊ฒƒ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
12:32
because it's putting out different kinds of information,
220
752330
3000
์™œ๋ƒํ•˜๋ฉด ๋ ˆํ‹ฐ๋‚˜๋Š” ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์ •๋ณด๋ฅผ ์ถœ๋ ฅํ•˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ ,
12:35
it's not as straightforward as a camera.
221
755330
2000
์ด๊ฒƒ์€ ์นด๋ฉ”๋ผ์ฒ˜๋Ÿผ ๊ฐ„๋‹จํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
12:37
The retina chip extracts four different kinds of information.
222
757330
3000
๋ ˆํ‹ฐ๋‚˜ ์นฉ์€ ๋„ค ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค
12:40
It extracts regions with dark contrast,
223
760330
3000
๋จผ์ € ๋Œ€์กฐ์ ์œผ๋กœ ์–ด๋‘์šด ๋ถ€๋ถ„์„ ์ถ”์ถœํ•˜๊ณ ,
12:43
which will show up on the video as red.
224
763330
3000
๋น„๋””์˜ค์—์„œ๋Š” ๋นจ๊ฐ„์ƒ‰์œผ๋กœ ๋ณด์ผ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.
12:46
And it extracts regions with white or light contrast,
225
766330
4000
๊ทธ๋ฆฌ๊ณ  ๋Œ€์กฐ์ ์œผ๋กœ ๋ฐ์€ ๋ถ€๋ถ„์„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค,
12:50
which will show up on the video as green.
226
770330
2000
๋น„๋””์˜ค์—์„œ ์ดˆ๋ก์ƒ‰์œผ๋กœ ๋ณด์ด๋Š” ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
12:52
This is Kareem's dark eyes
227
772330
2000
์ด๊ฒƒ์€ ์ผ€๋ฆผ์˜ ๊ฒ€์€๋ˆˆ์ธ๋ฐ
12:54
and that's the white background that you see here.
228
774330
3000
์—ฌ๊ธฐ ๋ณด์ด๋Š”๋Œ€๋กœ ํ•˜์–€ ๋ฐฐ๊ฒฝ์ž…๋‹ˆ๋‹ค.
12:57
And then it also extracts movement.
229
777330
2000
์ด๊ฒƒ์€ ์›€์ง์ž„๋„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.
12:59
When Kareem moves his head to the right,
230
779330
2000
์ผ€๋ฆผ์ด ๋จธ๋ฆฌ๋ฅผ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ์›€์ง์ผ ๋•Œ
13:01
you will see this blue activity there;
231
781330
2000
ํŒŒ๋ž€์ƒ‰์œผ๋กœ ํ™œ์„ฑ์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:03
it represents regions where the contrast is increasing in the image,
232
783330
3000
์ด๊ฒƒ์€ ์ด๋ฏธ์ง€์˜ ๋Œ€์กฐ๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๋ถ€๋ถ„์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
13:06
that's where it's going from dark to light.
233
786330
3000
์–ด๋‘์šด ๋ถ€๋ถ„์—์„œ ๋ฐ์€ ๋ถ€๋ถ„์œผ๋กœ ๋ณ€ํ•ฉ๋‹ˆ๋‹ค.
13:09
And you also see this yellow activity,
234
789330
2000
๋˜ ๋…ธ๋ž€์ƒ‰ ํ™œ์„ฑํ™”๋ฅผ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค,
13:11
which represents regions where contrast is decreasing;
235
791330
4000
์ด๊ฒƒ์€ ๋Œ€์กฐ๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
13:15
it's going from light to dark.
236
795330
2000
๋ฐ์€ ๋ถ€๋ถ„์—์„œ ์–ด๋‘์šด ๋ถ€๋ถ„์œผ๋กœ ๋ณ€ํ•ฉ๋‹ˆ๋‹ค.
13:17
And these four types of information --
237
797330
3000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฐ 4๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ์ •๋ณด๋“ค์€ -
13:20
your optic nerve has about a million fibers in it,
238
800330
4000
์•ฝ ์ผ๋งŒ ๊ฐœ์˜ ์‹ ๊ฒฝ์„ฌ์œ ์™€
13:24
and 900,000 of those fibers
239
804330
3000
900,000 ๊ฐœ์˜ ์ด๋Ÿฐ ์‹ ๊ฒฝ์„ฌ์œ ๋กœ ๊ตฌ์„ฑ๋œ ์‹œ์‹ ๊ฒฝ์ด
13:27
send these four types of information.
