Kwabena Boahen: Making a computer that works like the brain

96,468 views ・ 2008-07-30

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Senzos Osijek Recezent: Tilen Pigac - EFZG
00:18
I got my first computer when I was a teenager growing up in Accra,
0
18330
5000
Dobio sam svoje prvo računalo kada sam bio tinejdžer i odrastao u Akri
00:23
and it was a really cool device.
1
23330
3000
i to je bila zbilja cool naprava.
00:26
You could play games with it. You could program it in BASIC.
2
26330
5000
Mogao si igrati igre na njemu. Mogao si programirati u BASIC-u.
00:31
And I was fascinated.
3
31330
2000
I bio sam fasciniran.
00:33
So I went into the library to figure out how did this thing work.
4
33330
6000
Dakle, otišao sam u knjižnicu da shvatim kako ta stvar radi.
00:39
I read about how the CPU is constantly shuffling data back and forth
5
39330
5000
Čitao sam kako CPU stalno prebacuje podatke naprijed natrag
00:44
between the memory, the RAM and the ALU,
6
44330
4000
kroz memoriju, o RAM-u i o ALU-u,
00:48
the arithmetic and logic unit.
7
48330
2000
o aritmetičkoj i logaritamskoj jedinici.
00:50
And I thought to myself, this CPU really has to work like crazy
8
50330
4000
I mislio sam si: ovaj CPU zbilja mora raditi kao lud
00:54
just to keep all this data moving through the system.
9
54330
4000
samo da održi sve te podatke koji se pomiču kroz sistem.
00:58
But nobody was really worried about this.
10
58330
3000
Ali, nitko se zapravo nije brinuo oko toga.
01:01
When computers were first introduced,
11
61330
2000
Kada su računala prvi puta predstavljena,
01:03
they were said to be a million times faster than neurons.
12
63330
3000
rečeno je da su milijun puta brži od neurona.
01:06
People were really excited. They thought they would soon outstrip
13
66330
5000
Ljudi su zbilja bili uzbuđeni. Mislili su da će uskoro nadmašiti
01:11
the capacity of the brain.
14
71330
3000
kapacitete mozga.
01:14
This is a quote, actually, from Alan Turing:
15
74330
3000
Ovo je zapravo citat Alana Turinga:
01:17
"In 30 years, it will be as easy to ask a computer a question
16
77330
4000
„Za 30 godina biti će jednako lako postaviti računalu pitanje
01:21
as to ask a person."
17
81330
2000
kao što je pitati čovjeka.“
01:23
This was in 1946. And now, in 2007, it's still not true.
18
83330
7000
To je bilo 1946. I sada, u 2007. To još uvjek nije točno.
01:30
And so, the question is, why aren't we really seeing
19
90330
4000
Dakle, pitanje jest, zašto ne vidimo
01:34
this kind of power in computers that we see in the brain?
20
94330
4000
istu vrstu moći u računalima kakvu vidimo u mozgu?
01:38
What people didn't realize, and I'm just beginning to realize right now,
21
98330
4000
Ono što ljudi nisu shvatili, a ja tek sad počinjem shvaćati,
01:42
is that we pay a huge price for the speed
22
102330
2000
jest da plaćamo golemu cijenu za brzinu
01:44
that we claim is a big advantage of these computers.
23
104330
4000
koja je navodno velika prednost tim računalima.
01:48
Let's take a look at some numbers.
24
108330
2000
Pogledajmo neke brojeve.
01:50
This is Blue Gene, the fastest computer in the world.
25
110330
4000
Ovo je Blue Gene, najbrže računalo na svijetu.
01:54
It's got 120,000 processors; they can basically process
26
114330
5000
Ima 120.000 procesora, oni u principu mogu procesuirati
01:59
10 quadrillion bits of information per second.
27
119330
3000
10 kvadrilijon bita informacije po sekundi.
02:02
That's 10 to the sixteenth. And they consume one and a half megawatts of power.
28
122330
7000
To je 10 na šesnaestu. I oni troše jedan i pol megavata snage.
02:09
So that would be really great, if you could add that
29
129330
3000
To bi bilo zbilja dobro, dodati to kapacitetu
02:12
to the production capacity in Tanzania.
30
132330
2000
proizvodnje Tanzanije.
02:14
It would really boost the economy.
31
134330
2000
To bi im povećalo proizvodnju.
02:16
Just to go back to the States,
32
136330
4000
Samo da se vratimo u SAD,
02:20
if you translate the amount of power or electricity
33
140330
2000
ako prevedete količinu elektriciteta
02:22
this computer uses to the amount of households in the States,
34
142330
3000
koji ovo računalo koristi na količini kućanstava u SAD-u,
02:25
you get 1,200 households in the U.S.
