Kwabena Boahen: Making a computer that works like the brain

96,468 views ・ 2008-07-30

TED


請雙擊下方英文字幕播放視頻。

譯者: Pei-Jan Hung 審譯者: Shelley Krishna Tsang
00:18
I got my first computer when I was a teenager growing up in Accra,
0
18330
5000
我在阿克拉(迦納首都)的童年時期曾獲得一台電腦
00:23
and it was a really cool device.
1
23330
3000
那真的是一台非常酷的機械
00:26
You could play games with it. You could program it in BASIC.
2
26330
5000
你可以用來玩遊戲,也可以用BASIC語言來寫程式
00:31
And I was fascinated.
3
31330
2000
我從那時開始對它深深地著迷
00:33
So I went into the library to figure out how did this thing work.
4
33330
6000
所以我便去圖書館想找出這東西到底是如何運作的
00:39
I read about how the CPU is constantly shuffling data back and forth
5
39330
5000
我讀了有關CPU(中央處理器)是如何來回傳送資料
00:44
between the memory, the RAM and the ALU,
6
44330
4000
在RAM(隨機存取記憶體)和ALU(算術邏輯單元)之間
00:48
the arithmetic and logic unit.
7
48330
2000
也就是負責算術和邏輯運算的單元
00:50
And I thought to myself, this CPU really has to work like crazy
8
50330
4000
我就想到,CPU必須拼了命工作
00:54
just to keep all this data moving through the system.
9
54330
4000
才能將所有資料傳送到每個系統中
00:58
But nobody was really worried about this.
10
58330
3000
但根本沒人會去想過這個問題
01:01
When computers were first introduced,
11
61330
2000
當電腦最初被發明時
01:03
they were said to be a million times faster than neurons.
12
63330
3000
他們聲稱傳輸速度可以比神經元細胞要快一百萬倍
01:06
People were really excited. They thought they would soon outstrip
13
66330
5000
大家對此十分興奮
01:11
the capacity of the brain.
14
71330
3000
認為很快就可以開發出超過人腦容量的機械
01:14
This is a quote, actually, from Alan Turing:
15
74330
3000
這裡有句艾倫‧圖靈所講過的話:
01:17
"In 30 years, it will be as easy to ask a computer a question
16
77330
4000
"三十年內,問電腦一個問題就會變的
01:21
as to ask a person."
17
81330
2000
跟問人一樣容易。"
01:23
This was in 1946. And now, in 2007, it's still not true.
18
83330
7000
當年是1946年,但現在已經2007年了,還沒實現
01:30
And so, the question is, why aren't we really seeing
19
90330
4000
問題在於,為什麼我們看不到
01:34
this kind of power in computers that we see in the brain?
20
94330
4000
電腦像人腦一樣的潛在力量
01:38
What people didn't realize, and I'm just beginning to realize right now,
21
98330
4000
一般人無法理解的,而我才正要開始探索的是
01:42
is that we pay a huge price for the speed
22
102330
2000
我們為了追求運算速度而付出了許多代價
01:44
that we claim is a big advantage of these computers.
23
104330
4000
而且聲稱那是電腦的一大優勢
01:48
Let's take a look at some numbers.
24
108330
2000
讓我們來看看一些例子
01:50
This is Blue Gene, the fastest computer in the world.
25
110330
4000
這是"藍色基因",世界上最快的電腦
01:54
It's got 120,000 processors; they can basically process
26
114330
5000
這裡總共有十二萬顆處理器
01:59
10 quadrillion bits of information per second.
27
119330
3000
美秒可以處理千兆以上位元運算的能力
02:02
That's 10 to the sixteenth. And they consume one and a half megawatts of power.
28
122330
7000
也就是十的十六次方。 但它們必須消耗一百五十萬瓦特的電力
02:09
So that would be really great, if you could add that
29
129330
3000
那是一個極大的的數目,
02:12
to the production capacity in Tanzania.
30
132330
2000
如果你把這個數量加進坦尚尼亞的勞動生產力中
02:14
It would really boost the economy.
31
134330
2000
那將會大大地增進當地的經濟成長
02:16
Just to go back to the States,
32
136330
4000
好吧,主題回到美國
02:20
if you translate the amount of power or electricity
33
140330
2000
如果你把那些電腦所使用的電力
02:22
this computer uses to the amount of households in the States,
34
142330
3000
轉換成每戶美國人家庭用電的量
02:25
you get 1,200 households in the U.S.
