Kwabena Boahen: Making a computer that works like the brain

96,468 views ・ 2008-07-30

TED


请双击下面的英文字幕来播放视频。

翻译人员: Mingzi Qu 校对人员: Xu Jiang
00:18
I got my first computer when I was a teenager growing up in Accra,
0
18330
5000
我成长在阿克拉(加纳首都),在我还是个少年的时候,我有了第一台电脑。
00:23
and it was a really cool device.
1
23330
3000
它真的是个很酷的玩意。
00:26
You could play games with it. You could program it in BASIC.
2
26330
5000
你可以用它来玩游戏,你可以用BASIC语言在上面编程。
00:31
And I was fascinated.
3
31330
2000
我被它迷住了。
00:33
So I went into the library to figure out how did this thing work.
4
33330
6000
于是我跑去图书馆想要弄明白这东西究竟是怎么工作的。
00:39
I read about how the CPU is constantly shuffling data back and forth
5
39330
5000
我了解到CPU(中央处理器)是如何不断地让数据来回穿梭于
00:44
between the memory, the RAM and the ALU,
6
44330
4000
存储器--RAM (随机存取存储器)和 ALU --
00:48
the arithmetic and logic unit.
7
48330
2000
算术逻辑运算器。
00:50
And I thought to myself, this CPU really has to work like crazy
8
50330
4000
我心想,CPU只有这样玩命地工作
00:54
just to keep all this data moving through the system.
9
54330
4000
才能让所有的数据在电脑系统中不停地运转呀。
00:58
But nobody was really worried about this.
10
58330
3000
但并没有人真正担心过这些。
01:01
When computers were first introduced,
11
61330
2000
当电脑首次问世时,
01:03
they were said to be a million times faster than neurons.
12
63330
3000
曾号称比人脑神经细胞快上一百万倍,
01:06
People were really excited. They thought they would soon outstrip
13
66330
5000
人们相当激动,他们以为电脑将很快就能超越
01:11
the capacity of the brain.
14
71330
3000
人脑。
01:14
This is a quote, actually, from Alan Turing:
15
74330
3000
Alan Turing 是这样说的:
01:17
"In 30 years, it will be as easy to ask a computer a question
16
77330
4000
“不出30年,向电脑提问就会变得和向人提问一样的
01:21
as to ask a person."
17
81330
2000
简单。”
01:23
This was in 1946. And now, in 2007, it's still not true.
18
83330
7000
这句话是在1946年说的。现在都2007年了,还是没能兑现。
01:30
And so, the question is, why aren't we really seeing
19
90330
4000
问题就在于,为什么我们不能真正地
01:34
this kind of power in computers that we see in the brain?
20
94330
4000
让电脑具备人脑的功能呢?
01:38
What people didn't realize, and I'm just beginning to realize right now,
21
98330
4000
过去大家都没意识到,而我也刚刚开始意识到的是
01:42
is that we pay a huge price for the speed
22
102330
2000
我们为了提升电脑的速度而付出了巨大的代价
01:44
that we claim is a big advantage of these computers.
23
104330
4000
这是因为速度被认为是电脑的一大优势。
01:48
Let's take a look at some numbers.
24
108330
2000
让我们看一些数字。
01:50
This is Blue Gene, the fastest computer in the world.
25
110330
4000
这是Blue Gene,世上最快的电脑。
01:54
It's got 120,000 processors; they can basically process
26
114330
5000
它拥有120,000个处理器;基本上它们每秒可以处理
01:59
10 quadrillion bits of information per second.
27
119330
3000
一万兆位元的信息。
02:02
That's 10 to the sixteenth. And they consume one and a half megawatts of power.
28
122330
7000
相当于10的16次方。并且它们还要消耗掉1.5兆瓦特的电力。
02:09
So that would be really great, if you could add that
29
129330
3000
如果你能把这些能量用到
02:12
to the production capacity in Tanzania.
30
132330
2000
坦桑尼亚的生产力上的话,那就简直棒极了。
02:14
It would really boost the economy.
31
134330
2000
它肯定能振兴经济。
02:16
Just to go back to the States,
32
136330
4000
再回来看看美国,
02:20
if you translate the amount of power or electricity
33
140330
2000
如果你把这个电脑消耗的电能换算成
02:22
this computer uses to the amount of households in the States,
34
142330
3000
美国家庭的用电量,
02:25
you get 1,200 households in the U.S.