35
145330
4000
dobijete 1.200 kućanstava.
02:29
That's how much power this computer uses.
36
149330
2000
Toliko koristi ovo računalo.
02:31
Now, let's compare this with the brain.
37
151330
3000
Sada, usporedimo to s mozgom.
02:34
This is a picture of, actually Rory Sayres' girlfriend's brain.
38
154330
5000
Ovo je zapravo slika mozga cure Roryja Sayersa.
02:39
Rory is a graduate student at Stanford.
39
159330
2000
Rory je apsolvent na Stanfordu.
02:41
He studies the brain using MRI, and he claims that
40
161330
4000
On proučava mozak koristeći magnetsku rezonanciju, i tvrdi
02:45
this is the most beautiful brain that he has ever scanned.
41
165330
3000
da je ovo najljepši mozak koji je ikada skenirao.
02:48
(Laughter)
42
168330
2000
(Smijeh)
02:50
So that's true love, right there.
43
170330
3000
Eto, to je prava ljubav.
02:53
Now, how much computation does the brain do?
44
173330
3000
Koliko izračuna radi mozak?
02:56
I estimate 10 to the 16 bits per second,
45
176330
2000
Ja procjenjujem 10 na šesnaestu bita po sekundi,
02:58
which is actually about very similar to what Blue Gene does.
46
178330
4000
što je otprilike slično koliko i Blue Gene.
03:02
So that's the question. The question is, how much --
47
182330
2000
Dakle, to je pitanje. Pitanje je, koliko --
03:04
they are doing a similar amount of processing, similar amount of data --
48
184330
3000
oni rade sličnu količinu procesiranja, sličnu količinu podataka --
03:07
the question is how much energy or electricity does the brain use?
49
187330
5000
pitanje je koliko energije ili elektriciteta mozak koristi?
03:12
And it's actually as much as your laptop computer:
50
192330
3000
I, to je zapravo onoliko koliko troši vaš laptop:
03:15
it's just 10 watts.
51
195330
2000
to je samo 10 W.
03:17
So what we are doing right now with computers
52
197330
3000
Dakle, što radimo s računalima
03:20
with the energy consumed by 1,200 houses,
53
200330
3000
koji troše energije kao 1.200 kućanstava,
03:23
the brain is doing with the energy consumed by your laptop.
54
203330
5000
mozak radi s utroškom energije koji ima vaš laptop.
03:28
So the question is, how is the brain able to achieve this kind of efficiency?
55
208330
3000
Pitanje jest kako mozak uspjeva postići ovu razinu učinkovitosti?
03:31
And let me just summarize. So the bottom line:
56
211330
2000
Dozvolite mi da sažmem. Na kraju krajeva,
03:33
the brain processes information using 100,000 times less energy
57
213330
4000
mozak procesira informacije koristeći 100.000 puta manje energije
03:37
than we do right now with this computer technology that we have.
58
217330
4000
nego što mi trošimo s ovom računalnom tehnologijom.
03:41
How is the brain able to do this?
59
221330
2000
Kako to mozak uspijeva?
03:43
Let's just take a look about how the brain works,
60
223330
3000
Pogledajmo samo način na koji mozak radi,
03:46
and then I'll compare that with how computers work.
61
226330
4000
i onda ću to usporediti s radom računala.
03:50
So, this clip is from the PBS series, "The Secret Life of the Brain."
62
230330
4000
Ovo je video iz PBS-ove serije „Tajni život Mozga“.
03:54
It shows you these cells that process information.
63
234330
3000
Pokazuje vam stanice koje procesiraju informacije.
03:57
They are called neurons.
64
237330
1000
One se nazivaju neuroni.
03:58
They send little pulses of electricity down their processes to each other,
65
238330
6000
Oni odašilju male pulsove elektriciteta niz njihove procesore jedne drugima
04:04
and where they contact each other, those little pulses
66
244330
2000
i na mjestima gdje se dodiruju ovi mali impulsi
04:06
of electricity can jump from one neuron to the other.
67
246330
2000
mogu skočiti s jednog neurona na drugi.
04:08
That process is called a synapse.
68
248330
3000
Taj je proces nazvan sinapsa.
04:11
You've got this huge network of cells interacting with each other --
69
251330
2000
Imate ovu golemu mrežu stanica koje vrše interakcije jedne s drugima --
04:13
about 100 million of them,
70
253330
2000
oko 100 milijuna njih,
04:15
sending about 10 quadrillion of these pulses around every second.
71
255330
4000
koje šalju oko 10 kvadrilijuna pulseva svake sekunde.
04:19
And that's basically what's going on in your brain right now as you're watching this.
72
259330
6000
I to je otprilike što se događa u vašem mozgu sada dok ovo gledate.
