Can we build AI without losing control over it? | Sam Harris

3,825,464 views ・ 2016-10-19

TED


請雙擊下方英文字幕播放視頻。

譯者: Hans Chiang 審譯者: Qiyun Xing
00:13
I'm going to talk about a failure of intuition
0
13000
2216
我要談一種我們很多人 遭受的、直覺上的失誤。
00:15
that many of us suffer from.
1
15240
1600
00:17
It's really a failure to detect a certain kind of danger.
2
17480
3040
那其實是一種使你無法察覺到 特定種類危險的失誤。
00:21
I'm going to describe a scenario
3
21360
1736
我會描述一個情境
00:23
that I think is both terrifying
4
23120
3256
是我認為很可怕
00:26
and likely to occur,
5
26400
1760
而且很有機會發生的,
00:28
and that's not a good combination,
6
28840
1656
這不是很好的組合,
00:30
as it turns out.
7
30520
1536
一如預期。
00:32
And yet rather than be scared, most of you will feel
8
32080
2456
然而比起感到害怕,
大部分的人會覺得 我正在說的東西有點酷。
00:34
that what I'm talking about is kind of cool.
9
34560
2080
00:37
I'm going to describe how the gains we make
10
37200
2976
我將會描述我們在 人工智能領域的進展
00:40
in artificial intelligence
11
40200
1776
00:42
could ultimately destroy us.
12
42000
1776
如何能最終消滅我們。
00:43
And in fact, I think it's very difficult to see how they won't destroy us
13
43800
3456
事實上,我認為很難看不出 他們為何不會消滅我們,
或者驅使我們消滅自己。
00:47
or inspire us to destroy ourselves.
14
47280
1680
00:49
And yet if you're anything like me,
15
49400
1856
如果你是和我類似的人,
00:51
you'll find that it's fun to think about these things.
16
51280
2656
你會發現思考這類事情很有趣。
00:53
And that response is part of the problem.
17
53960
3376
那種反應也是問題的一部分。
00:57
OK? That response should worry you.
18
57360
1720
對嗎?那種反應應該讓你感到擔心。
00:59
And if I were to convince you in this talk
19
59920
2656
如果我是打算在這個裡演講說服你,
01:02
that we were likely to suffer a global famine,
20
62600
3416
我們很可能會遭受全球性的飢荒,
01:06
either because of climate change or some other catastrophe,
21
66040
3056
無論是因為氣候變遷或某種大災難,
01:09
and that your grandchildren, or their grandchildren,
22
69120
3416
而你的孫子們或者孫子的孫子們
01:12
are very likely to live like this,
23
72560
1800
非常可能要這樣生活,
01:15
you wouldn't think,
24
75200
1200
你不會覺得:
01:17
"Interesting.
25
77440
1336
「有意思,
01:18
I like this TED Talk."
26
78800
1200
我喜歡這個 TED 演講。」
01:21
Famine isn't fun.
27
81200
1520
飢荒並不有趣。
01:23
Death by science fiction, on the other hand, is fun,
28
83800
3376
另一方面來說, 科幻式的死亡,是有趣的。
01:27
and one of the things that worries me most about the development of AI at this point
29
87200
3976
而現階段人工智能的發展 最讓我擔心的是,
01:31
is that we seem unable to marshal an appropriate emotional response
30
91200
4096
我們似乎無法組織出 一個適當的情緒反應,
01:35
to the dangers that lie ahead.
31
95320
1816
針對眼前的威脅。
01:37
I am unable to marshal this response, and I'm giving this talk.
32
97160
3200
我無法組織出這個回應, 可是我在這裡講這個。
01:42
It's as though we stand before two doors.
33
102120
2696
就像我們站在兩扇門前面。
01:44
Behind door number one,
34
104840
1256
一號門後面,
01:46
we stop making progress in building intelligent machines.
35
106120
3296
我們停止發展製造有智能的機器。
01:49
Our computer hardware and software just stops getting better for some reason.
36
109440
4016
我們的電腦硬體和軟體 就因故停止變得更好。
01:53
Now take a moment to consider why this might happen.
37
113480
3000
現在花一點時間想想 為什麼這會發生。
01:57
I mean, given how valuable intelligence and automation are,
38
117080
3656
我的意思是,人工智能 和自動化如此有價值,
02:00
we will continue to improve our technology if we are at all able to.
39
120760
3520
我們會持續改善我們的科技, 只要我們有能力做。
02:05
What could stop us from doing this?
40
125200
1667
有什麼東西能阻止我們這麼做呢?
02:07
A full-scale nuclear war?
41
127800
1800
一場全面性的核子戰爭?
02:11
A global pandemic?
42
131000
1560
一場全球性的流行病?
02:14
An asteroid impact?
43
134320
1320
一次小行星撞擊地球?
02:17
Justin Bieber becoming president of the United States?
44
137640
2576
小賈斯汀成為美國總統?
02:20
(Laughter)
45
140240
2280
(笑聲)
02:24
The point is, something would have to destroy civilization as we know it.