35
145330
4000
那你会发现这相当于1200户美国家庭的用电量。
02:29
That's how much power this computer uses.
36
149330
2000
如此多的能量都被这个电脑消耗了。
02:31
Now, let's compare this with the brain.
37
151330
3000
现在,我们把这个电脑跟人脑做个比较,
02:34
This is a picture of, actually Rory Sayres' girlfriend's brain.
38
154330
5000
这是Rory Sayres 女友的大脑图片,
02:39
Rory is a graduate student at Stanford.
39
159330
2000
Rory 是斯坦佛大学的研究生,
02:41
He studies the brain using MRI, and he claims that
40
161330
4000
他用MRI(核磁共振成像)研究大脑,他宣称
02:45
this is the most beautiful brain that he has ever scanned.
41
165330
3000
这是他扫描过的最美丽的人脑。
02:48
(Laughter)
42
168330
2000
(笑声)
02:50
So that's true love, right there.
43
170330
3000
这就是真爱吧。
02:53
Now, how much computation does the brain do?
44
173330
3000
那么人脑究竟能计算多少呢?
02:56
I estimate 10 to the 16 bits per second,
45
176330
2000
我估计是每秒10到16位元
02:58
which is actually about very similar to what Blue Gene does.
46
178330
4000
这其实很接近Blue Gene (世界上最快的电脑)的运算能力了。
03:02
So that's the question. The question is, how much --
47
182330
2000
那么问题就在这儿。那就是——
03:04
they are doing a similar amount of processing, similar amount of data --
48
184330
3000
他们的计算量相似,处理的数据量相似——
03:07
the question is how much energy or electricity does the brain use?
49
187330
5000
可是人脑耗用了多少电能呢?
03:12
And it's actually as much as your laptop computer:
50
192330
3000
实际上就相当于你的笔记本电脑的用电量:
03:15
it's just 10 watts.
51
195330
2000
只有10瓦。
03:17
So what we are doing right now with computers
52
197330
3000
我们目前使用电脑做的事情
03:20
with the energy consumed by 1,200 houses,
53
200330
3000
消耗着相当于1200户家庭的总用电量,
03:23
the brain is doing with the energy consumed by your laptop.
54
203330
5000
而人脑做下来却只需要相当于笔记本电脑的用电量。
03:28
So the question is, how is the brain able to achieve this kind of efficiency?
55
208330
3000
那么问题是,大脑是怎么达到如此高效的?
03:31
And let me just summarize. So the bottom line:
56
211330
2000
让我总结一下,这个结论是:
03:33
the brain processes information using 100,000 times less energy
57
213330
4000
人脑用十万倍分之一的能量就处理了
03:37
than we do right now with this computer technology that we have.
58
217330
4000
我们目前的用电脑所处理的信息量。
03:41
How is the brain able to do this?
59
221330
2000
人脑是怎么做到这点的呢?
03:43
Let's just take a look about how the brain works,
60
223330
3000
我们先看看人脑是如何工作的,
03:46
and then I'll compare that with how computers work.
61
226330
4000
然后我同电脑是怎么工作的相比较。
03:50
So, this clip is from the PBS series, "The Secret Life of the Brain."
62
230330
4000
这个视频片段,剪辑自PBS(公共电视网)的系列片:“神秘的大脑”。
03:54
It shows you these cells that process information.
63
234330
3000
它向你展示了这些处理信息的细胞。
03:57
They are called neurons.
64
237330
1000
这些细胞叫做神经元。
03:58
They send little pulses of electricity down their processes to each other,
65
238330
6000
神经元之间在传送信息的过程中会发出微小的电脉冲,
04:04
and where they contact each other, those little pulses
66
244330
2000
神经元互相接触时,这些微小的电脉冲
04:06
of electricity can jump from one neuron to the other.
67
246330
2000
能够从一个神经元跳到另一个神经元。
04:08
That process is called a synapse.
68
248330
3000
这个过程被称为神经突触。
04:11
You've got this huge network of cells interacting with each other --
69
251330
2000
人脑所拥有的由神经元相互交织而成的网络相当庞大,
04:13
about 100 million of them,
70
253330
2000
其中有大概一亿个神经元,
04:15
sending about 10 quadrillion of these pulses around every second.