35
145330
4000
可以供應1200戶的家庭使用
02:29
That's how much power this computer uses.
36
149330
2000
這可以顯示出那些電腦需吃掉多少電
02:31
Now, let's compare this with the brain.
37
151330
3000
現在,讓我們跟大腦做個比較
02:34
This is a picture of, actually Rory Sayres' girlfriend's brain.
38
154330
5000
這張影像,其實是羅瑞‧賽爾的女朋友的大腦
02:39
Rory is a graduate student at Stanford.
39
159330
2000
羅瑞是史丹佛大學的一名研究生
02:41
He studies the brain using MRI, and he claims that
40
161330
4000
他用核磁共振研究大腦
02:45
this is the most beautiful brain that he has ever scanned.
41
165330
3000
並且說這是他看過最漂亮的大腦
02:48
(Laughter)
42
168330
2000
(笑)
02:50
So that's true love, right there.
43
170330
3000
多麼動人的真愛啊,就在你眼前。
02:53
Now, how much computation does the brain do?
44
173330
3000
回到正題,人腦到底可以做多少計算?
02:56
I estimate 10 to the 16 bits per second,
45
176330
2000
我估計是每秒十的十六次方位元
02:58
which is actually about very similar to what Blue Gene does.
46
178330
4000
就跟"藍色基因"做的很相像
03:02
So that's the question. The question is, how much --
47
182330
2000
所以問題來了,問題就是,
03:04
they are doing a similar amount of processing, similar amount of data --
48
184330
3000
當他們在進行同樣的運算處理、同量的資料
03:07
the question is how much energy or electricity does the brain use?
49
187330
5000
到底人腦需要花掉多少的能量或是電力?
03:12
And it's actually as much as your laptop computer:
50
192330
3000
事實上就跟你的筆記型電腦差不多
03:15
it's just 10 watts.
51
195330
2000
就只有十瓦特
03:17
So what we are doing right now with computers
52
197330
3000
所以我們現在要改進電腦的地方是
03:20
with the energy consumed by 1,200 houses,
53
200330
3000
那些花掉一千兩百戶家庭用電的超級電腦所做的事
03:23
the brain is doing with the energy consumed by your laptop.
54
203330
5000
人腦只需要消耗像筆電一樣的能量就可完成
03:28
So the question is, how is the brain able to achieve this kind of efficiency?
55
208330
3000
問題是,人腦到底怎樣才可以達到這樣子的效率?
03:31
And let me just summarize. So the bottom line:
56
211330
2000
先讓我做個結論,重點是
03:33
the brain processes information using 100,000 times less energy
57
213330
4000
與我們現有的電腦科技相比,人腦可以用十萬分之一的能量
03:37
than we do right now with this computer technology that we have.
58
217330
4000
去處理同樣的訊息量
03:41
How is the brain able to do this?
59
221330
2000
大腦到底是怎麼做到的?
03:43
Let's just take a look about how the brain works,
60
223330
3000
我們先來了解一下大腦的運作方式
03:46
and then I'll compare that with how computers work.
61
226330
4000
然後我再跟電腦的運作方式作比較
03:50
So, this clip is from the PBS series, "The Secret Life of the Brain."
62
230330
4000
這個影片片斷是來自於PBS系列"大腦的秘密"
03:54
It shows you these cells that process information.
63
234330
3000
你可以看到細胞是如何處理資訊
03:57
They are called neurons.
64
237330
1000
他們被稱作神經元
03:58
They send little pulses of electricity down their processes to each other,
65
238330
6000
在處理訊息時會放出微弱的電流訊號給彼此
04:04
and where they contact each other, those little pulses
66
244330
2000
當互相接觸時
04:06
of electricity can jump from one neuron to the other.
67
246330
2000
電流訊號即可從神經元移動到下個神經元
04:08
That process is called a synapse.
68
248330
3000
這些被稱為突觸
04:11
You've got this huge network of cells interacting with each other --
69
251330
2000
你現在了解這龐大的細胞網路是如何與別人互動
04:13
about 100 million of them,
70
253330
2000
大概一億個細胞
04:15
sending about 10 quadrillion of these pulses around every second.
71
255330
4000
每秒送出約一千萬億個脈衝
04:19
And that's basically what's going on in your brain right now as you're watching this.
