Algorithms - 6 Minute English

80,202 views ใƒป 2021-12-23

BBC Learning English


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ. ื›ืชื•ื‘ื™ื•ืช ืžืชื•ืจื’ืžื•ืช ืžืชื•ืจื’ืžื•ืช ื‘ืžื›ื•ื ื”.

00:03
Hello. This is 6 Minute English from
0
3149
7391
ืฉืœื•ื. ื–ื•ื”ื™ 6 ื“ืงื•ืช ืื ื’ืœื™ืช ืžื‘ื™ืช
00:10
BBC Learning English. I'm Neil.
1
10540
2280
BBC Learning English. ืื ื™ ื ื™ืœ.
00:12
And I'm Sam.
2
12820
1120
ื•ืื ื™ ืกื.
00:13
What do shopping with a credit card,
3
13940
2130
ืžื” ืžืฉื•ืชืฃ ืœืงื ื™ื•ืช ื‘ื›ืจื˜ื™ืก ืืฉืจืื™,
00:16
finding love through internet
4
16070
1290
ืœืžืฆื•ื ืื”ื‘ื” ื‘ืืžืฆืขื•ืช
00:17
dating and waiting for the traffic
5
17360
2009
ื”ื™ื›ืจื•ื™ื•ืช ื‘ืื™ื ื˜ืจื ื˜ ื•ื”ืžืชื ื”
00:19
lights to change have in common?
6
19369
2561
ืœืฉื™ื ื•ื™ ื”ืจืžื–ื•ืจื™ื?
00:21
Hmmm, they all involve computers?
7
21930
2269
ื”ืžืž, ื›ื•ืœื ืžืขืจื‘ื™ื ืžื—ืฉื‘ื™ื?
00:24
Good guess, Sam! But how exactly
8
24199
1871
ื ื™ื—ื•ืฉ ื˜ื•ื‘, ืกื! ืื‘ืœ ืื™ืš ื‘ื“ื™ื•ืง
00:26
do those computers work?
9
26070
2140
ืขื•ื‘ื“ื™ื ืื•ืชื ืžื—ืฉื‘ื™ื?
00:28
The answer is that they all
10
28210
1649
ื”ืชืฉื•ื‘ื” ื”ื™ื ืฉื›ื•ืœื
00:29
use algorithms - sets of
11
29859
2310
ืžืฉืชืžืฉื™ื ื‘ืืœื’ื•ืจื™ืชืžื™ื - ืงื‘ื•ืฆื•ืช ืฉืœ
00:32
mathematical instructions
12
32169
1401
ื”ื•ืจืื•ืช ืžืชืžื˜ื™ื•ืช
00:33
which find solutions to problems.
13
33570
2570
ืฉืžื•ืฆืื•ืช ืคืชืจื•ื ื•ืช ืœื‘ืขื™ื•ืช.
00:36
Although they are often hidden,
14
36140
2430
ืœืžืจื•ืช ืฉืœืขืชื™ื ืงืจื•ื‘ื•ืช ื”ื ืžื•ืกืชืจื™ื,
00:38
algorithms are all around us.
15
38570
1680
ืืœื’ื•ืจื™ืชืžื™ื ื ืžืฆืื™ื ืžืกื‘ื™ื‘ื ื•.
00:40
From mobile phone maps to
16
40250
1250
ืžืžืคื•ืช ื˜ืœืคื•ื ื™ื ื ื™ื™ื“ื™ื ื•ืขื“
00:41
home delivery pizza, they
17
41500
1720
ืคื™ืฆื” ืžืฉืœื•ื—ื™ื ืขื“ ื”ื‘ื™ืช, ื”ื
00:43
play a big part of modern
18
43220
1730
ืžืžืœืื™ื ื—ืœืง ื’ื“ื•ืœ ืžื”ื—ื™ื™ื ื”ืžื•ื“ืจื ื™ื™ื
00:44
life. And they're the
19
44950
1490
. ื•ื”ื
00:46
topic of this programme.
20
46440
1450
ื”ื ื•ืฉื ืฉืœ ื”ืชื•ื›ื ื™ืช ื”ื–ื•.
00:47
A simple way to think of
21
47890
1150
ื“ืจืš ืคืฉื•ื˜ื” ืœื—ืฉื•ื‘ ืขืœ
00:49
algorithms is as recipes.