71
255330
4000
每秒发送约十万亿个这样的脉冲。
04:19
And that's basically what's going on in your brain right now as you're watching this.
72
259330
6000
你正观看这个片子的时候,你的大脑基本上就这样运转着。
04:25
How does that compare with the way computers work?
73
265330
2000
怎么拿这个跟电脑的工作方式比较呢?
04:27
In the computer, you have all the data
74
267330
2000
电脑把所有数据
04:29
going through the central processing unit,
75
269330
2000
都通过中央处理器来处理,
04:31
and any piece of data basically has to go through that bottleneck,
76
271330
3000
任何数据都必须通过那个瓶颈。
04:34
whereas in the brain, what you have is these neurons,
77
274330
4000
然而在大脑中,你所拥有的是这些神经元,
04:38
and the data just really flows through a network of connections
78
278330
4000
数据是顺着连接神经元的网络流动
04:42
among the neurons. There's no bottleneck here.
79
282330
2000
这里不存在瓶颈,
04:44
It's really a network in the literal sense of the word.
80
284330
4000
这是一个名副其实的网络,
04:48
The net is doing the work in the brain.
81
288330
4000
就是这个网络担负着大脑的运转。
04:52
If you just look at these two pictures,
82
292330
2000
看看这两张图片,
04:54
these kind of words pop into your mind.
83
294330
2000
你的脑海中会跳出这样的词,
04:56
This is serial and it's rigid -- it's like cars on a freeway,
84
296330
4000
这一幅连续又呆板:就像在高速路上的汽车——
05:00
everything has to happen in lockstep --
85
300330
3000
一切必须按部就班;
05:03
whereas this is parallel and it's fluid.
86
303330
2000
而这幅图平行而且有流动感,
05:05
Information processing is very dynamic and adaptive.
87
305330
3000
其信息处理既非常活跃又很具适应性。
05:08
So I'm not the first to figure this out. This is a quote from Brian Eno:
88
308330
4000
我并不是第一个有这样想法的人。Brian Eno如是说:
05:12
"the problem with computers is that there is not enough Africa in them."
89
312330
4000
“电脑的问题就在于它还不能大到足以装下整个非洲。”
05:16
(Laughter)
90
316330
6000
(笑声)
05:22
Brian actually said this in 1995.
91
322330
3000
Brian 说这话时是1995年
05:25
And nobody was listening then,
92
325330
3000
当时没有任何人听进去,
05:28
but now people are beginning to listen
93
328330
2000
但现在人们开始当真了
05:30
because there's a pressing, technological problem that we face.
94
330330
5000
因为我们正面临着一个急迫的技术问题
05:35
And I'll just take you through that a little bit in the next few slides.
95
335330
5000
在下面几张幻灯片中我会带你们简略地了解一下这个问题:
05:40
This is -- it's actually really this remarkable convergence
96
340330
4000
这个——实际上它是个真正非凡的聚合体
05:44
between the devices that we use to compute in computers,
97
344330
5000
算是介于用电脑来计算的装置
05:49
and the devices that our brains use to compute.
98
349330
4000
和用人脑来计算的装置之间。
05:53
The devices that computers use are what's called a transistor.
99
353330
4000
电脑用的装置我们称之为晶体管。
05:57
This electrode here, called the gate, controls the flow of current
100
357330
4000
这儿是电极,称为闸极,控制着从源极流向汲极的电流
06:01
from the source to the drain -- these two electrodes.
101
361330
3000
就是这两个电极。
06:04
And that current, electrical current,
102
364330
2000
而那电流,电流是由电子传送的,
06:06
is carried by electrons, just like in your house and so on.
103
366330
6000
就如同你房子里的电流一样,诸如此类。
06:12
And what you have here is, when you actually turn on the gate,
104
372330
5000
这里你要明白的是,当你打开闸极时,
06:17
you get an increase in the amount of current, and you get a steady flow of current.
105
377330
4000
电流量会增加,并且是股稳定电流。
06:21
And when you turn off the gate, there's no current flowing through the device.
106
381330
4000
当你关掉闸极时,就没有任何电流流过这个装置了。
06:25
Your computer uses this presence of current to represent a one,
107
385330
5000
我们用“一”来代表你的电脑有电流,
06:30
and the absence of current to represent a zero.
108
390330
4000
而用“零”来代表电脑无电流。
06:34
Now, what's happening is that as transistors are getting smaller and smaller and smaller,
109
394330
6000
现在的情况是当晶体管变得越来越小越来越小的话,
06:40
they no longer behave like this.