72
259330
6000
這就是你現在看著這支影片時你大腦正在做的事
04:25
How does that compare with the way computers work?
73
265330
2000
如果電腦運作的方式跟大腦相比呢?
04:27
In the computer, you have all the data
74
267330
2000
對於電腦,所有資料都
04:29
going through the central processing unit,
75
269330
2000
必須經過中央處理單元(CPU)
04:31
and any piece of data basically has to go through that bottleneck,
76
271330
3000
而且所有的資料基本上都必須通過那瓶頸
04:34
whereas in the brain, what you have is these neurons,
77
274330
4000
但在大腦中,我們擁有的是神經元
04:38
and the data just really flows through a network of connections
78
278330
4000
資訊只需要流過這些神經元連結的網路
04:42
among the neurons. There's no bottleneck here.
79
282330
2000
根本不存在所謂的瓶頸
04:44
It's really a network in the literal sense of the word.
80
284330
4000
這的的確確是如同字面上所說的"網路"
04:48
The net is doing the work in the brain.
81
288330
4000
這網路就在大腦裡運作著
04:52
If you just look at these two pictures,
82
292330
2000
如果你看著這兩張圖片
04:54
these kind of words pop into your mind.
83
294330
2000
這幾個字眼就會在你腦海中浮現
04:56
This is serial and it's rigid -- it's like cars on a freeway,
84
296330
4000
連續、序列且死板的;就像車子在高速公路上
05:00
everything has to happen in lockstep --
85
300330
3000
每件事都必須按照先後來處理
05:03
whereas this is parallel and it's fluid.
86
303330
2000
但這邊代表的是平行的、流暢的
05:05
Information processing is very dynamic and adaptive.
87
305330
3000
資訊處理過程十分動態並具有適應性
05:08
So I'm not the first to figure this out. This is a quote from Brian Eno:
88
308330
4000
我並不是第一個提出這個見解的人,布萊恩‧伊諾曾說過:
05:12
"the problem with computers is that there is not enough Africa in them."
89
312330
4000
"電腦討人厭的地方就是它裡面沒有非洲 (指十分死板且毫無生氣可言)"
05:16
(Laughter)
90
316330
6000
(笑)
05:22
Brian actually said this in 1995.
91
322330
3000
布萊恩在1995年時說了這句話
05:25
And nobody was listening then,
92
325330
3000
但在當時根本沒人理他
05:28
but now people are beginning to listen
93
328330
2000
但現在人們開始注意到他講的話了
05:30
because there's a pressing, technological problem that we face.
94
330330
5000
因為我們遇到了難以解決的技術性問題
05:35
And I'll just take you through that a little bit in the next few slides.
95
335330
5000
我將會在後面幾張投影片跟你稍微介紹
05:40
This is -- it's actually really this remarkable convergence
96
340330
4000
這事實上,是一個非常令人印象深刻的巧合
05:44
between the devices that we use to compute in computers,
97
344330
5000
對於我們在電腦中用來計算的裝置
05:49
and the devices that our brains use to compute.
98
349330
4000
和大腦中負責計算的部份
05:53
The devices that computers use are what's called a transistor.
99
353330
4000
電腦中負責計算的裝置叫電晶體
05:57
This electrode here, called the gate, controls the flow of current
100
357330
4000
這裡的電極,稱為閘極,負責控制電流的進出
06:01
from the source to the drain -- these two electrodes.
101
361330
3000
從源極到洩極
06:04
And that current, electrical current,
102
364330
2000
然後電流呢
06:06
is carried by electrons, just like in your house and so on.
103
366330
6000
就像家裡用的那些
06:12
And what you have here is, when you actually turn on the gate,
104
372330
5000
當你把閘極打開,這裡發生什麼事呢
06:17
you get an increase in the amount of current, and you get a steady flow of current.
105
377330
4000
電流通過的量將會瞬間增加,然後得到一穩定的電流
06:21
And when you turn off the gate, there's no current flowing through the device.
106
381330
4000
當關上閘極時,將沒有電流通過
06:25
Your computer uses this presence of current to represent a one,
107
385330
5000
電腦就是利用電流通過代表一
06:30
and the absence of current to represent a zero.