22
49040
2620
ืืœื’ื•ืจื™ืชืžื™ื ื”ื™ื ื›ืžืชื›ื•ื ื™ื.
00:51
To make pancakes you mix flour,
23
51660
2460
ืœื”ื›ื ืช ืคื ืงื™ื™ืง ืžืขืจื‘ื‘ื™ื ืงืžื—,
00:54
eggs and milk, then melt
24
54120
1110
ื‘ื™ืฆื™ื ื•ื—ืœื‘, ื•ืื– ืžืžื™ืกื™ื
00:55
butter in a frying pan
25
55230
1390
ื—ืžืื” ื‘ืžื—ื‘ืช
00:56
and so on. Computers do
26
56620
1760
ื•ื›ืŸ ื”ืœืื”. ืžื—ืฉื‘ื™ื ืขื•ืฉื™ื
00:58
this in more a complicated
27
58380
1320
ื–ืืช ื‘ืฆื•ืจื” ืžืกื•ื‘ื›ืช ื™ื•ืชืจ
00:59
way by repeating mathematical
28
59700
1970
ืขืœ ื™ื“ื™ ื—ื–ืจื” ืขืœ
01:01
equations over and over again.
29
61670
2419
ืžืฉื•ื•ืื•ืช ืžืชืžื˜ื™ื•ืช ืฉื•ื‘ ื•ืฉื•ื‘.
01:04
Equations are mathematical
30
64089
1481
ืžืฉื•ื•ืื•ืช ื”ืŸ
01:05
sentences showing how two
31
65570
1430
ืžืฉืคื˜ื™ื ืžืชืžื˜ื™ื™ื ื”ืžืจืื™ื ื›ื™ืฆื“ ืฉื ื™
01:07
things are equal. They're
32
67000
1950
ื“ื‘ืจื™ื ืฉื•ื•ื™ื. ื”ื
01:08
similar to algorithms and
33
68950
1660
ื“ื•ืžื™ื ืœืืœื’ื•ืจื™ืชืžื™ื ื•ื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœ ื”ืžืฉื•ื•ืื”
01:10
the most famous scientific
34
70610
1340
ื”ืžื“ืขื™ืช ื”ืžืคื•ืจืกืžืช
01:11
equation of all, Einstein's
35
71950
2100
ืžื›ื•ืœื,
01:14
E=MC2, can be thought of as
36
74050
3430
E=MC2 ืฉืœ ืื™ื™ื ืฉื˜ื™ื™ืŸ
01:17
a three-part algorithm.
37
77480
2330
ื›ืืœื’ื•ืจื™ืชื ื‘ืŸ ืฉืœื•ืฉื” ื—ืœืงื™ื.
01:19
But before my brain gets
38
79810
1270
ืื‘ืœ ืœืคื ื™ ืฉื”ืžื•ื— ืฉืœื™
01:21
squashed by all this maths,
39
81080
1440
ื™ื™ืžืขืš ืžื›ืœ ื”ืžืชืžื˜ื™ืงื” ื”ื–ื•,
01:22
I have a quiz question for
40
82520
1600
ื™ืฉ ืœื™ ืฉืืœืช ื—ื™ื“ื•ืŸ ื‘ืฉื‘ื™ืœืš
01:24
you, Sam. As you know,
41
84120
2180
, ืกืื. ื›ื™ื“ื•ืข,
01:26
Einstein's famous equation
42
86300
1060
ื”ืžืฉื•ื•ืื” ื”ืžืคื•ืจืกืžืช ืฉืœ ืื™ื™ื ืฉื˜ื™ื™ืŸ
01:27
is E=MC2 - but what does the
43
87360
2880
ื”ื™ื E=MC2 - ืื‘ืœ ืžื”
01:30
'E' stand for? Is it:
44
90240
2290
ืžืกืžืœ ื”'E'? ื”ืื ื–ื”:
01:32
a) electricity? b) energy?
45
92530
2520
ื) ื—ืฉืžืœ? ื‘) ืื ืจื’ื™ื”?
01:35
or c) everything?
46
95050
1890
ืื• ื’) ื”ื›ืœ?