04:25
How does that compare with the way computers work?
73
265330
2000
Kako se to može usporediti s načinom na koji radi računalo?
04:27
In the computer, you have all the data
74
267330
2000
U računalu svi podaci
04:29
going through the central processing unit,
75
269330
2000
prolaze kroz centralnu procesorsku jedinicu,
04:31
and any piece of data basically has to go through that bottleneck,
76
271330
3000
i svaki djelić podatka u osnovi mora proći kroz to usko grlo,
04:34
whereas in the brain, what you have is these neurons,
77
274330
4000
dok u mozgu imate neurone,
04:38
and the data just really flows through a network of connections
78
278330
4000
i podatci jednostavno teku kroz mrežu spojeva
04:42
among the neurons. There's no bottleneck here.
79
282330
2000
među neuronima. Nema uskog grla.
04:44
It's really a network in the literal sense of the word.
80
284330
4000
To je zaista mreža u doslovnom smislu riječi.
04:48
The net is doing the work in the brain.
81
288330
4000
Mreža radi posao za vaš mozak.
04:52
If you just look at these two pictures,
82
292330
2000
I ako samo pogledate ove dvije slike,
04:54
these kind of words pop into your mind.
83
294330
2000
ove riječi uskaču u vaš mozak.
04:56
This is serial and it's rigid -- it's like cars on a freeway,
84
296330
4000
Ovo je serijski spojeno, i kruto je, kao auti na autocesti,
05:00
everything has to happen in lockstep --
85
300330
3000
i sve se mora dogoditi u pravilnom razmaku --
05:03
whereas this is parallel and it's fluid.
86
303330
2000
dok je ovo paralelno i fluidno.
05:05
Information processing is very dynamic and adaptive.
87
305330
3000
Procesiranje informacija je jako dinamično i prilagodljivo.
05:08
So I'm not the first to figure this out. This is a quote from Brian Eno:
88
308330
4000
Nisam prvi koji je to shvatio. Ovo je citat Briana Ena:
05:12
"the problem with computers is that there is not enough Africa in them."
89
312330
4000
„Problem s računalima jest to što u njima nema dosta Afrike“.
05:16
(Laughter)
90
316330
6000
(Smijeh)
05:22
Brian actually said this in 1995.
91
322330
3000
Brian je zapravo to rekao 1995.
05:25
And nobody was listening then,
92
325330
3000
i onda ga nitko nije slušao,
05:28
but now people are beginning to listen
93
328330
2000
ali sada ljudi počinju slušati
05:30
because there's a pressing, technological problem that we face.
94
330330
5000
jer postoji veliki tehnološki problem s kojim se suočavamo.
05:35
And I'll just take you through that a little bit in the next few slides.
95
335330
5000
I sada ću vas pomalo provesti kroz to u sljedećih nekoliko slajdova.
05:40
This is -- it's actually really this remarkable convergence
96
340330
4000
Ovo je zapravo izvanredna konvergencija
05:44
between the devices that we use to compute in computers,
97
344330
5000
između naprava koje koristimo da računaju u računalima
05:49
and the devices that our brains use to compute.
98
349330
4000
i naprava koje koriste naši mozgovi.
05:53
The devices that computers use are what's called a transistor.
99
353330
4000
Naprava koju računala koriste naziva se tranzistor.
05:57
This electrode here, called the gate, controls the flow of current
100
357330
4000
Ova elektroda ovdje -- naziva se prekidač i kontrolira tok struje
06:01
from the source to the drain -- these two electrodes.
101
361330
3000
od izvora do potrošača -- ovih dviju elektroda.
06:04
And that current, electrical current,
102
364330
2000
A struja -- električna struja --
06:06
is carried by electrons, just like in your house and so on.
103
366330
6000
je nošena elektronima baš kao u vašoj kući i tako dalje.
06:12
And what you have here is, when you actually turn on the gate,
104
372330
5000
Ono što imamo ovdje jest, kada upalimo prekidač,
06:17
you get an increase in the amount of current, and you get a steady flow of current.
105
377330
4000
povećavamo količinu struje i dobivamo stalan tok struje.
06:21
And when you turn off the gate, there's no current flowing through the device.
106
381330
4000
A kada ugasimo prekidač, nema struje koja teče kroz napravu.
06:25
Your computer uses this presence of current to represent a one,
107
385330
5000
Vaše računalo koristi prisutnost struje da predstavlja jedinicu,
06:30
and the absence of current to represent a zero.
108
390330
4000
a nedostatak struje da predstavi nulu.
06:34
Now, what's happening is that as transistors are getting smaller and smaller and smaller,
109
394330
6000
Ono što se događa jest da tranzistori postaju sve manji, i manji, i manji
06:40
they no longer behave like this.