110
400330
2000
它们就不会再像这样运转了,
06:42
In fact, they are starting to behave like the device that neurons use to compute,
111
402330
5000
事实上,它们会开始像神经元用来计算的装置那样来运作,
06:47
which is called an ion channel.
112
407330
2000
这种装置被称作离子通道
06:49
And this is a little protein molecule.
113
409330
2000
这是个小小的蛋白质分子。
06:51
I mean, neurons have thousands of these.
114
411330
4000
我的意思是,神经元有成千上万个这样的分子。
06:55
And it sits in the membrane of the cell and it's got a pore in it.
115
415330
4000
而它就分布在细胞膜中并且自身还带了个小孔,
06:59
And these are individual potassium ions
116
419330
3000
而这些是单独的钾离子,
07:02
that are flowing through that pore.
117
422330
2000
在小孔中穿来过去。
07:04
Now, this pore can open and close.
118
424330
2000
现在,这个孔是能开能闭的,
07:06
But, when it's open, because these ions have to line up
119
426330
5000
但是,当它打开时,由于这些离子必须排成一行
07:11
and flow through, one at a time, you get a kind of sporadic, not steady --
120
431330
5000
一个一个地穿过小孔,因此产生零星的,而非稳定的——
07:16
it's a sporadic flow of current.
121
436330
3000
一股断断续续的电流。
07:19
And even when you close the pore -- which neurons can do,
122
439330
3000
甚至当小孔闭合的时候——神经元做得到这点的,
07:22
they can open and close these pores to generate electrical activity --
123
442330
5000
它们可以通过开关这些小孔来产生电活动——
07:27
even when it's closed, because these ions are so small,
124
447330
3000
甚至当孔闭合时,由于这些离子如此之小,
07:30
they can actually sneak through, a few can sneak through at a time.
125
450330
3000
它们实际上可以偷偷地穿过,其中一些还可以同时偷偷地穿过。
07:33
So, what you have is that when the pore is open,
126
453330
3000
所以你得出的结论就是当小孔张开时,
07:36
you get some current sometimes.
127
456330
2000
有时候会产生一些电流
07:38
These are your ones, but you've got a few zeros thrown in.
128
458330
3000
这些就是“一”,但你也会额外得到些“零”;
07:41
And when it's closed, you have a zero,
129
461330
4000
而当小孔闭合时,你则得到个“零”,
07:45
but you have a few ones thrown in.
130
465330
3000
但你也能得到些额外的“一”,是的。
07:48
Now, this is starting to happen in transistors.
131
468330
3000
现在,这一原理正开始运用于晶体管,
07:51
And the reason why that's happening is that, right now, in 2007 --
132
471330
5000
而发生的原因就在于,在2007年,
07:56
the technology that we are using -- a transistor is big enough
133
476330
4000
我们目前使用的技术,晶体管的大小足以使
08:00
that several electrons can flow through the channel simultaneously, side by side.
134
480330
5000
好几个电子能同时穿过通道,而且是并排地。
08:05
In fact, there's about 12 electrons can all be flowing this way.
135
485330
4000
事实上,大概有12个电子都可以这样穿过去。
08:09
And that means that a transistor corresponds
136
489330
2000
这意味着一个晶体管就相当于
08:11
to about 12 ion channels in parallel.
137
491330
3000
12个并列的离子通道。
08:14
Now, in a few years time, by 2015, we will shrink transistors so much.
138
494330
5000
在几年时间内,到2015,我们会把晶体管体积缩得非常小,
08:19
This is what Intel does to keep adding more cores onto the chip.
139
499330
5000
这正是英特尔所致力于的事业:不断地往芯片上
08:24
Or your memory sticks that you have now can carry one gigabyte
140
504330
3000
或是你的记忆棒上添加更多的核,这样就使它们能有1G的内存
08:27
of stuff on them -- before, it was 256.
141
507330
2000
——而以前才256MB。
08:29
Transistors are getting smaller to allow this to happen,
142
509330
3000
晶体管变得越来越小才使这一切得以实现
08:32
and technology has really benefitted from that.