01:36
I'm tempted to say 'E' is
47
96940
1480
ืื ื™ ืžืชืคืชื” ืœื•ืžืจ ืฉ'E' ื”ื•ื
01:38
for 'everything' but I
48
98420
1000
ืขื‘ื•ืจ 'ื”ื›ืœ', ืื‘ืœ ืื ื™
01:39
reckon I know the answer:
49
99420
2160
ื—ื•ืฉื‘ ืฉืื ื™ ื™ื•ื“ืข ืืช ื”ืชืฉื•ื‘ื”:
01:41
b - 'E' stands for 'energy'.
50
101580
1860
ื‘ - 'E' ืžื™ื™ืฆื’ 'ืื ืจื’ื™ื”'.
01:43
OK, Sam, we'll find out if
51
103440
1430
ื‘ืกื“ืจ, ืกื, ื ื’ืœื” ืื
01:44
you're right later
52
104870
1000
ืืชื” ืฆื•ื“ืง ื‘ื”ืžืฉืš
01:45
in the programme.
53
105870
1000
ื”ืชื•ื›ื ื™ืช.
01:46
With all this talk of
54
106870
1380
ืขื ื›ืœ ื”ื“ื™ื‘ื•ืจื™ื ื”ืืœื” ืขืœ
01:48
computers, you might think
55
108250
1000
ืžื—ืฉื‘ื™ื, ืืชื” ืขืฉื•ื™ ืœื—ืฉื•ื‘
01:49
algorithms are a new idea.
56
109250
1720
ืฉืืœื’ื•ืจื™ืชืžื™ื ื”ื ืจืขื™ื•ืŸ ื—ื“ืฉ.
01:50
In fact, they've been
57
110970
1460
ืœืžืขืฉื”, ื”ื
01:52
around since Babylonian times,
58
112430
2070
ืงื™ื™ืžื™ื ืžืื– ื™ืžื™ ื‘ื‘ืœ,
01:54
around 4,000 years ago.
59
114500
2250
ืœืคื ื™ ื›-4,000 ืฉื ื”.
01:56
And their use today can be
60
116750
1460
ื•ื”ืฉื™ืžื•ืฉ ื‘ื”ื ื›ื™ื•ื ื™ื›ื•ืœ ืœื”ื™ื•ืช
01:58
controversial. Some algorithms
61
118210
1880
ืฉื ื•ื™ ื‘ืžื—ืœื•ืงืช. ื›ืžื” ืืœื’ื•ืจื™ืชืžื™ื
02:00
used in internet search engines
62
120090
1830
ื”ืžืฉืžืฉื™ื ื‘ืžื ื•ืขื™ ื—ื™ืคื•ืฉ ื‘ืื™ื ื˜ืจื ื˜
02:01
have been accused
63
121920
1000
ื”ื•ืืฉืžื•
02:02
of racial prejudice.
64
122920
1260
ื‘ื“ืขื•ืช ืงื“ื•ืžื•ืช ื’ื–ืขื™ื•ืช.
02:04
Ramesh Srinivasan is Professor
65
124180
2130
ืจืืžืฉ ืกืจื™ื ื™ื•ื•ืืกืŸ ื”ื•ื ืคืจื•ืคืกื•ืจ
02:06
of Information Studies at the
66
126310
1669
ืœืœื™ืžื•ื“ื™ ืžื™ื“ืข ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช
02:07
University of California.
67
127979
1620
ืงืœื™ืคื•ืจื ื™ื”.