110
400330
2000
i više se ne ponašaju tako.
06:42
In fact, they are starting to behave like the device that neurons use to compute,
111
402330
5000
U stvari počnu se ponašati kao naprave koje neuroni koriste za računanje,
06:47
which is called an ion channel.
112
407330
2000
koji se nazivaju ionski kanali.
06:49
And this is a little protein molecule.
113
409330
2000
I ovo je mala molekula proteina.
06:51
I mean, neurons have thousands of these.
114
411330
4000
Mislim, neuroni imaju tisuće njih.
06:55
And it sits in the membrane of the cell and it's got a pore in it.
115
415330
4000
I oni leže u membrani stanice koja ima poru u sebi.
06:59
And these are individual potassium ions
116
419330
3000
Ovo su pojedini ioni kalija
07:02
that are flowing through that pore.
117
422330
2000
koji prolaze kroz poru.
07:04
Now, this pore can open and close.
118
424330
2000
Ove se pore mogu zatvoriti i otvoriti.
07:06
But, when it's open, because these ions have to line up
119
426330
5000
Ali, kada su otvorene, ioni prolaze jedan po jedan
07:11
and flow through, one at a time, you get a kind of sporadic, not steady --
120
431330
5000
i zato se moraju poredati da bi prošli, dobijete sporadičnu, neravnomjernu --
07:16
it's a sporadic flow of current.
121
436330
3000
to je sporadičan tok struje.
07:19
And even when you close the pore -- which neurons can do,
122
439330
3000
I čak i kad zatvorite poru -- što neuroni mogu napraviti,
07:22
they can open and close these pores to generate electrical activity --
123
442330
5000
oni mogu otvoriti i zatvoriti pore da bi stvorili električnu aktivnost --
07:27
even when it's closed, because these ions are so small,
124
447330
3000
čak i kad je zatvorena, zato što su ovi ioni toliko mali,
07:30
they can actually sneak through, a few can sneak through at a time.
125
450330
3000
mogu se prikrasti unutra, nekoliko se može prikrasti s vremena na vrijeme.
07:33
So, what you have is that when the pore is open,
126
453330
3000
Dakle, što imamo jest da, kad su pore otvorene
07:36
you get some current sometimes.
127
456330
2000
ponekad dobijemo struju.
07:38
These are your ones, but you've got a few zeros thrown in.
128
458330
3000
To su jedinice, ali dobijete i par nula ubačenih unutra.
07:41
And when it's closed, you have a zero,
129
461330
4000
A kad je zatvoreno, imate nule,
07:45
but you have a few ones thrown in.
130
465330
3000
ali imate i nekoliko jedinica.
07:48
Now, this is starting to happen in transistors.
131
468330
3000
E sada, ovo se počelo događati u tranzistorima.
07:51
And the reason why that's happening is that, right now, in 2007 --
132
471330
5000
I razlog zašto se to događa je što upravo sada, 2007. --
07:56
the technology that we are using -- a transistor is big enough
133
476330
4000
tehnologija koju koristimo, tranzistor, je dovoljno velik
08:00
that several electrons can flow through the channel simultaneously, side by side.
134
480330
5000
da nekoliko elektrona mogu proći kroz kanal istodobno, jedan pored drugoga.
08:05
In fact, there's about 12 electrons can all be flowing this way.
135
485330
4000
Zapravo, otprilike 12 elektrona mogu teći ovuda.
08:09
And that means that a transistor corresponds
136
489330
2000
I to znači da tranzistor odgovara
08:11
to about 12 ion channels in parallel.
137
491330
3000
otprilike 12 paralelnih ionskih kanala.
08:14
Now, in a few years time, by 2015, we will shrink transistors so much.
138
494330
5000
Za nekoliko godina, u 2015-oj smanjit ćemo elektrone za toliko.
08:19
This is what Intel does to keep adding more cores onto the chip.
139
499330
5000
Ovo Intel radi da bi dodao još jezgri na čip,
08:24
Or your memory sticks that you have now can carry one gigabyte
140
504330
3000
ili na USB memorije koje sada nose jedan gigabajt
08:27
of stuff on them -- before, it was 256.
141
507330
2000
stvari na njima -- prije je bilo samo 256 megabajta.
08:29
Transistors are getting smaller to allow this to happen,
142
509330
3000
Tranzistori postaju manji kako bi to omogućili,
08:32
and technology has really benefitted from that.
143
512330
3000
a tehnologija od toga zbilja profitira.
08:35
But what's happening now is that in 2015, the transistor is going to become so small,
144
515330
5000
Ali, ono što se sada događa jest da će 2015. tranzistori postati toliko mali
08:40
that it corresponds to only one electron at a time
145
520330
3000
da će odgovarati samo jednom elektronu
08:43
can flow through that channel,
146
523330
2000
koji može prolaziti kroz taj kanal,
08:45
and that corresponds to a single ion channel.