143
512330
3000
而技术更是得益于此
08:35
But what's happening now is that in 2015, the transistor is going to become so small,
144
515330
5000
但现在的情况是到2015年,晶体管将变得如此之小,
08:40
that it corresponds to only one electron at a time
145
520330
3000
以至于它一次只能让一个电子
08:43
can flow through that channel,
146
523330
2000
通过通道,
08:45
and that corresponds to a single ion channel.
147
525330
2000
相当于一个单离子通道,
08:47
And you start having the same kind of traffic jams that you have in the ion channel.
148
527330
4000
因此就会开始出现像在单离子通道里发生的那种交通堵塞,
08:51
The current will turn on and off at random,
149
531330
3000
电流会随机地时断时续,
08:54
even when it's supposed to be on.
150
534330
2000
甚至在它理应通电的时候
08:56
And that means your computer is going to get
151
536330
2000
而那也就意味着你的电脑将会把
08:58
its ones and zeros mixed up, and that's going to crash your machine.
152
538330
4000
它的“一”和“零”们搞混淆,那么你这台机器就完蛋了。
09:02
So, we are at the stage where we
153
542330
4000
所以,我们现在还处于
09:06
don't really know how to compute with these kinds of devices.
154
546330
3000
尚不真正清楚如何使用这类装置来运算的阶段
09:09
And the only kind of thing -- the only thing we know right now
155
549330
3000
而我们目前知道的唯一一件事,唯一
09:12
that can compute with these kinds of devices are the brain.
156
552330
3000
能用这类装置来进行运算的是我们人类的大脑
09:15
OK, so a computer picks a specific item of data from memory,
157
555330
4000
好吧,所以说电脑是从内存中中挑取特定的一项数据
09:19
it sends it into the processor or the ALU,
158
559330
3000
把它传送给处理器或是ALU,
09:22
and then it puts the result back into memory.
159
562330
2000
然后再将运算结果送还给内存。
09:24
That's the red path that's highlighted.
160
564330
2000
就是这着重标出的红色路线。
09:26
The way brains work, I told you all, you have got all these neurons.
161
566330
4000
人脑工作的方式,用上了你能有的所有神经元。
09:30
And the way they represent information is
162
570330
2000
它们呈现信息的方式是
09:32
they break up that data into little pieces
163
572330
2000
把数据粉碎成很小的碎片
09:34
that are represented by pulses and different neurons.
164
574330
3000
并用脉冲和不同的神经元来表达。
09:37
So you have all these pieces of data
165
577330
2000
而所有的数据碎片
09:39
distributed throughout the network.
166
579330
2000
都分散在这网络中。
09:41
And then the way that you process that data to get a result
167
581330
3000
而你处理数据得到结果的方式则是
09:44
is that you translate this pattern of activity into a new pattern of activity,
168
584330
4000
将这一种活动模式转化成一种新的活动模式,
09:48
just by it flowing through the network.
169
588330
3000
仅仅就是让它在网络中流过而已。
09:51
So you set up these connections
170
591330
2000
这样你就建立起这些连接,
09:53
such that the input pattern just flows
171
593330
3000
仅仅让输入模式流动
09:56
and generates the output pattern.
172
596330
2000
就能产生输出模式
09:58
What you see here is that there's these redundant connections.
173
598330
4000
现在你看到的是一堆多余的连接
10:02
So if this piece of data or this piece of the data gets clobbered,
174
602330
4000
所以如果这块信息碎片,或这块信息碎片被损毁的话
10:06
it doesn't show up over here, these two pieces can activate the missing part
175
606330
5000
它就不会在这儿显示出来了,这两份信息可以
10:11
with these redundant connections.
176
611330
2000
通过这些多余的连接来激活缺失的部分信息
10:13
So even when you go to these crappy devices
177
613330
2000
所以即使你用的是这么些蹩脚的装置
10:15
where sometimes you want a one and you get a zero, and it doesn't show up,
178
615330
3000
有时会在你想要个一的时候给你个零
10:18
there's redundancy in the network
179
618330
2000
网络中的重复性
10:20
that can actually recover the missing information.
180
620330
3000
实际上却能恢复那些缺失的信息。
10:23
It makes the brain inherently robust.
181
623330
3000
它令大脑自然而然地强大。
10:26
What you have here is a system where you store data locally.
182
626330
3000
你这里所拥有的是一个只能存储本地数据的系统
10:29
And it's brittle, because each of these steps has to be flawless,
183
629330
4000
而且很脆弱,因为它的每一个步骤都必须是准确无误的
10:33
otherwise you lose that data, whereas in the brain, you have a system
184
633330
3000
否则你就会丢失数据。然而大脑系统
10:36
that stores data in a distributed way, and it's robust.