240
807330
2000
๋ณด๋‚ด๋Š” ์ •๋ณด๋“ค์ž…๋‹ˆ๋‹ค.
13:29
So we are really duplicating the kind of signals that you have on the optic nerve.
241
809330
4000
์ด์ œ ์šฐ๋ฆฌ๋Š” ์‹œ์‹ ๊ฒฝ์— ์žˆ๋Š” ์‹ ํ˜ธ๋“ค์„ ์‰ฝ๊ฒŒ ๋ณต์ œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
13:33
What you notice here is that these snapshots
242
813330
3000
์—ฌ๊ธฐ์„œ ์ฃผ๋ชฉํ•  ๊ฒƒ์€ ์ด ์‚ฌ์ง„๋“ค ์ž…๋‹ˆ๋‹ค.
13:36
taken from the output of the retina chip are very sparse, right?
243
816330
4000
๋ ˆํ‹ฐ๋‚˜ ์นฉ์œผ๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง€๋Š” ์ •๋ณด๋Š” ๋งค์šฐ ํฌ๋ฐ•ํ•ฉ๋‹ˆ๋‹ค.
13:40
It doesn't light up green everywhere in the background,
244
820330
2000
๋ฐฐ๊ฒฝ ๋ถ€๋ถ„๋“ค์€ ์ดˆ๋ก์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค,
13:42
only on the edges, and then in the hair, and so on.
245
822330
3000
์˜ค์ง ๊ฐ€์žฅ์ž๋ฆฌ ๋“ฑ๋“ฑ์—์„œ๋งŒ ์ดˆ๋ก์ƒ‰์œผ๋กœ ๋‚˜ํƒ€๋‚˜์ฃ .
13:45
And this is the same thing you see
246
825330
1000
์—ฌ๋Ÿฌ๋ถ„์˜ ์‹œ๊ฐ๊ณผ ๋น„์Šทํ•˜๊ฒŒ ๋ง์ž…๋‹ˆ๋‹ค.
13:46
when people compress video to send: they want to make it very sparse,
247
826330
4000
์‚ฌ๋žŒ๋“ค์ด ๋น„๋””์˜ค ์ „์†ก์„ ์œ„ํ•ด ์••์ถ•ํ•  ๋•Œ: ๊ทธ๋“ค์€ ์•„์ฃผ ์ž‘๊ฒŒ ๋งŒ๋“ค๊ณ  ์‹ถ์–ดํ•˜์ฃ ,
13:50
because that file is smaller. And this is what the retina is doing,
248
830330
3000
์™œ๋ƒํ•˜๋ฉด ๊ทธ ํŒŒ์ผ์ด ์ž‘๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋ฐ”๋กœ ์ด๊ฒƒ์ด ๋ ˆํ‹ฐ๋‚˜๊ฐ€ ํ•˜๋Š” ์ผ ์ž…๋‹ˆ๋‹ค.
13:53
and it's doing it just with the circuitry, and how this network of neurons
249
833330
4000
์ด๊ฒƒ์€ ๊ทธ์ € ํšŒ๋กœ์™€ ํ•จ๊ป˜ ์ž‘๋™ํ•˜๋ฉฐ, ์ด ๋‰ด๋Ÿฐ ๋„คํŠธ์›Œํฌ๊ฐ€ ์ž‘๋™ํ•˜๋Š” ๋ฐฉ๋ฒ•์€
13:57
that are interacting in there, which we've captured on the chip.
250
837330
3000
์šฐ๋ฆฌ๊ฐ€ ์นฉ์— ์บก์ณํ•ด๋’€๋˜ ๊ณณ๊ณผ ๋งž๋ฌผ๋ฆฝ๋‹ˆ๋‹ค.
14:00
But the point that I want to make -- I'll show you up here.