147
525330
2000
i to će odgovarati jednom ionskom kanalu.
08:47
And you start having the same kind of traffic jams that you have in the ion channel.
148
527330
4000
I počet ćemo imati iste prometne gužve kao i u ionskim kanalima.
08:51
The current will turn on and off at random,
149
531330
3000
Struja će se paliti i gasiti nasumice,
08:54
even when it's supposed to be on.
150
534330
2000
čak i kad bi trebala biti upaljena.
08:56
And that means your computer is going to get
151
536330
2000
A to znači da će računalo pobrkati
08:58
its ones and zeros mixed up, and that's going to crash your machine.
152
538330
4000
jedinice i nule i to će srušiti vaše računalo.
09:02
So, we are at the stage where we
153
542330
4000
Dakle, mi smo u fazi kada
09:06
don't really know how to compute with these kinds of devices.
154
546330
3000
ne znamo zapravo kako računati s takvim napravama.
09:09
And the only kind of thing -- the only thing we know right now
155
549330
3000
A jedina stvar -- jedina stvar za koju za sada znamo
09:12
that can compute with these kinds of devices are the brain.
156
552330
3000
da može raditi s takvom vrstom naprave, jest mozak.
09:15
OK, so a computer picks a specific item of data from memory,
157
555330
4000
Ok, znači računalo izabere određenu jedinicu podatka iz memorije,
09:19
it sends it into the processor or the ALU,
158
559330
3000
pošalje je u procesor ili ALU
09:22
and then it puts the result back into memory.
159
562330
2000
i onda vrati rezultat natrag u memoriju.
09:24
That's the red path that's highlighted.
160
564330
2000
To je crveno označeni put.
09:26
The way brains work, I told you all, you have got all these neurons.
161
566330
4000
Način na koji mozak radi, rekao sam vam, imate puno takvih neurona.
09:30
And the way they represent information is
162
570330
2000
I način na koji predstavljaju informacije je
09:32
they break up that data into little pieces
163
572330
2000
da podjele te podatke u male dijelove,
09:34
that are represented by pulses and different neurons.
164
574330
3000
koji su predstavljeni impulsima i drugim neuronima.
09:37
So you have all these pieces of data
165
577330
2000
I sada imate sve te dijelove podataka
09:39
distributed throughout the network.
166
579330
2000
podijeljene kroz mrežu.
09:41
And then the way that you process that data to get a result
167
581330
3000
I onda način na koji obrađujete te podatke kako biste dobili rezultate
09:44
is that you translate this pattern of activity into a new pattern of activity,
168
584330
4000
jest da prevedete taj uzorak aktivnosti u novi uzorak aktivnosti,
09:48
just by it flowing through the network.
169
588330
3000
prateći samo njegov tok kroz mrežu.
09:51
So you set up these connections
170
591330
2000
Dakle spojite te veze tako
09:53
such that the input pattern just flows
171
593330
3000
da kao ulazni uzorak samo teče
09:56
and generates the output pattern.
172
596330
2000
i stvara izlazni uzorak.
09:58
What you see here is that there's these redundant connections.
173
598330
4000
Ono što vidite ovdje su ove redundantne veze.
10:02
So if this piece of data or this piece of the data gets clobbered,
174
602330
4000
Dakle, ako ovaj ili onaj dio podatka postane izmiješan do neprepoznatljivosti
10:06
it doesn't show up over here, these two pieces can activate the missing part
175
606330
5000
onda se ne pojavljuje ovdje, i ova dva dijela mogu aktivirati dio koji nedostaje
10:11
with these redundant connections.
176
611330
2000
preko ovih redundantnih veza.
10:13
So even when you go to these crappy devices
177
613330
2000
Čak i ako kroz ove loše naprave
10:15
where sometimes you want a one and you get a zero, and it doesn't show up,
178
615330
3000
gdje ponekad želite dobiti jedan, a dobijete nulu i to se ne pokaže,
10:18
there's redundancy in the network
179
618330
2000
postoji redundancija u mreži
10:20
that can actually recover the missing information.
180
620330
3000
koja može vratiti izgubljene informacije.
10:23
It makes the brain inherently robust.
181
623330
3000
To čini mozak nevjerojatno postojanim.
10:26
What you have here is a system where you store data locally.
182
626330
3000
Ono što imamo ovdje jest sistem koji pohranjuje podatke lokalno.
10:29
And it's brittle, because each of these steps has to be flawless,
183
629330
4000
Krhak je, jer svaki korak mora biti savršen
10:33
otherwise you lose that data, whereas in the brain, you have a system
184
633330
3000
inače gubite podatke, dok u mozgu imate sistem
10:36
that stores data in a distributed way, and it's robust.