185
636330
4000
以分散的方式存储数据,且强大无比。
10:40
What I want to basically talk about is my dream,
186
640330
4000
我想讨论的基本问题是我的梦想,
10:44
which is to build a computer that works like the brain.
187
644330
3000
那就是建造一个像大脑那样工作的电脑。
10:47
This is something that we've been working on for the last couple of years.
188
647330
4000
过去数年来我们一直在为此而努力。
10:51
And I'm going to show you a system that we designed
189
651330
3000
而现在我将向你们展示一个我们设计的
10:54
to model the retina,
190
654330
3000
模拟视网膜的系统
10:57
which is a piece of brain that lines the inside of your eyeball.
191
657330
5000
这一模拟系统就是覆盖在你眼球内部的一层大脑
11:02
We didn't do this by actually writing code, like you do in a computer.
192
662330
6000
实际上我们做的这一模拟系统并不像做电脑系统那样编程,
11:08
In fact, the processing that happens
193
668330
3000
事实上,这一小片大脑的
11:11
in that little piece of brain is very similar
194
671330
2000
运作过程非常类似于
11:13
to the kind of processing that computers
195
673330
1000
电脑从因特网上获取视频流的
11:14
do when they stream video over the Internet.
196
674330
4000
过程。
11:18
They want to compress the information --
197
678330
1000
人们想要压缩信息——
11:19
they just want to send the changes, what's new in the image, and so on --
198
679330
4000
人们只想发送新发生改变的图像,诸如此类——
11:23
and that is how your eyeball
199
683330
3000
而那就是你的眼球如何
11:26
is able to squeeze all that information down to your optic nerve,
200
686330
3000
能把所有捕捉到的信息传送到你的视神经
11:29
to send to the rest of the brain.
201
689330
2000
再传送给大脑的其余部分
11:31
Instead of doing this in software, or doing those kinds of algorithms,
202
691330
3000
取代了用软件或者做各种各样的算法来做这一系统
11:34
we went and talked to neurobiologists
203
694330
3000
我们去问了神经生物学家
11:37
who have actually reverse engineered that piece of brain that's called the retina.
204
697330
4000
他们用反工程法解析了被称作视网膜的那片大脑。
11:41
And they figured out all the different cells,
205
701330
2000
而且他们分析出所有不同的细胞
11:43
and they figured out the network, and we just took that network
206
703330
3000
还分析出其网络,我们只是拿着那个网络
11:46
and we used it as the blueprint for the design of a silicon chip.
207
706330
4000
用它作为设计硅片的蓝图。
11:50
So now the neurons are represented by little nodes or circuits on the chip,
208
710330
6000
现在硅片上的小结点或电路代表神经元,
11:56
and the connections among the neurons are represented, actually modeled by transistors.
209
716330
5000
神经元之间的连接实际上由晶体管模拟
12:01
And these transistors are behaving essentially
210
721330
2000
这些晶体管的运作模式基本上
12:03
just like ion channels behave in the brain.
211
723330
3000
就如同大脑中的离子通道的运作模式。
12:06
It will give you the same kind of robust architecture that I described.
212
726330
5000
这是同我描述过的一样的强大结构。
12:11
Here is actually what our artificial eye looks like.
213
731330
4000
这就是我们的人造眼睛的样子。
12:15
The retina chip that we designed sits behind this lens here.
214
735330
5000
我们设计的视网膜硅片安置在这里的镜片后。
12:20
And the chip -- I'm going to show you a video
215
740330
2000
而这硅片——我将给你们看一段视频
12:22
that the silicon retina put out of its output
216
742330
3000
是这个硅片视网膜的输出
12:25
when it was looking at Kareem Zaghloul,
217
745330
3000
当它看着Kareem Zaghloul 的时候,
12:28
who's the student who designed this chip.
218
748330
2000
Kareem是设计这块硅片的学生。
12:30
Let me explain what you're going to see, OK,
219
750330
2000
让我解释一下你将看见什么,好吗?
12:32
because it's putting out different kinds of information,
220
752330
3000
由于输出各种不同信息
12:35
it's not as straightforward as a camera.
221
755330
2000
它不像相机那么简单。
12:37
The retina chip extracts four different kinds of information.