108
390330
4000
沒有電流通過時代表零
06:34
Now, what's happening is that as transistors are getting smaller and smaller and smaller,
109
394330
6000
現在,如果當電晶體變得越來越小的時候會發生什麼事?
06:40
they no longer behave like this.
110
400330
2000
他們就不再呈現這樣的行為
06:42
In fact, they are starting to behave like the device that neurons use to compute,
111
402330
5000
事實上,將變得類似神經元傳送訊息一樣的方法
06:47
which is called an ion channel.
112
407330
2000
我們稱之為離子通道
06:49
And this is a little protein molecule.
113
409330
2000
這是一個小小的蛋白質分子
06:51
I mean, neurons have thousands of these.
114
411330
4000
意思是,神經元有幾千個這種分子
06:55
And it sits in the membrane of the cell and it's got a pore in it.
115
415330
4000
它位於細胞膜上並且位於中央有條通道
06:59
And these are individual potassium ions
116
419330
3000
在細胞中的鉀離子
07:02
that are flowing through that pore.
117
422330
2000
就可以穿過這條通道
07:04
Now, this pore can open and close.
118
424330
2000
而且這條通道可關可開
07:06
But, when it's open, because these ions have to line up
119
426330
5000
但當通道開啟時,離子必須排成一列
07:11
and flow through, one at a time, you get a kind of sporadic, not steady --
120
431330
5000
一次只能通過一個,所以變成零星發生的並非持續穩定的
07:16
it's a sporadic flow of current.
121
436330
3000
呈現的是斷斷續續的電流
07:19
And even when you close the pore -- which neurons can do,
122
439330
3000
而且當你關閉通道的時候,神經元可以這樣做
07:22
they can open and close these pores to generate electrical activity --
123
442330
5000
他們可以藉由開關離子通道來產生電流
07:27
even when it's closed, because these ions are so small,
124
447330
3000
當它關閉的時候,因為離子體積很小
07:30
they can actually sneak through, a few can sneak through at a time.
125
450330
3000
所以他們其實可以偶爾偷偷從通道溜走
07:33
So, what you have is that when the pore is open,
126
453330
3000
所以變成當通道開啟時,
07:36
you get some current sometimes.
127
456330
2000
你可以得到電流通過
07:38
These are your ones, but you've got a few zeros thrown in.
128
458330
3000
但裡面偶爾會有些"零電流"藏在裡面
07:41
And when it's closed, you have a zero,
129
461330
4000
當通道關閉時,基本上是沒有電流通過的
07:45
but you have a few ones thrown in.
130
465330
3000
但你偶爾會收到一些電流訊號流過,懂嗎?
07:48
Now, this is starting to happen in transistors.
131
468330
3000
現在這就是我們希望讓電晶體產生同樣的效果
07:51
And the reason why that's happening is that, right now, in 2007 --
132
471330
5000
原因是直到現在,2007年
07:56
the technology that we are using -- a transistor is big enough
133
476330
4000
我們的科技才足以讓電晶體中的通道
08:00
that several electrons can flow through the channel simultaneously, side by side.
134
480330
5000
大到能同時讓電子並列地通過
08:05
In fact, there's about 12 electrons can all be flowing this way.
135
485330
4000
事實上,大概可以允許十二個電子同時流過通道
08:09
And that means that a transistor corresponds
136
489330
2000
那樣代表著一個電晶體
08:11
to about 12 ion channels in parallel.
137
491330
3000
相當於12個平行的離子通道
08:14
Now, in a few years time, by 2015, we will shrink transistors so much.
138
494330
5000
在未來幾年,也許在2015之前,我們打算將電晶體縮到更小
08:19
This is what Intel does to keep adding more cores onto the chip.
139
499330
5000
這就是英特爾打算進行的,目的是加更多核心到一個晶片上
08:24
Or your memory sticks that you have now can carry one gigabyte
140
504330
3000
或是記憶體上,這樣你就可以擁有1GB容量
08:27
of stuff on them -- before, it was 256.
141
507330
2000
記得以前只有256MB呢
08:29
Transistors are getting smaller to allow this to happen,
142
509330
3000
電晶體體積越來越小導致上述的這些可能成真
08:32
and technology has really benefitted from that.
143
512330
3000
而且也為科技帶來不少利益
08:35
But what's happening now is that in 2015, the transistor is going to become so small,
144
515330
5000
現在我們打算做的是,在2015年,電晶體縮小到
08:40
that it corresponds to only one electron at a time
145
520330
3000
相當一次只能讓一個電子
08:43
can flow through that channel,
146
523330
2000
流過它的通道
08:45
and that corresponds to a single ion channel.