02:09
Here's what he said when asked
68
129599
1780
ื”ื ื” ืžื” ืฉื”ื•ื ืืžืจ ื›ืฉื ืฉืืœ
02:11
what the word 'algorithm'
69
131379
1480
ืžื” ื‘ืขืฆื ืžืฉืžืขื•ืช ื”ืžื™ืœื” 'ืืœื’ื•ืจื™ืชื' ื‘ืชื•ื›ื ื™ืช ืฉืœ
02:12
actually means by BBC World
70
132859
2051
BBC World
02:14
Service's programme, The Forum:
71
134910
3999
Service, The Forum:
02:18
My understanding of the term
72
138909
1851
ื”ื”ื‘ื ื” ืฉืœื™ ืฉืœ ื”ืžื•ื ื—
02:20
'algorithm' is that it's not
73
140760
1099
'ืืœื’ื•ืจื™ืชื' ื”ื™ื ืฉื–ื” ืœื
02:21
necessarily the bogyman, or
74
141859
2280
ื‘ื”ื›ืจื— ื”ื‘ื•ื’ืžืŸ, ืื•
02:24
its not necessarily something
75
144139
2020
ืฉื–ื” ืœื ื‘ื”ื›ืจื— ืžืฉื”ื•
02:26
that is, you know, inscrutable
76
146159
1931
ืฉื”ื•ื, ืืชื” ื™ื•ื“ืข, ื‘ืœืชื™ ื ื™ืชืŸ ืœื‘ื™ืจื•ืจ
02:28
or mysterious to all people -
77
148090
1659
ืื• ืžืกืชื•ืจื™ ืœื›ืœ ื”ืื ืฉื™ื -
02:29
it's the set of instructions
78
149749
2710
ื–ื•ื”ื™ ืงื‘ื•ืฆืช ื”ื”ื•ืจืื•ืช
02:32
that you write in some
79
152459
1661
ืฉืืชื” ื›ื•ืชื‘
02:34
mathematical form or in
80
154120
1659
ื‘ืฆื•ืจื” ืžืชืžื˜ื™ืช ื›ืœืฉื”ื™ ืื•
02:35
some software code - so it's
81
155779
1501
ื‘ืงื•ื“ ืชื•ื›ื ื” ื›ืœืฉื”ื• - ื›ืš ืฉื–ื•
02:37
the repeated set of
82
157280
1500
ืงื‘ื•ืฆืช ื”ื”ื•ืจืื•ืช ื”ื—ื•ื–ืจืช ื•ื ืฉื ื™ืช
02:38
instructions that are
83
158780
1879
ืฉืžืฆื•ื™ื“ืช
02:40
sequenced, that are used
84
160659
1861
ื‘ืจืฆืฃ,
02:42
and applied to answer a
85
162520
1340
ื”ืžืฉืžืฉื•ืช ื•ืžื™ื•ืฉืžื•ืช ื›ื“ื™ ืœืขื ื•ืช ืขืœ
02:43
question or resolve a
86
163860
1219
ืฉืืœื” ืื• ืœืคืชื•ืจ
02:45
problem - it's a simple as
87
165079
1561
ื‘ืขื™ื” - ื–ื” ืคืฉื•ื˜ ื›ืžื•
02:46
that, actually.
88
166640
1590
ื–ื”, ืœืžืขืฉื”.
02:48
Some think that algorithms
89
168230
2500
ื™ืฉ ื”ืกื‘ื•ืจื™ื ืฉืืœื’ื•ืจื™ืชืžื™ื
02:50
have been controversial,
90
170730
1269
ื”ื™ื• ืฉื ื•ื™ื™ื ื‘ืžื—ืœื•ืงืช,
02:51
but Professor Srinivasan
91
171999
1410
ืื‘ืœ ืคืจื•ืคืกื•ืจ ืกืจื™ื ื™ื•ื•ืืกืŸ
02:53
says they are not necessarily
92
173409
1970
ืื•ืžืจ ืฉื”ื ืœื ื‘ื”ื›ืจื—
02:55
the bogyman. The bogyman
93
175379
2220
ื”ื‘ื•ื’ืžืŸ. ื”ื‘ื•ื’ืžืŸ
02:57
refers to something people
94
177599
1121
ืžืชื™ื™ื—ืก ืœืžืฉื”ื• ืฉืื ืฉื™ื
02:58
call 'bad' or 'evil' to
95
178720
2140
ืžื›ื ื™ื 'ืจืข' ืื• 'ืจืฉืข' ื›ื“ื™
03:00
make other people afraid.
96
180860
2420
ืœื’ืจื•ื ืœืื ืฉื™ื ืื—ืจื™ื ืœืคื—ื“.
03:03
Professor Srinivasan thinks
97
183280
1359
ืคืจื•ืคืกื•ืจ Srinivasan ื—ื•ืฉื‘
03:04
algorithms are neither evil
98
184639
1860
ืฉืืœื’ื•ืจื™ืชืžื™ื ืื™ื ื ืจืขื™ื
03:06
nor inscrutable - not
99
186499
2011
ื•ืื™ื ื ื ื™ืชื ื™ื ืœื‘ื™ืจื•ืจ - ืื™ื ื
03:08
showing emotions or thoughts
100
188510
1780
ืžืจืื™ื ืจื’ืฉื•ืช ืื• ืžื—ืฉื‘ื•ืช
03:10
and therefore very difficult
101
190290
1360
ื•ืœื›ืŸ ืงืฉื” ืžืื•ื“
03:11
to understand.