185
636330
4000
koji pohranjuje podatke na distribuirani način, i to ga čini postojanim.
10:40
What I want to basically talk about is my dream,
186
640330
4000
Ono o čemu zapravo želim pričati jest moj san,
10:44
which is to build a computer that works like the brain.
187
644330
3000
a to je da napravim računalo koje radi kao mozak.
10:47
This is something that we've been working on for the last couple of years.
188
647330
4000
To je nešto na čemu radimo zadnjih nekoliko godina.
10:51
And I'm going to show you a system that we designed
189
651330
3000
I pokazat ću vam sistem koji smo dizajnirali
10:54
to model the retina,
190
654330
3000
po modelu mrežnice,
10:57
which is a piece of brain that lines the inside of your eyeball.
191
657330
5000
a to je dio mozga koji oblaže unutrašnjost vaših očnih jabučica.
11:02
We didn't do this by actually writing code, like you do in a computer.
192
662330
6000
Nismo to napravili pišući kod, kao što to radite na računalu.
11:08
In fact, the processing that happens
193
668330
3000
Zapravo, procesiranje koje se zbiva
11:11
in that little piece of brain is very similar
194
671330
2000
u tom malom dijelu mozga jest vrlo slično
11:13
to the kind of processing that computers
195
673330
1000
procesiranju koje računala
11:14
do when they stream video over the Internet.
196
674330
4000
vrše dok šalju video preko interneta.
11:18
They want to compress the information --
197
678330
1000
Žele sažeti informacije --
11:19
they just want to send the changes, what's new in the image, and so on --
198
679330
4000
žele poslati samo promjene, što je novo na slici, i tako dalje --
11:23
and that is how your eyeball
199
683330
3000
a ovo je kako vaše oko
11:26
is able to squeeze all that information down to your optic nerve,
200
686330
3000
uspjeva sažeti sve te informacije kroz vidni živac
11:29
to send to the rest of the brain.
201
689330
2000
i poslati ih ostatku mozga.
11:31
Instead of doing this in software, or doing those kinds of algorithms,
202
691330
3000
Umjesto da ovo napravimo u softveru, ili da radimo algoritme,
11:34
we went and talked to neurobiologists
203
694330
3000
otišli smo i razgovarali s neurobiolozima
11:37
who have actually reverse engineered that piece of brain that's called the retina.
204
697330
4000
koji su zapravo sastavili to po modelu mrežnice.
11:41
And they figured out all the different cells,
205
701330
2000
I oni su uspjeli razumjeti sve te različite stanice,
11:43
and they figured out the network, and we just took that network
206
703330
3000
i oni su uspjeli razumijeti mrežu, a mi smo ju samo uzeli
11:46
and we used it as the blueprint for the design of a silicon chip.
207
706330
4000
kao nacrt za dizajn silikonskog čipa.
11:50
So now the neurons are represented by little nodes or circuits on the chip,
208
710330
6000
I sada su neuroni predstavljeni malim čvorićima, ili krugovima na čipu,
11:56
and the connections among the neurons are represented, actually modeled by transistors.
209
716330
5000
a spojevi između neurona su predstavljeni tranzistorima.
12:01
And these transistors are behaving essentially
210
721330
2000
I ovi tranzistori se u osnovi ponašaju
12:03
just like ion channels behave in the brain.
211
723330
3000
baš kao što se ponašaju ionski kanali u mozgu.
12:06
It will give you the same kind of robust architecture that I described.
212
726330
5000
To će vam dati istu vrstu postojane arhitekture koju sam opisao.
12:11
Here is actually what our artificial eye looks like.
213
731330
4000
Ovako zapravo naše umjetno oko izgleda.
12:15
The retina chip that we designed sits behind this lens here.
214
735330
5000
Mrežnični čip koji smo dizajnirali se nalazi ovdje iza leće.
12:20
And the chip -- I'm going to show you a video
215
740330
2000
I čip -- pokazati ću vam video
12:22
that the silicon retina put out of its output
216
742330
3000
koji silikonska mrežnica šalje kroz izlaznu jedinicu
12:25
when it was looking at Kareem Zaghloul,
217
745330
3000
kada gleda Kareema Zaghloula,
12:28
who's the student who designed this chip.
218
748330
2000
studenta koji je dizajnirao ovaj čip.
12:30
Let me explain what you're going to see, OK,
219
750330
2000
Dopustite mi da objasnim što će te vidjeti, OK,
12:32
because it's putting out different kinds of information,
220
752330
3000
zato što to pokazuje različite vrste informacija,
12:35
it's not as straightforward as a camera.
221
755330
2000
nije posve neposredno kao kamera.