147
525330
2000
那就代表一個獨立的離子通道
08:47
And you start having the same kind of traffic jams that you have in the ion channel.
148
527330
4000
有時候在通道內就會產生了像交通阻塞那樣的情況
08:51
The current will turn on and off at random,
149
531330
3000
電流將不規則地斷斷續續、若有若無
08:54
even when it's supposed to be on.
150
534330
2000
就算它本來應該是開放要讓電流通過的
08:56
And that means your computer is going to get
151
536330
2000
這樣代表你們的電腦將會收到
08:58
its ones and zeros mixed up, and that's going to crash your machine.
152
538330
4000
混合著一和零的訊號,這將會讓電腦當機
09:02
So, we are at the stage where we
153
542330
4000
所以這就是我們現階段面臨的問題
09:06
don't really know how to compute with these kinds of devices.
154
546330
3000
我們並不知道該如何用這種方法來進行計算
09:09
And the only kind of thing -- the only thing we know right now
155
549330
3000
我們現在唯一知道的是
09:12
that can compute with these kinds of devices are the brain.
156
552330
3000
能用這種機制進行計算的,就只有人腦而已。
09:15
OK, so a computer picks a specific item of data from memory,
157
555330
4000
好,所以電腦從記憶體中挑取某些資料
09:19
it sends it into the processor or the ALU,
158
559330
3000
送到中央處理器或是算術邏輯單元
09:22
and then it puts the result back into memory.
159
562330
2000
然後再將結果送回記憶體
09:24
That's the red path that's highlighted.
160
564330
2000
這就是圖上用紅線標示的途徑
09:26
The way brains work, I told you all, you have got all these neurons.
161
566330
4000
大腦運作的方式是,用這些神經元
09:30
And the way they represent information is
162
570330
2000
他們呈現這些訊息的方法是
09:32
they break up that data into little pieces
163
572330
2000
將訊息打散成許多碎片
09:34
that are represented by pulses and different neurons.
164
574330
3000
分別以脈衝和不同的神經元負責
09:37
So you have all these pieces of data
165
577330
2000
所以這些訊息片斷
09:39
distributed throughout the network.
166
579330
2000
透過神經的網路分散各地
09:41
And then the way that you process that data to get a result
167
581330
3000
這些資料再被經過處理並產生結果的方法
09:44
is that you translate this pattern of activity into a new pattern of activity,
168
584330
4000
就是轉譯原本的行為模式進入另一種行為模式
09:48
just by it flowing through the network.
169
588330
3000
而且只靠通過這個網路就可達成目的
09:51
So you set up these connections
170
591330
2000
所以我們現在畫面上可以看到這些連結
09:53
such that the input pattern just flows
171
593330
3000
讓輸入的行為模式只要通過
09:56
and generates the output pattern.
172
596330
2000
就可以產生輸出的新模式
09:58
What you see here is that there's these redundant connections.
173
598330
4000
你在這裡可以看到多重的連結分支
10:02
So if this piece of data or this piece of the data gets clobbered,
174
602330
4000
所以如果這個綠色的片斷或是另個綠色的片斷遺失了
10:06
it doesn't show up over here, these two pieces can activate the missing part
175
606330
5000
它沒有在另一端出現,那麼另兩個片斷就可以補完遺失的部份
10:11
with these redundant connections.
176
611330
2000
透過這些多重的分支
10:13
So even when you go to these crappy devices
177
613330
2000
就算設備品質本身不良或有瑕疵
10:15
where sometimes you want a one and you get a zero, and it doesn't show up,
178
615330
3000
意思是你想要"一"卻收到"零"的時候
10:18
there's redundancy in the network
179
618330
2000
如果這裡有多重的網路分支
10:20
that can actually recover the missing information.
180
620330
3000
他們就可以恢復遺失的部份資料
10:23
It makes the brain inherently robust.
181
623330
3000
這就是大腦天生強健的秘密
10:26
What you have here is a system where you store data locally.