102
191650
1000
ืœื”ื‘ื™ืŸ ืื•ืชื.
03:12
Still, it can be difficult
103
192650
1669
ื•ื‘ื›ืœ ื–ืืช, ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืงืฉื”
03:14
to understand exactly what
104
194319
1301
ืœื”ื‘ื™ืŸ ื‘ื“ื™ื•ืง ืžื”
03:15
algorithms are, especially
105
195620
1989
ื”ื ืืœื’ื•ืจื™ืชืžื™ื, ื‘ืžื™ื•ื—ื“
03:17
when there are many different
106
197609
1330
ื›ืืฉืจ ื™ืฉื ื ืกื•ื’ื™ื ืจื‘ื™ื ื•ืฉื•ื ื™ื
03:18
types of them. So, let's
107
198939
1651
ืฉืœื”ื. ืื– ื‘ื•ืื•
03:20
take an example.
108
200590
1410
ื ื™ืงื— ื“ื•ื’ืžื”.
03:22
It's autumn and we want to
109
202000
1060
ืกืชื™ื• ื•ืื ื—ื ื• ืจื•ืฆื™ื
03:23
collect all the apples from
110
203060
1560
ืœืืกื•ืฃ ืืช ื›ืœ ื”ืชืคื•ื—ื™ื
03:24
our orchard and divide them
111
204620
1239
ืžื”ืžื˜ืข ืฉืœื ื• ื•ืœื—ืœืง ืื•ืชื
03:25
into three groups - big, medium
112
205859
2310
ืœืฉืœื•ืฉ ืงื‘ื•ืฆื•ืช - ื’ื“ื•ืœื•ืช, ื‘ื™ื ื•ื ื™ื•ืช
03:28
and small. One method is to
113
208169
2000
ื•ืงื˜ื ื•ืช. ืฉื™ื˜ื” ืื—ืช ื”ื™ื
03:30
collect all the apples together
114
210169
1830
ืœืืกื•ืฃ ืืช ื›ืœ ื”ืชืคื•ื—ื™ื ื™ื—ื“
03:31
and compare their sizes.
115
211999
1981
ื•ืœื”ืฉื•ื•ืช ืืช ื”ื’ื“ืœื™ื ืฉืœื”ื.
03:33
But doing this would take hours!
116
213980
1519
ืื‘ืœ ืœืขืฉื•ืช ืืช ื–ื” ื™ื™ืงื— ืฉืขื•ืช!
03:35
It's much easier to first
117
215499
1511
ื”ืจื‘ื” ื™ื•ืชืจ ืงืœ
03:37
collect the apples from only
118
217010
1470
ืœืืกื•ืฃ ืืช ื”ืชืคื•ื—ื™ื
03:38
one tree - divide those into
119
218480
2420
ืžืขืฅ ืื—ื“ ื‘ืœื‘ื“ - ืœื—ืœืง ืื•ืชื
03:40
big, medium or small - and
120
220900
1989
ืœื’ื“ื•ืœื™ื, ื‘ื™ื ื•ื ื™ื™ื ืื• ืงื˜ื ื™ื -
03:42
then repeat the process for
121
222889
1481
ื•ืื– ืœื—ื–ื•ืจ ืขืœ ื”ืชื”ืœื™ืš ืขื‘ื•ืจ
03:44
the other trees, one by one.
122
224370
2970
ื”ืขืฆื™ื ื”ืื—ืจื™ื, ืื—ื“ ืื—ื“.
03:47
That's basically what
123
227340
1000
ื–ื” ื‘ืขืฆื ืžื”
03:48
algorithms do - they find
124
228340
1390
ืฉื”ืืœื’ื•ืจื™ืชืžื™ื ืขื•ืฉื™ื - ื”ื ืžื•ืฆืื™ื
03:49
the most efficient way to
125
229730
1349
ืืช ื”ื“ืจืš ื”ื™ืขื™ืœื” ื‘ื™ื•ืชืจ
03:51
get things done, or in other
126
231079
1740
ืœื‘ืฆืข ื“ื‘ืจื™ื, ืื• ื‘ืžื™ืœื™ื ืื—ืจื•ืช
03:52
words, get the best results
127
232819
1450
, ืœื”ืฉื™ื’ ืืช ื”ืชื•ืฆืื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ
03:54
in the quickest time.