12:37
The retina chip extracts four different kinds of information.
222
757330
3000
Mrežnični čip izvlači četiri različite vrste informacija.
12:40
It extracts regions with dark contrast,
223
760330
3000
Izvlači regije s tamnim kontrastom
12:43
which will show up on the video as red.
224
763330
3000
koje će se prikazati u ovom videu kao crvene.
12:46
And it extracts regions with white or light contrast,
225
766330
4000
I izvlači regije s bijelim ili svijetlim kontrastom
12:50
which will show up on the video as green.
226
770330
2000
koje će se prikazati kao zelene.
12:52
This is Kareem's dark eyes
227
772330
2000
Ovo je Kareemovo tamno oko,
12:54
and that's the white background that you see here.
228
774330
3000
a ovo je bijela pozadina koju vidite ovdje.
12:57
And then it also extracts movement.
229
777330
2000
I onda također izvlači pokrete.
12:59
When Kareem moves his head to the right,
230
779330
2000
Kada Kareem pomakne svoju glavu prema desno,
13:01
you will see this blue activity there;
231
781330
2000
vidite ovu plavu aktivnost ovdje.
13:03
it represents regions where the contrast is increasing in the image,
232
783330
3000
To predstavlja regije gdje se kontrast na slici povećava,
13:06
that's where it's going from dark to light.
233
786330
3000
gdje prelazi iz tamnog u svijetlo.
13:09
And you also see this yellow activity,
234
789330
2000
I vidite ovu žutu aktivnost,
13:11
which represents regions where contrast is decreasing;
235
791330
4000
koja predstavlja regije gdje se kontrast smanjuje,
13:15
it's going from light to dark.
236
795330
2000
ide od svijetlog prema tamnom.
13:17
And these four types of information --
237
797330
3000
I ove četiri vrste informacija --
13:20
your optic nerve has about a million fibers in it,
238
800330
4000
vaš optički živac ima oko milijun vlakana,
13:24
and 900,000 of those fibers
239
804330
3000
a 900.000 od njih
13:27
send these four types of information.
240
807330
2000
šalju ove četiri vrste informacija.
13:29
So we are really duplicating the kind of signals that you have on the optic nerve.
241
809330
4000
Dakle, zapravo dupliciramo ove vrste signala optičkim živcem.
13:33
What you notice here is that these snapshots
242
813330
3000
Primjetit ćete da su ove snimke
13:36
taken from the output of the retina chip are very sparse, right?
243
816330
4000
uzete iz izlazne jedinice mrežnice vrlo oskudne, zar ne?
13:40
It doesn't light up green everywhere in the background,
244
820330
2000
Zeleno se ne pojavljuje svuda na pozadini,
13:42
only on the edges, and then in the hair, and so on.
245
822330
3000
samo na rubovima, i u kosi, i tako dalje.
13:45
And this is the same thing you see
246
825330
1000
Istu stvar imate
13:46
when people compress video to send: they want to make it very sparse,
247
826330
4000
kada ljudi sažimlju videe kako bi ih mogli slati. Žele da budu što oskudnije
13:50
because that file is smaller. And this is what the retina is doing,
248
830330
3000
kako bi datoteka bila što manja. To isto radi i mrežnica,
13:53
and it's doing it just with the circuitry, and how this network of neurons
249
833330
4000
samo sa sklopovima, i tako radi i ova mreža neurona
13:57
that are interacting in there, which we've captured on the chip.
250
837330
3000
koji vrše interakciju koju smo mi ugradili u čip.
14:00
But the point that I want to make -- I'll show you up here.
251
840330
3000
Ali ono što želim reći jest -- pokazat ću vam to ovdje.
14:03
So this image here is going to look like these ones,
252
843330
3000
Dakle, ova slika ovdje će izgledati kao ove,
14:06
but here I'll show you that we can reconstruct the image,
253
846330
2000
ali ovdje ću vam pokazati kako možemo rekonstruirati slike
14:08
so, you know, you can almost recognize Kareem in that top part there.
254
848330
5000
tako da, znate, skoro možete prepoznati Kareema u gornjem djelu.
14:13
And so, here you go.
255
853330
2000
Tako.
14:24
Yes, so that's the idea.
256
864330
3000
Da, dakle to je ideja.
14:27
When you stand still, you just see the light and dark contrasts.
257
867330
2000
Kada stojite mirno, vidite samo svijetle i tamne kontraste.
14:29
But when it's moving back and forth,
258
869330
2000
Ali kada se miče naprijed i natrag
14:31
the retina picks up these changes.
259
871330
3000
mrežnica primjećuje te promjene.