46
144760
3920
重點是:必須有什麼東西 會毀滅我們所知的文明。
02:29
You have to imagine how bad it would have to be
47
149360
4296
你必須想像到底能有多糟
02:33
to prevent us from making improvements in our technology
48
153680
3336
才能阻止我們持續改善我們的科技,
02:37
permanently,
49
157040
1216
永久地,
02:38
generation after generation.
50
158280
2016
一代又一代人。
02:40
Almost by definition, this is the worst thing
51
160320
2136
幾乎從定義上,這就是
人類歷史上發生過的最糟的事。
02:42
that's ever happened in human history.
52
162480
2016
02:44
So the only alternative,
53
164520
1296
所以唯一的替代選項,
02:45
and this is what lies behind door number two,
54
165840
2336
這是在二號門之後的東西,
02:48
is that we continue to improve our intelligent machines
55
168200
3136
是我們繼續改善我們的智能機器,
02:51
year after year after year.
56
171360
1600
年復一年,年復一年。
02:53
At a certain point, we will build machines that are smarter than we are,
57
173720
3640
到某個時間點,我們會造出 比我們還聰明的機器,
02:58
and once we have machines that are smarter than we are,
58
178080
2616
而我們一旦造出比我們聰明的機器,
03:00
they will begin to improve themselves.
59
180720
1976
它們就會開始改善自己。
03:02
And then we risk what the mathematician IJ Good called
60
182720
2736
然後我們承擔數學家 IJ Good 稱為
03:05
an "intelligence explosion,"
61
185480
1776
「人工智能爆發」的風險,
03:07
that the process could get away from us.
62
187280
2000
那個過程會脫離我們的掌握。
03:10
Now, this is often caricatured, as I have here,
63
190120
2816
這時常被漫畫化,如我的這張圖,
03:12
as a fear that armies of malicious robots
64
192960
3216
一種恐懼:充滿惡意的機械人軍團
03:16
will attack us.
65
196200
1256
會攻擊我們。
03:17
But that isn't the most likely scenario.
66
197480
2696
但這不是最可能發生的情境。
03:20
It's not that our machines will become spontaneously malevolent.
67
200200
4856
並不是說我們的機器會變得 自然地帶有敵意。
03:25
The concern is really that we will build machines
68
205080
2616
問題在於我們將會造出
03:27
that are so much more competent than we are
69
207720
2056
遠比我們更有競爭力的機器,
03:29
that the slightest divergence between their goals and our own
70
209800
3776
只要我們和他們的目標 有些微的歧異,
03:33
could destroy us.
71
213600
1200
就會讓我們被毀滅。
03:35
Just think about how we relate to ants.
72
215960
2080
就想想我們和螞蟻的關係。
03:38
We don't hate them.
73
218600
1656
我們不討厭牠們。
03:40
We don't go out of our way to harm them.
74
220280
2056
我們不會特別去傷害牠們。
03:42
In fact, sometimes we take pains not to harm them.
75
222360
2376
甚至有時我們為了 不傷害牠們而承受痛苦。
03:44
We step over them on the sidewalk.
76
224760
2016
我們在人行道跨越他們。
03:46
But whenever their presence
77
226800
2136
但當牠們的存在
03:48
seriously conflicts with one of our goals,
78
228960
2496
和我們的目標嚴重衝突,
03:51
let's say when constructing a building like this one,
79
231480
2477
譬如當我們要建造一棟 和這裡一樣的建築物,
03:53
we annihilate them without a qualm.
80
233981
1960
我們會毫無不安地除滅牠們。
03:56
The concern is that we will one day build machines
81
236480
2936
問題在於有一天我們會造出機器,
03:59
that, whether they're conscious or not,
82
239440
2736
無論他們是有意識或者沒有意識,
04:02
could treat us with similar disregard.
83
242200
2000
會對我們如螞蟻般的不予理會。
04:05
Now, I suspect this seems far-fetched to many of you.
84
245760
2760
現在,我懷疑這種說法 對這裡大部分的人來說不著邊際。
04:09
I bet there are those of you who doubt that superintelligent AI is possible,
85
249360
6336
我確信你們有些人懷疑 超級人工智能出現的可能,
04:15
much less inevitable.
86
255720
1656
更別說它必然出現。
04:17
But then you must find something wrong with one of the following assumptions.
87
257400
3620
但接著你一點會發現 接下來其中一個假設有點問題。
04:21
And there are only three of them.
88
261044
1572
以下只有三個假設。
04:23
Intelligence is a matter of information processing in physical systems.
89
263800
4719
智能是關於資訊 在物質系統裡處理的過程。
04:29
Actually, this is a little bit more than an assumption.
90
269320
2615
其實這個陳述已經不只是一個假設,
04:31
We have already built narrow intelligence into our machines,
91
271959
3457
我們已經在我們的機器裡 安裝了有限的智能,
04:35
and many of these machines perform
92
275440
2016
而很多這樣的機器已經表現出
04:37
at a level of superhuman intelligence already.