251
840330
3000
๊ทธ๋Ÿฌ๋‚˜ ์ œ๊ฐ€ ๊ฐ•์กฐํ•˜๊ณ  ์‹ถ์€ ๊ฒƒ์€ ๋‹ค์Œ์˜ ๊ฒƒ๋“ค์ž…๋‹ˆ๋‹ค.
14:03
So this image here is going to look like these ones,
252
843330
3000
์—ฌ๊ธฐ, ์ด ์ด๋ฏธ์ง€๋Š” ์ด๊ฒƒ๊ณผ ๊ฐ™์€ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ž…๋‹ˆ๋‹ค.
14:06
but here I'll show you that we can reconstruct the image,
253
846330
2000
๊ทธ๋Ÿฌ๋‚˜ ์—ฌ๊ธฐ์„œ, ์ธ๊ฐ„์ด ์ด๋ฏธ์ง€๋ฅผ ์žฌ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
14:08
so, you know, you can almost recognize Kareem in that top part there.
254
848330
5000
์—ฌ๋Ÿฌ๋ถ„๋„ ์•Œ๋‹ค์‹œํ”ผ, ์ผ€๋ฆผ์€ ์—ฌ๊ธฐ ์ œ์ผ ๋†’์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
14:13
And so, here you go.
255
853330
2000
๋ณด์‹œ์ฃ .
14:24
Yes, so that's the idea.
256
864330
3000
๊ทธ๋ž˜์š”, ๊ทธ๊ฒƒ์ด ๋ฐ”๋กœ ์ด ์•„์ด๋””์–ด์ž…๋‹ˆ๋‹ค.
14:27
When you stand still, you just see the light and dark contrasts.
257
867330
2000
์—ฌ์ „ํžˆ ์„œ ์žˆ์„ ๋•Œ, ์—ฌ๋Ÿฌ๋ถ„์€ ์˜ค์ง ๋ฐ๊ณ , ์–ด๋‘์šด ๋Œ€์กฐ๋งŒ์„ ๋ณผ ๋ฟ ์ž…๋‹ˆ๋‹ค.
14:29
But when it's moving back and forth,
258
869330
2000
๊ทธ๋Ÿฌ๋‚˜ ์ด๊ฒƒ์ด ์•ž, ๋’ค๋กœ ์›€์ง์ผ ๋•Œ
14:31
the retina picks up these changes.
259
871330
3000
๋ ˆํ‹ฐ๋‚˜๋Š” ์ด๋Ÿฐ ๋ณ€ํ™”๋“ค์„ ์•Œ์•„์ฑ•๋‹ˆ๋‹ค.
14:34
And that's why, you know, when you're sitting here
260
874330
1000
๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ์—ฌ๊ธฐ ์ญˆ์šฑ ์„œ ์žˆ๋‹ค๊ฐ€,
14:35
and something happens in your background,
261
875330
2000
๋ฐฐ๊ฒฝ์— ๋ญ”๊ฐ€๊ฐ€ ์ผ์–ด๋‚  ๋•Œ,
14:37
you merely move your eyes to it.
262
877330
2000
๊ทธ์ € ์—ฌ๋Ÿฌ๋ถ„์˜ ์‹œ์„ ์€ ๊ทธ๊ณณ์— ์ด๋™ํ•˜์ฃ .
14:39
There are these cells that detect change
263
879330
2000
์—ฌ๊ธฐ ๋ณ€ํ™”๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ์„ธํฌ๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14:41
and you move your attention to it.
264
881330
2000
์ด์ œ ์—ฌ๋Ÿฌ๋ถ„์˜ ์ง‘์ค‘์„ ์ด๊ณณ์— ์˜ฎ๊ฒจ๋ณด์ฃ .
14:43
So those are very important for catching somebody
265
883330
2000
์ด๊ฒƒ๋“ค์€ ์—ฌ๋Ÿฌ๋ถ„์„ ๋ฎ์น˜๋ ค ํ•˜๋Š” ๋ˆ„๊ตฐ๊ฐ€๋ฅผ
14:45
who's trying to sneak up on you.
266
885330
2000
์•Œ์•„์ฑ„๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.