182
626330
3000
這邊的系統使用在局部儲存資料的方式
10:29
And it's brittle, because each of these steps has to be flawless,
183
629330
4000
這種方法很脆弱,因為每一步不能發生任何差錯
10:33
otherwise you lose that data, whereas in the brain, you have a system
184
633330
3000
要不然資料就會遺失,但在大腦中
10:36
that stores data in a distributed way, and it's robust.
185
636330
4000
資料是以分散式的方式儲存著,十分強韌
10:40
What I want to basically talk about is my dream,
186
640330
4000
我現在想談論的是有關我的夢想
10:44
which is to build a computer that works like the brain.
187
644330
3000
也就是建造一台能像大腦般運作的電腦
10:47
This is something that we've been working on for the last couple of years.
188
647330
4000
這是我們過去幾年來一直在持續進行的計劃
10:51
And I'm going to show you a system that we designed
189
651330
3000
我現在要介紹給你看我們所設計的系統
10:54
to model the retina,
190
654330
3000
用以模擬視網膜
10:57
which is a piece of brain that lines the inside of your eyeball.
191
657330
5000
就是在眼球內連接大腦的細胞
11:02
We didn't do this by actually writing code, like you do in a computer.
192
662330
6000
我們進行這個計劃不用一般編寫程式碼的方式
11:08
In fact, the processing that happens
193
668330
3000
事實上,那是因為
11:11
in that little piece of brain is very similar
194
671330
2000
腦中的處理訊息的過程
11:13
to the kind of processing that computers
195
673330
1000
很像電腦當要
11:14
do when they stream video over the Internet.
196
674330
4000
透過網路傳送影片的程序
11:18
They want to compress the information --
197
678330
1000
他們必須將大量的資料進行壓縮
11:19
they just want to send the changes, what's new in the image, and so on --
198
679330
4000
只針對那些有改變的影像進行傳送
11:23
and that is how your eyeball
199
683330
3000
而這就是如何你的眼睛
11:26
is able to squeeze all that information down to your optic nerve,
200
686330
3000
具有壓縮所有訊息到你的視神經
11:29
to send to the rest of the brain.
201
689330
2000
並送到大腦的其他部份
11:31
Instead of doing this in software, or doing those kinds of algorithms,
202
691330
3000
而非用軟體處理這個模擬,或用演算法進行
11:34
we went and talked to neurobiologists
203
694330
3000
我們和一位神經生物學家進行訪談過
11:37
who have actually reverse engineered that piece of brain that's called the retina.
204
697330
4000
他曾經對視網膜進行反向工程
11:41
And they figured out all the different cells,
205
701330
2000
分析出所有不同的細胞
11:43
and they figured out the network, and we just took that network
206
703330
3000
和解構出神經網路,我們就參考該網路
11:46
and we used it as the blueprint for the design of a silicon chip.
207
706330
4000
做為藍圖並設計了一顆矽晶片
11:50
So now the neurons are represented by little nodes or circuits on the chip,
208
710330
6000
我們在晶片上用節點和電路來代表神經元
11:56
and the connections among the neurons are represented, actually modeled by transistors.
209
716330
5000
並且神經元之間用電晶體來作為連接
12:01
And these transistors are behaving essentially
210
721330
2000
當然這些電晶體必須要正常運作
12:03
just like ion channels behave in the brain.
211
723330
3000
就像大腦中的離子通道一樣
12:06
It will give you the same kind of robust architecture that I described.
212
726330
5000
我等會將會介紹給你我剛描述的那個穩固的架構模式
12:11
Here is actually what our artificial eye looks like.
213
731330
4000
做出的人工眼睛長的像這樣
12:15
The retina chip that we designed sits behind this lens here.
214
735330
5000
我們設計的視網膜晶片設置在這個透鏡後
12:20
And the chip -- I'm going to show you a video
215
740330
2000
還有晶片,我將會播放一段影片
12:22
that the silicon retina put out of its output
216
742330
3000
顯示這個矽製的視網膜輸出的結果
12:25
when it was looking at Kareem Zaghloul,
217
745330
3000
當它看著卡林姆‧沙酷
12:28
who's the student who designed this chip.
218
748330
2000
也就是設計了這整個晶片的學生
12:30
Let me explain what you're going to see, OK,
219
750330
2000
讓我解釋你等會將看到什麼,好嗎?
12:32
because it's putting out different kinds of information,
220
752330
3000
因為它輸出很多不同的訊息
12:35
it's not as straightforward as a camera.