128
234269
2281
ื‘ื–ืžืŸ ื”ืžื”ื™ืจ ื‘ื™ื•ืชืจ.
03:56
Mathematics professor Ian Stewart
129
236550
1299
ืคืจื•ืคืกื•ืจ ืœืžืชืžื˜ื™ืงื” ืื™ืืŸ ืกื˜ื™ื•ืืจื˜
03:57
agrees. Listen as he explains
130
237849
2230
ืžืกื›ื™ื. ื”ืงืฉื™ื‘ื• ื›ืฉื”ื•ื ืžืกื‘ื™ืจ
04:00
how the algorithm called
131
240079
1580
ื›ื™ืฆื“ ื”ืืœื’ื•ืจื™ืชื ืฉื ืงืจื
04:01
'bubble sort' works to BBC
132
241659
2491
'ืžื™ื•ืŸ ื‘ื•ืขื•ืช' ืขื•ื‘ื“ ืœืชื•ื›ื ื™ืช ืฉืœ BBC
04:04
World Service's programme,
133
244150
1349
World Service,
04:05
The Forum:
134
245499
3030
The Forum:
04:08
Think of when your computer
135
248529
1100
ืชื—ืฉื•ื‘ ืขืœ ื›ืฉื”ืžื—ืฉื‘ ืฉืœืš
04:09
is sorting emails by date and
136
249629
1881
ืžืžื™ื™ืŸ ืžื™ื™ืœื™ื ืœืคื™ ืชืืจื™ืš ื•ืื•ืœื™
04:11
maybe you've got 500 emails
137
251510
1349
ื™ืฉ ืœืš 500 ืžื™ื™ืœื™ื
04:12
and it sorts them by date in
138
252859
1371
ื•ื”ื•ื ืžืžื™ื™ืŸ ืื•ืชื ืœืคื™ ืชืืจื™ืš
04:14
a flash. Now it doesn't use
139
254230
1479
ื‘ืžื”ื™ืจื•ืช ื”ื‘ื–ืง. ืขื›ืฉื™ื• ื”ื•ื ืœื ืžืฉืชืžืฉ
04:15
bubble sort, but it does
140
255709
1022
ื‘ืžื™ื•ืŸ ื‘ื•ืขื•ืช, ืื‘ืœ ื”ื•ื ื›ืŸ
04:16
use a sorting method and if
141
256731
1819
ืžืฉืชืžืฉ ื‘ืฉื™ื˜ืช ืžื™ื•ืŸ ื•ืื
04:18
you tried to do that by
142
258550
1140
ืชื ืกื” ืœืขืฉื•ืช ื–ืืช
04:19
hand it would take you a
143
259690
1509
ื‘ื™ื“ ื–ื” ื™ื™ืงื— ืœืš
04:21
very long time, whatever
144
261199
1340
ื”ืจื‘ื” ืžืื•ื“ ื–ืžืŸ, ื‘ื›ืœ
04:22
method you used.
145
262539
3641
ืฉื™ื˜ื” ื‘ื” ื”ืฉืชืžืฉืช.
04:26
Professor Stewart describes
146
266180
1000
ืคืจื•ืคืกื•ืจ ืกื˜ื™ื•ืืจื˜ ืžืชืืจ
04:27
how algorithms sort emails.
147
267180
2100
ื›ื™ืฆื“ ืืœื’ื•ืจื™ืชืžื™ื ืžืžื™ื™ื ื™ื ืžื™ื™ืœื™ื.
04:29
'To sort' is a verb meaning
148
269280
1729
'ืœืžื™ื™ืŸ' ื”ื•ื ืคื•ืขืœ ืฉืžืฉืžืขื•ืชื•
04:31
to group together things
149
271009
1130
ืœืงื‘ืฅ ื™ื—ื“ ื“ื‘ืจื™ื
04:32
which share similarities.
150
272139
1821
ื‘ืขืœื™ ื“ืžื™ื•ืŸ.
04:33
Just like grouping the
151
273960
1000
ื‘ื“ื™ื•ืง ื›ืžื• ืœืงื‘ืฅ ืืช
04:34
apples by size, sorting
152
274960
1910
ื”ืชืคื•ื—ื™ื ืœืคื™ ื’ื•ื“ืœ, ืžื™ื•ืŸ ืฉืœ
04:36
hundreds of emails by hand
153
276870
1729
ืžืื•ืช ืžื™ื™ืœื™ื ื‘ื™ื“
04:38
would take a long time.