14:47
Let me just end by saying that this is what happens
267
887330
3000
์ €๋Š” ์•„ํ”„๋ฆฌ์นด์ธ๋“ค์ด ํ”ผ์•„๋…ธ์— ๊ด€์‹ฌ์„ ๊ฐ€์งˆ ๋•Œ ์žˆ์—ˆ๋˜ ์ผ์„
14:50
when you put Africa in a piano, OK.
268
890330
3000
์ „ํ•˜๋ฉด ๋๋‚ด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
14:53
This is a steel drum here that has been modified,
269
893330
3000
์ด ํ”ผ์•„๋…ธ๋Š” ๊ฐ•์ฒ ๋“œ๋Ÿผ์„ ์ˆ˜๋ฆฌํ•ด์„œ ๋งŒ๋“ค์—ˆ์ฃ .
14:56
and that's what happens when you put Africa in a piano.
270
896330
3000
๊ฐ•์ฒ ๋“œ๋Ÿผ์€ ์•„ํ”„๋ฆฌ์นด์—์„œ ํ”ผ์•„๋…ธ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:59
And what I would like us to do is put Africa in the computer,
271
899330
4000
์ œ๊ฐ€ ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€ ์•„ํ”„๋ฆฌ์นด์ธ๋“ค์ด ์ปดํ“จํ„ฐ ์˜์—ญ์— ๋‚˜์•„๊ฐ€๊ฒŒํ•˜๊ณ 
15:03
and come up with a new kind of computer
272
903330
2000
์ƒˆ๋กœ์šด ์ข…๋ฅ˜์˜ ์ปดํ“จํ„ฐ๋ฅผ ๋”ฐ๋ฅด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค,
15:05
that will generate thought, imagination, be creative and things like that.
273
905330
3000
์ด๊ฒƒ์€ ์ƒ๊ฐ, ์ƒ์ƒ๋ ฅ, ์ฐฝ์กฐ์ ์ธ ์•„์ด๋””๋””์–ด ๊ฐ™์€ ๊ฒƒ๋“ค์„ ์–‘์‚ฐํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:08
Thank you.
274
908330
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
15:10
(Applause)
275
910330
2000
(๋ฐ•์ˆ˜)
15:12
Chris Anderson: Question for you, Kwabena.
276
912330
2000
ํฌ๋ฆฌ์Šค ์•ค๋”์Šจ: ์งˆ๋ฌธ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ฝฐ๋ฒ ๋‚˜ ์”จ.
15:14
Do you put together in your mind the work you're doing,
277
914330
4000
๋‹น์‹ ์ด ํ•˜๊ณ  ์žˆ๋Š” ์ผ์„ ๋งˆ์Œ์†์— ํ•จ๊ป˜ ์—ผ๋‘ํ•˜๊ณ  ์žˆ๋‚˜์š”?
15:18
the future of Africa, this conference --
278
918330
3000
์•„ํ”„๋ฆฌ์นด์˜ ๋ฏธ๋ž˜, ์ด ์ปจํผ๋Ÿฐ์Šค์™€ ๊ฐ™์€ ๊ฒƒ์„์š” -
15:21
what connections can we make, if any, between them?
279
921330
3000
์ด๊ฒƒ๋“ค ์‚ฌ์ด์—์„œ ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ๋Š” ์—ฐ๊ด€์„ฑ์€ ๋ฌด์—‡์ผ๊นŒ์š”?
15:24
Kwabena Boahen: Yes, like I said at the beginning,
280
924330
2000
K B: ์˜ˆ, ์ œ๊ฐ€ ์‹œ์ž‘ํ•  ๋•Œ ๋ง์”€๋“œ๋ฆฐ ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.
15:26
I got my first computer when I was a teenager, growing up in Accra.
281
926330
4000
์ €๋Š” 10๋Œ€๋•Œ ์ฒ˜์Œ์œผ๋กœ ์ปดํ“จํ„ฐ๋ฅผ ๊ฐ€์กŒ์–ด์š”, ์•„ํฌ๋ผ์—์„œ.
15:30
And I had this gut reaction that this was the wrong way to do it.
282
930330
4000
๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ž˜๋ชป ๋˜์–ด ์žˆ๋‹ค๊ณ  ์ง๊ฐ์„ ๋ฐ›์•˜์Šต๋‹ˆ๋‹ค.