222
757330
3000
视网膜硅片摄取四种不同的信息。
12:40
It extracts regions with dark contrast,
223
760330
3000
它摄取黑色对比区域,
12:43
which will show up on the video as red.
224
763330
3000
在视频上表现为红色。
12:46
And it extracts regions with white or light contrast,
225
766330
4000
它也摄取白色或亮色对比区域,
12:50
which will show up on the video as green.
226
770330
2000
在视频上显示为绿色。
12:52
This is Kareem's dark eyes
227
772330
2000
这是Kareem的黑眼睛
12:54
and that's the white background that you see here.
228
774330
3000
而这儿是你所看见的白色背景。
12:57
And then it also extracts movement.
229
777330
2000
然后硅片也摄取物体的运动。
12:59
When Kareem moves his head to the right,
230
779330
2000
当Kareem把头转向右边,
13:01
you will see this blue activity there;
231
781330
2000
你能看见那儿的蓝色活动区域,
13:03
it represents regions where the contrast is increasing in the image,
232
783330
3000
它代表图像中对比加强的区域,
13:06
that's where it's going from dark to light.
233
786330
3000
这一区域由暗变明。
13:09
And you also see this yellow activity,
234
789330
2000
而且你也看见这块黄色活动区域,
13:11
which represents regions where contrast is decreasing;
235
791330
4000
它代表对比逐渐减弱区域,
13:15
it's going from light to dark.
236
795330
2000
这一区域由亮变暗。
13:17
And these four types of information --
237
797330
3000
而这四种信息类型——
13:20
your optic nerve has about a million fibers in it,
238
800330
4000
你的视神经约有一百万根神经纤维,
13:24
and 900,000 of those fibers
239
804330
3000
这些神经纤维中的90万根
13:27
send these four types of information.
240
807330
2000
传送这四种信息。
13:29
So we are really duplicating the kind of signals that you have on the optic nerve.
241
809330
4000
所以我们真正地复制了视神经上的那类信号。
13:33
What you notice here is that these snapshots
242
813330
3000
你这里所注意到的是这些
13:36
taken from the output of the retina chip are very sparse, right?
243
816330
4000
从视网膜硅片的输出信息所摄取的快照是非常分散的。
13:40
It doesn't light up green everywhere in the background,
244
820330
2000
在背景中并非到处都是亮色调的绿色,
13:42
only on the edges, and then in the hair, and so on.
245
822330
3000
仅仅在边缘如此,等等。
13:45
And this is the same thing you see
246
825330
1000
而这同你所看见的一样
13:46
when people compress video to send: they want to make it very sparse,
247
826330
4000
当人们压缩视频后发送:他们想把它做得很分散,
13:50
because that file is smaller. And this is what the retina is doing,
248
830330
3000
因为文件更小了。而这就是视网膜所做的一切
13:53
and it's doing it just with the circuitry, and how this network of neurons
249
833330
4000
仅仅用电路就做到了,而且这个神经网络是如何
13:57
that are interacting in there, which we've captured on the chip.
250
837330
3000
在那儿相互作用的,我们都在硅片上捕捉到了。
14:00
But the point that I want to make -- I'll show you up here.
251
840330
3000
但是我要说的是,看这里。
14:03
So this image here is going to look like these ones,
252
843330
3000
这样的图像将看上去像那些图像,
14:06
but here I'll show you that we can reconstruct the image,
253
846330
2000
但在这儿我将向你们演示我们能重组图像,
14:08
so, you know, you can almost recognize Kareem in that top part there.
254
848330
5000
所以,你知道,你们几乎可以在那幅顶部图像分辨出Kareem.
14:13
And so, here you go.
255
853330
2000
瞧,就是这个。
14:24
Yes, so that's the idea.
256
864330
3000
是的,这就是我的想法。
14:27
When you stand still, you just see the light and dark contrasts.
257
867330
2000
当你站着不动时,你只看见明暗对比。
14:29
But when it's moving back and forth,
258
869330
2000
但是当你前后移动时,
14:31
the retina picks up these changes.
259
871330
3000
视网膜就摄取到这些变化。
14:34
And that's why, you know, when you're sitting here
260
874330
1000
那就是为什么,当你坐在这儿,
14:35
and something happens in your background,
261
875330
2000
在你的背后发生变化时,你也能知道,
14:37
you merely move your eyes to it.