154
278599
1861
ื™ื™ืงื— ื”ืจื‘ื” ื–ืžืŸ.
04:40
But using algorithms,
155
280460
1910
ืื‘ืœ ื‘ืืžืฆืขื•ืช ืืœื’ื•ืจื™ืชืžื™ื,
04:42
computers do it in a flash -
156
282370
1810
ืžื—ืฉื‘ื™ื ืขื•ืฉื™ื ื–ืืช ื‘ืžื”ื™ืจื•ืช ื”ื‘ื–ืง -
04:44
very quickly or suddenly.
157
284180
1959
ืžื”ืจ ืžืื•ื“ ืื• ืคืชืื•ื.
04:46
That phrase - in a flash -
158
286139
1191
ื”ื‘ื™ื˜ื•ื™ ื”ื–ื” - ื‘ื”ื‘ื–ืง -
04:47
reminds me of
159
287330
1000
ืžื–ื›ื™ืจ ืœื™
04:48
how Albert Einstein
160
288330
1130
ืื™ืš ืืœื‘ืจื˜ ืื™ื™ื ืฉื˜ื™ื™ืŸ
04:49
came up with his famous
161
289460
1190
ื”ื’ื” ืืช ื”ืžืฉื•ื•ืื” ื”ืžืคื•ืจืกืžืช ืฉืœื•
04:50
equation, E=MC2.
162
290650
3609
, E=MC2.
04:54
And that reminds me of your
163
294259
1671
ื•ื–ื” ืžื–ื›ื™ืจ ืœื™ ืืช
04:55
quiz question. You asked
164
295930
1910
ืฉืืœืช ื”ื—ื™ื“ื•ืŸ ืฉืœืš. ืฉืืœืช
04:57
about the 'E' in E=MC2.
165
297840
3260
ืœื’ื‘ื™ ื”'E' ื‘-E=MC2.
05:01
I said it stands for
166
301100
1390
ืืžืจืชื™ ืฉื–ื” ืžื™ื™ืฆื’
05:02
'energy'. So, was I right?
167
302490
1739
'ืื ืจื’ื™ื”'. ืื–, ืฆื“ืงืชื™?
05:04
'Energy' is the correct answer.
168
304229
2641
'ืื ืจื’ื™ื”' ื”ื™ื ื”ืชืฉื•ื‘ื” ื”ื ื›ื•ื ื”.
05:06
Energy equals 'M' for mass,
169
306870
1849
ืื ืจื’ื™ื” ืฉื•ื•ื” 'M' ืขื‘ื•ืจ ืžืกื”,
05:08
multiplied by the Constant
170
308719
1521
ื›ืคื•ืœ ื‘ืงื‘ื•ืข
05:10
'C' which is the speed
171
310240
1459
'C' ืฉื”ื•ื ืžื”ื™ืจื•ืช
05:11
of light, squared.
172
311699
1201
ื”ืื•ืจ ื‘ืจื™ื‘ื•ืข.
05:12
OK, let's recap the vocabulary
173
312900
2380
ืื•ืงื™ื™, ื‘ื•ืื• ื ืกื›ื ืืช ืื•ืฆืจ ื”ืžื™ืœื™ื
05:15
from this programme, starting
174
315280
1780
ืžื”ืชื•ื›ื ื™ืช ื”ื–ื•, ื”ื—ืœ
05:17
with 'equation' - a mathematical
175
317060
2340
ื‘'ืžืฉื•ื•ืื”' -
05:19
statement using symbols to
176
319400
1900
ื”ืฆื”ืจื” ืžืชืžื˜ื™ืช ื”ืžืฉืชืžืฉืช ื‘ืกืžืœื™ื ื›ื“ื™
05:21
show two equal things.
177
321300
1910
ืœื”ืจืื•ืช ืฉื ื™ ื“ื‘ืจื™ื ืฉื•ื•ื™ื.
05:23
If something is called a 'bogyman',
178
323210
2120
ืื ืงื•ืจืื™ื ืœืžืฉื”ื• 'ื‘ื•ื’ื™ืžืŸ',
05:25
it's something considered
179
325330
1040
ื–ื” ืžืฉื”ื• ืฉื ื—ืฉื‘
05:26
bad and to be feared.