14:34
And that's why, you know, when you're sitting here
260
874330
1000
I to je odgovor na zašto samo pomaknete oči
14:35
and something happens in your background,
261
875330
2000
kada sjedite ovdje i nešto
14:37
you merely move your eyes to it.
262
877330
2000
se dogodi u pozadini.
14:39
There are these cells that detect change
263
879330
2000
Postoje stanice koje primjećuju te promjene
14:41
and you move your attention to it.
264
881330
2000
i skreću vam pozornost na to.
14:43
So those are very important for catching somebody
265
883330
2000
Dakle, to je jako bitno kako bi uhvatili nekoga
14:45
who's trying to sneak up on you.
266
885330
2000
tko vam se pokušava prikrasti.
14:47
Let me just end by saying that this is what happens
267
887330
3000
Dopustite mi da završim tako da kažem da je ovo ono što se dogodi
14:50
when you put Africa in a piano, OK.
268
890330
3000
kada stavite Afriku u klavir. OK.
14:53
This is a steel drum here that has been modified,
269
893330
3000
Ovo je modificirani čelični bubanj,
14:56
and that's what happens when you put Africa in a piano.
270
896330
3000
i to se dogodi kada stavite Afriku u klavir.
14:59
And what I would like us to do is put Africa in the computer,
271
899330
4000
A ono što bih sada volio da napravite jest da stavite Afriku u računala
15:03
and come up with a new kind of computer
272
903330
2000
i smislite novu vrstu računala
15:05
that will generate thought, imagination, be creative and things like that.
273
905330
3000
koje će generirati misao, maštu, biti kreativno i raditi takve stvari.
15:08
Thank you.
274
908330
2000
Hvala vam.
15:10
(Applause)
275
910330
2000
(Pljesak)
15:12
Chris Anderson: Question for you, Kwabena.
276
912330
2000
Chris Anderson: Pitanje za tebe, Kwabena.
15:14
Do you put together in your mind the work you're doing,
277
914330
4000
Spajaš li u svom umu posao koji radiš,
15:18
the future of Africa, this conference --
278
918330
3000
budućnost Afrike, ovu konferenciju --
15:21
what connections can we make, if any, between them?
279
921330
3000
kakve veze mi imamo, ako ikakve veze ima među njima?
15:24
Kwabena Boahen: Yes, like I said at the beginning,
280
924330
2000
Kwabena Boahen: Da, kao što sam rekao na početku,
15:26
I got my first computer when I was a teenager, growing up in Accra.
281
926330
4000
dobio sam svoje prvo računalo kao tinejdžer, odrastajući u Akri.
15:30
And I had this gut reaction that this was the wrong way to do it.
282
930330
4000
I imao sam predosjećaj da je to krivi način.
15:34
It was very brute force; it was very inelegant.
283
934330
3000
Bila je to vrlo gruba sila, nije bilo elegantno.
15:37
I don't think that I would've had that reaction,
284
937330
2000
Mislim da ne bih imao taj osjećaj
15:39
if I'd grown up reading all this science fiction,
285
939330
3000
da sam odrastao čitajući svu tu znanstvenu fantastiku,
15:42
hearing about RD2D2, whatever it was called, and just -- you know,
286
942330
4000
slušajući o R2D2, kako ga već zovu, i samo -- znaš,
15:46
buying into this hype about computers.
287
946330
1000
živio u toj pomami za računalima.
15:47
I was coming at it from a different perspective,
288
947330
2000
Ja sam to doživio iz druge perspektive,
15:49
where I was bringing that different perspective
289
949330
2000
i donosim tu perspektivu
15:51
to bear on the problem.
290
951330
2000
kako bi se nosio s problemom.
15:53
And I think a lot of people in Africa have this different perspective,
291
953330
3000
I mislim da puno ljudi u Africi ima tu drugačiju perspektivu,
15:56
and I think that's going to impact technology.
292
956330
2000
i mislim da će to utjecati na tehnologiju.
15:58
And that's going to impact how it's going to evolve.
293
958330
2000
I da će to utjecati na način na koji mi evoluiramo.
16:00
And I think you're going to be able to see, use that infusion,
294
960330
2000
I mislim da ćete moći vidjeti, koritstiti tu infuziju
16:02
to come up with new things,
295
962330
2000
kako bi došli do novih stvari
16:04
because you're coming from a different perspective.
296
964330
3000
jer one dolaze iz drugog kuta.
16:07
I think we can contribute. We can dream like everybody else.
297
967330
4000
Mislim da možemo pridonijeti. I mi možemo sanjati kao svi drugi.
16:11
CA: Thanks Kwabena, that was really interesting.
298
971330
2000
CA: Hvala Kwabena, to je bilo zaista zanimljivo.
16:13
Thank you.
299
973330
1000
Hvala.
16:14
(Applause)
300
974330
2000
(Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7