262
877330
2000
你只要需要看一眼。
14:39
There are these cells that detect change
263
879330
2000
这些细胞探测到变化
14:41
and you move your attention to it.
264
881330
2000
你就把注意力转向它。
14:43
So those are very important for catching somebody
265
883330
2000
这对你发现
14:45
who's trying to sneak up on you.
266
885330
2000
想对你偷偷摸摸的家伙非常重要。
14:47
Let me just end by saying that this is what happens
267
887330
3000
让我这么说吧,作为这次演讲的结束,这就是
14:50
when you put Africa in a piano, OK.
268
890330
3000
当你把非洲放入一架钢琴会发生的一切,好吧。
14:53
This is a steel drum here that has been modified,
269
893330
3000
这是一架已被改装的钢鼓,
14:56
and that's what happens when you put Africa in a piano.
270
896330
3000
而那是你把非洲放入钢琴所发生的事情。
14:59
And what I would like us to do is put Africa in the computer,
271
899330
4000
而我想让大家所做的是把非洲放入一台电脑,
15:03
and come up with a new kind of computer
272
903330
2000
变出一种新电脑
15:05
that will generate thought, imagination, be creative and things like that.
273
905330
3000
这种电脑将产生思想,具有想象力,充满创造力,以及诸如此类的能力。
15:08
Thank you.
274
908330
2000
谢谢诸位。
15:10
(Applause)
275
910330
2000
(掌声)
15:12
Chris Anderson: Question for you, Kwabena.
276
912330
2000
Chris Anderson:Kwabena, 有一个问题问你,
15:14
Do you put together in your mind the work you're doing,
277
914330
4000
你是否想过,在你正从事的工作
15:18
the future of Africa, this conference --
278
918330
3000
非洲的未来,和这次大会——
15:21
what connections can we make, if any, between them?
279
921330
3000
在它们之间我们可以获得什么联系,如果有的话?
15:24
Kwabena Boahen: Yes, like I said at the beginning,
280
924330
2000
Kwabena Boahen:是的,正如我一开始所说的,
15:26
I got my first computer when I was a teenager, growing up in Accra.
281
926330
4000
我在阿克拉长大,在青少年时期有了第一台电脑。
15:30
And I had this gut reaction that this was the wrong way to do it.
282
930330
4000
我的本能反应是这种做法是错误的。
15:34
It was very brute force; it was very inelegant.
283
934330
3000
这是一种非常不理性的力量,非常不雅。
15:37
I don't think that I would've had that reaction,
284
937330
2000
我不认为我会有如此的反应,
15:39
if I'd grown up reading all this science fiction,
285
939330
3000
如果我从小读着所有这些科幻小说,
15:42
hearing about RD2D2, whatever it was called, and just -- you know,
286
942330
4000
听着有关星球大战中的机器人RD2D2,不管你怎么称呼它,只是--你知道的,
15:46
buying into this hype about computers.
287
946330
1000
认同对电脑的这种炒作。
15:47
I was coming at it from a different perspective,
288
947330
2000
我是从一个不同的视角接触电脑的,
15:49
where I was bringing that different perspective
289
949330
2000
我正是带这这个不同的视角
15:51
to bear on the problem.
290
951330
2000
来承受这个问题。
15:53
And I think a lot of people in Africa have this different perspective,
291
953330
3000
而且我认为非洲许许多多人有这种不同的观点,
15:56
and I think that's going to impact technology.
292
956330
2000
而且我认为这将影响到技术。
15:58
And that's going to impact how it's going to evolve.
293
958330
2000
影响到技术的发展的方向。
16:00
And I think you're going to be able to see, use that infusion,
294
960330
2000
而且我认为你们将能目睹,利用那种新灌输的思想,
16:02
to come up with new things,
295
962330
2000
来创造新事物,
16:04
because you're coming from a different perspective.
296
964330
3000
因为你们来自于一个不同的背景。
16:07
I think we can contribute. We can dream like everybody else.
297
967330
4000
我觉得我们可以像其他任何人一样贡献自己的力量,构筑自己的梦想。
16:11
CA: Thanks Kwabena, that was really interesting.
298
971330
2000
Chris Anderson:谢谢,Kwabena,这真的很有意思。
16:13
Thank you.
299
973330
1000
谢谢。
16:14
(Applause)
300
974330
2000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7