221
755330
2000
所以這並不像照相機一樣簡單明瞭
12:37
The retina chip extracts four different kinds of information.
222
757330
3000
這個視網膜晶片可以解析出四種資訊
12:40
It extracts regions with dark contrast,
223
760330
3000
它可以解析出較暗的區域
12:43
which will show up on the video as red.
224
763330
3000
並在影片中用紅色表示
12:46
And it extracts regions with white or light contrast,
225
766330
4000
和解析出白色或較亮的區域
12:50
which will show up on the video as green.
226
770330
2000
用綠色標記在影片中
12:52
This is Kareem's dark eyes
227
772330
2000
這是卡林姆的深褐色眼睛
12:54
and that's the white background that you see here.
228
774330
3000
你這裡可以看到的是白色的部份
12:57
And then it also extracts movement.
229
777330
2000
它同時可以解析出動作
12:59
When Kareem moves his head to the right,
230
779330
2000
當卡林姆將頭往右移
13:01
you will see this blue activity there;
231
781330
2000
你可以見到藍色字的這裡
13:03
it represents regions where the contrast is increasing in the image,
232
783330
3000
表現出影像中的對比度增加了
13:06
that's where it's going from dark to light.
233
786330
3000
從暗轉向亮度漸增
13:09
And you also see this yellow activity,
234
789330
2000
你也可以看到黃色字的這裡
13:11
which represents regions where contrast is decreasing;
235
791330
4000
代表對比度下降了
13:15
it's going from light to dark.
236
795330
2000
影像從亮漸漸變暗
13:17
And these four types of information --
237
797330
3000
這四種訊息
13:20
your optic nerve has about a million fibers in it,
238
800330
4000
在你的視神經內有大概一百萬個纖維
13:24
and 900,000 of those fibers
239
804330
3000
而其中九十萬個這種纖維
13:27
send these four types of information.
240
807330
2000
會送出上述的這四種訊號
13:29
So we are really duplicating the kind of signals that you have on the optic nerve.
241
809330
4000
所以實際上我們正在仿傚視神經內的這幾種訊號
13:33
What you notice here is that these snapshots
242
813330
3000
你現在看到的這幾張從視網膜晶片輸出的影像
13:36
taken from the output of the retina chip are very sparse, right?
243
816330
4000
事實上都非常粗糙稀疏
13:40
It doesn't light up green everywhere in the background,
244
820330
2000
幾乎很少有綠點整片出現在影像中
13:42
only on the edges, and then in the hair, and so on.
245
822330
3000
只有少數零星幾個出現在邊緣,諸如此類
13:45
And this is the same thing you see
246
825330
1000
這跟人類要壓縮影片準備傳送是同樣的原理
13:46
when people compress video to send: they want to make it very sparse,
247
826330
4000
他們打算將影像弄的非常分散
13:50
because that file is smaller. And this is what the retina is doing,
248
830330
3000
因為這樣可以讓檔案容量大幅縮小,而這正是視網膜在進行的事
13:53
and it's doing it just with the circuitry, and how this network of neurons
249
833330
4000
我們用電路裝置來模擬其行為,
13:57
that are interacting in there, which we've captured on the chip.
250
837330
3000
並用晶片補捉神經元網路的行為模式
14:00
But the point that I want to make -- I'll show you up here.
251
840330
3000
但我想強調的是,
14:03
So this image here is going to look like these ones,
252
843330
3000
最上面這個影像跟其他的並沒有什麼相異之處
14:06
but here I'll show you that we can reconstruct the image,
253
846330
2000
可是我們能重建這個影像
14:08
so, you know, you can almost recognize Kareem in that top part there.
254
848330
5000
所以,就你所知,你幾乎可以從上面這個圖來辨認卡林姆
14:13
And so, here you go.
255
853330
2000
請看。
14:24
Yes, so that's the idea.
256
864330
3000
這就是我們最主要的概念
14:27
When you stand still, you just see the light and dark contrasts.
257
867330
2000
當人靜止不動的時候,你只能見到黑和白的對比
14:29
But when it's moving back and forth,
258
869330
2000
但當人前後移動的時候,
14:31
the retina picks up these changes.
259
871330
3000
視網膜可以接收到這些改變
14:34
And that's why, you know, when you're sitting here
260
874330
1000
這也就是為什麼,以你的經驗,當你坐在那
14:35
and something happens in your background,
261
875330
2000
有事情在你背後發生時
14:37
you merely move your eyes to it.