15:34
It was very brute force; it was very inelegant.
283
934330
3000
๋งค์šฐ ์–ต์ง€ ๊ฐ™์•˜๊ณ , ์šฐ์•„ํ•˜์ง€ ์•Š์•˜์ฃ .
15:37
I don't think that I would've had that reaction,
284
937330
2000
์ €๋Š” ์ œ๊ฐ€ ๊ทธ ๋ฐ˜์‘์„ ํ–ˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
15:39
if I'd grown up reading all this science fiction,
285
939330
3000
์•Œ๋‹ค์‹œํ”ผ ์ด ๊ณผ์žฅ๋œ ์ปดํ“จํ„ฐ๋ฅผ ๊ตฌ์ž…ํ•˜๋ฉด์„œ,
15:42
hearing about RD2D2, whatever it was called, and just -- you know,
286
942330
4000
๋งŒ์•ฝ ์ œ๊ฐ€ RD2D2๋ฅผ ๋“ค์œผ๋ฉฐ, ๋ญ๋ผ๊ณ  ๋ถ€๋ฅด๋“  ๊ฐ„์—
15:46
buying into this hype about computers.
287
946330
1000
๊ณต์ƒ๊ณผํ•™ ์†Œ์„ค์„ ์ฝ์œผ๋ฉฐ ์ž๋ž๋‹ค๋ฉด ๋ง์ด์ฃ .
15:47
I was coming at it from a different perspective,
288
947330
2000
์ €๋Š” ์ด๊ฒƒ์„ ๋‹ค๋ฅธ๊ด€์ ์œผ๋กœ ์ ‘๊ธ‰ํ–ˆ์Šต๋‹ˆ๋‹ค,
15:49
where I was bringing that different perspective
289
949330
2000
๊ทธ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด
15:51
to bear on the problem.
290
951330
2000
๋‹ค๋ฅธ ๊ด€์ ์„ ๊ฐ€์ ธ์™”์—ˆ์ฃ .
15:53
And I think a lot of people in Africa have this different perspective,
291
953330
3000
์ €๋Š” ์•„ํ”„๋ฆฌ์นด์˜ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ๋‹ค๋ฅธ ๊ด€์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
15:56
and I think that's going to impact technology.
292
956330
2000
๊ทธ๋ฆฌ๊ณ  ์ €๋Š” ๊ทธ๊ฒƒ์ด ๊ฐ•๋ ฅํ•œ ๊ธฐ์ˆ ์ด ๋˜๋ฉฐ,
15:58
And that's going to impact how it's going to evolve.
293
958330
2000
๊ธฐ์ˆ ์˜ ์ง„ํ™” ๊ณผ์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
16:00
And I think you're going to be able to see, use that infusion,
294
960330
2000
์ €๋Š” ์—ฌ๋Ÿฌ๋ถ„๊ป˜์„œ ๊ทธ ์˜ํ–ฅ์„ ๋ณด์‹ค ์ˆ˜ ์žˆ๊ณ , ์ƒˆ๋กœ์šด ๊ฒƒ๋“ค์„ ๋”ฐ๋ฅด๋„๋ก
16:02
to come up with new things,
295
962330
2000
๊ณ ์ทจ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
16:04
because you're coming from a different perspective.
296
964330
3000
์™œ๋ƒํ•˜๋ฉด ์šฐ๋ฆฌ๋Š” ๋ชจ๋‘ ๋‹ค๋ฅธ ๊ด€์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
16:07
I think we can contribute. We can dream like everybody else.
297
967330
4000
์ €๋Š” ์šฐ๋ฆฌ๊ฐ€ ๊ธฐ์—ฌํ•˜๊ณ , ๋‹ค๋ฅธ ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ๊ฟˆ์„ ๊ฟ€ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
16:11
CA: Thanks Kwabena, that was really interesting.
298
971330
2000
C A: ์ฝฐ๋ฒ ๋‚˜์”จ, ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์ •๋ง ํฅ๋ฏธ๋กœ์šด ๊ฐ•์—ฐ์ด์˜€์Šต๋‹ˆ๋‹ค.
16:13
Thank you.
299
973330
1000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
16:14
(Applause)
300
974330
2000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7