180
326370
1670
ืจืข ื•ื™ืฉ ืœืคื—ื“ ืžืžื ื•.
05:28
'Inscrutable' people don't show
181
328040
1610
ืื ืฉื™ื 'ื‘ืœืชื™ ื ื™ืชื ื™ื ืœื‘ื“ื™ืงื”' ืื™ื ื ืžืจืื™ื ืืช
05:29
their emotions so are very
182
329650
1620
ืจื’ืฉื•ืชื™ื”ื ื•ืœื›ืŸ
05:31
difficult to get to know.
183
331270
2060
ืงืฉื” ืžืื•ื“ ืœื”ื›ื™ืจ ืื•ืชื.
05:33
'Efficient' means working
184
333330
1000
'ื™ืขื™ืœ' ืคื™ืจื•ืฉื• ืขื‘ื•ื“ื”
05:34
quickly and effectively
185
334330
1079
ืžื”ื™ืจื” ื•ื™ืขื™ืœื”
05:35
in an organised way.
186
335409
1470
ื‘ืฆื•ืจื” ืžืื•ืจื’ื ืช.
05:36
The verb 'to sort' means
187
336879
1491
ื”ืคื•ืขืœ 'ืœืžื™ื™ืŸ' ืคื™ืจื•ืฉื•
05:38
to group together things
188
338370
1269
ืœืงื‘ืฅ ื™ื—ื“ ื“ื‘ืจื™ื
05:39
which share similarities.
189
339639
1851
ื‘ืขืœื™ ืงื•ื•ื™ ื“ืžื™ื•ืŸ.
05:41
And finally, if something
190
341490
1060
ื•ืœื‘ืกื•ืฃ, ืื ืžืฉื”ื•
05:42
happens 'in a flash', it
191
342550
1721
ืงื•ืจื” 'ื‘ื”ื‘ื–ืง', ื”ื•ื
05:44
happens quickly or suddenly.
192
344271
1779
ืงื•ืจื” ื‘ืžื”ื™ืจื•ืช ืื• ื‘ืคืชืื•ืžื™ื•ืช.
05:46
That's all the time we have
193
346050
1359
ื–ื” ื›ืœ ื”ื–ืžืŸ ืฉื™ืฉ ืœื ื•
05:47
to discuss algorithms. And if
194
347409
2151
ืœื“ื•ืŸ ื‘ืืœื’ื•ืจื™ืชืžื™ื. ื•ืื
05:49
you're still not 100% sure
195
349560
1829
ืืชื” ืขื“ื™ื™ืŸ ืœื ื‘ื˜ื•ื— ื‘-100%
05:51
about exactly what they are,
196
351389
1810
ื‘ื“ื™ื•ืง ืžื” ื”ื,
05:53
we hope at least you've
197
353199
1000
ืื ื• ืžืงื•ื•ื™ื ืฉืœืคื—ื•ืช
05:54
learned some useful vocabulary!
198
354199
1601
ืœืžื“ืช ืื•ืฆืจ ืžื™ืœื™ื ืฉื™ืžื•ืฉื™!
05:55
Join us again soon for more
199
355800
1300
ื”ืฆื˜ืจืฃ ืืœื™ื ื• ืฉื•ื‘ ื‘ืงืจื•ื‘
05:57
trending topics, sensational
200
357100
1749
ืœื ื•ืฉืื™ื ืžื’ืžืชื™ื™ื ื ื•ืกืคื™ื,
05:58
science and useful vocabulary
201
358849
2120
ืžื“ืข ืกื ืกืฆื™ื•ื ื™ ื•ืื•ืฆืจ ืžื™ืœื™ื ืฉื™ืžื•ืฉื™
06:00
here at 6 Minute English from
202
360969
1531
ื›ืืŸ ื‘-6 ื“ืงื•ืช ืื ื’ืœื™ืช ืžื‘ื™ืช
06:02
BBC Learning English.
203
362500
1610
BBC Learning English.
06:04
Bye for now!
204
364110
2329
ืœื”ืชืจืื•ืช ื‘ื™ื ืชื™ื™ื!
06:06
Goodbye!
205
366439
2100
ื”ึฑื™ื” ืฉืœื•ื!

Original video on YouTube.com
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7