262
877330
2000
你很少會把眼神轉移過去
14:39
There are these cells that detect change
263
879330
2000
細胞們就可以偵測到那些改變
14:41
and you move your attention to it.
264
881330
2000
然後才讓你去注意到它
14:43
So those are very important for catching somebody
265
883330
2000
所以這對於發現是誰
14:45
who's trying to sneak up on you.
266
885330
2000
從背後偷偷走近你是十分重要的
14:47
Let me just end by saying that this is what happens
267
887330
3000
讓我說句話作結:
14:50
when you put Africa in a piano, OK.
268
890330
3000
這就是當你把一個"非洲"裝進鋼琴裡的情況
14:53
This is a steel drum here that has been modified,
269
893330
3000
這是一個被改裝過的鋼鼓
14:56
and that's what happens when you put Africa in a piano.
270
896330
3000
而這就是把"非洲"放到一架鋼琴裡的情況
14:59
And what I would like us to do is put Africa in the computer,
271
899330
4000
而我想要做的就是,把"非洲"裝入電腦裡
15:03
and come up with a new kind of computer
272
903330
2000
並且研發出一種全新的電腦
15:05
that will generate thought, imagination, be creative and things like that.
273
905330
3000
它可以產生想法、幻想、創意等那些東西
15:08
Thank you.
274
908330
2000
謝謝你們。
15:10
(Applause)
275
910330
2000
(掌聲)
15:12
Chris Anderson: Question for you, Kwabena.
276
912330
2000
基斯安德森:問你一個問題,卡貝納
15:14
Do you put together in your mind the work you're doing,
277
914330
4000
你覺得你現在作的工作
15:18
the future of Africa, this conference --
278
918330
3000
和非洲的未來、這次的大會
15:21
what connections can we make, if any, between them?
279
921330
3000
在這三點之間,有何關聯?
15:24
Kwabena Boahen: Yes, like I said at the beginning,
280
924330
2000
卡貝納‧博罕:是的,就如我剛在開頭講過的
15:26
I got my first computer when I was a teenager, growing up in Accra.
281
926330
4000
我在阿克拉的童年時期曾獲得一台電腦
15:30
And I had this gut reaction that this was the wrong way to do it.
282
930330
4000
我的直覺告訴我這種方法是錯誤的
15:34
It was very brute force; it was very inelegant.
283
934330
3000
因為這樣非常不理性且一點也不優雅
15:37
I don't think that I would've had that reaction,
284
937330
2000
我認為我不會對電腦產生興趣
15:39
if I'd grown up reading all this science fiction,
285
939330
3000
如果我從小就讀著科幻小說長大
15:42
hearing about RD2D2, whatever it was called, and just -- you know,
286
942330
4000
聽著有關星際大戰機器人RD2D2,不管怎麼稱呼
15:46
buying into this hype about computers.
287
946330
1000
以及認同有關電腦的誇大炒作消息
15:47
I was coming at it from a different perspective,
288
947330
2000
我是從另一個不同的視角來接觸電腦的
15:49
where I was bringing that different perspective
289
949330
2000
我正是帶著這種不同的觀點
15:51
to bear on the problem.
290
951330
2000
來解決這些問題
15:53
And I think a lot of people in Africa have this different perspective,
291
953330
3000
並且我相信很多非洲人有這種不同的觀點
15:56
and I think that's going to impact technology.
292
956330
2000
我認為那將會衝擊現有的科技
15:58
And that's going to impact how it's going to evolve.
293
958330
2000
並且會衝擊技術演化的方向
16:00
And I think you're going to be able to see, use that infusion,
294
960330
2000
我想你們應該能了解,利用那種新思維
16:02
to come up with new things,
295
962330
2000
來激發出創新的點子
16:04
because you're coming from a different perspective.
296
964330
3000
因為你立足於另一種全然不同的觀點
16:07
I think we can contribute. We can dream like everybody else.
297
967330
4000
我覺得我們也可以產生貢獻,或是像其他人般做夢
16:11
CA: Thanks Kwabena, that was really interesting.
298
971330
2000
基斯安德森:謝謝卡貝納,這真是非常有趣
16:13
Thank you.
299
973330
1000
謝謝你們
16:14
(Applause)
300
974330
2000
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7