93
277480
2640
某種程度的超人類智能。
04:40
And we know that mere matter
94
280840
2576
而我們知道這個現象
04:43
can give rise to what is called "general intelligence,"
95
283440
2616
可能導致被稱為「通用智能」的東西,
04:46
an ability to think flexibly across multiple domains,
96
286080
3656
一種能跨多個領域靈活思考的能力,
04:49
because our brains have managed it. Right?
97
289760
3136
因為我們的腦 已經掌握了這個,對吧?
04:52
I mean, there's just atoms in here,
98
292920
3936
我的意思是,裡面都只是原子,
04:56
and as long as we continue to build systems of atoms
99
296880
4496
只要我們繼續製造基於原子的系統,
05:01
that display more and more intelligent behavior,
100
301400
2696
越來越能表現智能的行為,
05:04
we will eventually, unless we are interrupted,
101
304120
2536
我們終究會,除非我們被打斷,
05:06
we will eventually build general intelligence
102
306680
3376
我們終究會造出通用智能
05:10
into our machines.
103
310080
1296
裝進我們的機器裡。
05:11
It's crucial to realize that the rate of progress doesn't matter,
104
311400
3656
關鍵是理解到發展的速率無關緊要,
05:15
because any progress is enough to get us into the end zone.
105
315080
3176
因為任何進展都足以 帶我們到終結之境。
05:18
We don't need Moore's law to continue. We don't need exponential progress.
106
318280
3776
我們不需要摩爾定律才能繼續。 我們不需要指數型的發展。
05:22
We just need to keep going.
107
322080
1600
我們只需要繼續前進。
05:25
The second assumption is that we will keep going.
108
325480
2920
第二個假設是我們會繼續前進。
05:29
We will continue to improve our intelligent machines.
109
329000
2760
我們會持續改善我們的智能機器。
05:33
And given the value of intelligence --
110
333000
4376
而因為智能的價值──
05:37
I mean, intelligence is either the source of everything we value
111
337400
3536
我的意思是,智能是所有 我們珍視的事物的源頭,
05:40
or we need it to safeguard everything we value.
112
340960
2776
或者我們需要智能 來保護我們珍視的事物。
05:43
It is our most valuable resource.
113
343760
2256
智能是我們最珍貴的資源。
05:46
So we want to do this.
114
346040
1536
所以我們想要這麼做。
05:47
We have problems that we desperately need to solve.
115
347600
3336
我們有許多亟需解決的問題。
05:50
We want to cure diseases like Alzheimer's and cancer.
116
350960
3200
我們想要治癒疾病 如阿茲海默症和癌症。
05:54
We want to understand economic systems. We want to improve our climate science.
117
354960
3936
我們想要了解經濟系統。 我們想要改進我們的氣候科學。
05:58
So we will do this, if we can.
118
358920
2256
所以我們會這麼做,只要我們可以。
06:01
The train is already out of the station, and there's no brake to pull.
119
361200
3286
火車已經出站,而沒有煞車可以拉。
06:05
Finally, we don't stand on a peak of intelligence,
120
365880
5456
最後一點,我們不站在智能的巔峰,
06:11
or anywhere near it, likely.
121
371360
1800
或者根本不在那附近。
06:13
And this really is the crucial insight.
122
373640
1896
而這真的是一種重要的洞察。
06:15
This is what makes our situation so precarious,
123
375560
2416
正是這個讓我們的處境如此危險可疑,
06:18
and this is what makes our intuitions about risk so unreliable.
124
378000
4040
這也讓我們對風險的直覺 變得很不可靠。
06:23
Now, just consider the smartest person who has ever lived.
125
383120
2720
現在,想想這世界上最聰明的人。
06:26
On almost everyone's shortlist here is John von Neumann.
126
386640
3416
每個人的清單上幾乎都會有 約翰·馮·諾伊曼。
06:30
I mean, the impression that von Neumann made on the people around him,
127
390080
3336
我是指, 馮·諾伊曼 對他周圍的人造成的印象,
06:33
and this included the greatest mathematicians and physicists of his time,
128
393440
4056
而這包括和他同時代 最棒的數學家和物理學家,
06:37
is fairly well-documented.
129
397520
1936
被好好地記錄了。
06:39
If only half the stories about him are half true,
130
399480
3776
只要有一半關於他的故事一半是真的,
06:43
there's no question
131
403280
1216
那毫無疑問
06:44
he's one of the smartest people who has ever lived.
132
404520
2456
他是世界上活過最聰明的人之一。
06:47
So consider the spectrum of intelligence.
133
407000
2520
所以考慮智能的頻譜。
06:50
Here we have John von Neumann.
134
410320
1429
約翰·馮·諾伊曼在這裡。
06:53
And then we have you and me.
135
413560
1334
然後你和我在這裡。
06:56
And then we have a chicken.
136
416120
1296
然後雞在這裡。
06:57
(Laughter)
137
417440
1936
(笑聲)
06:59
Sorry, a chicken.
138
419400
1216
抱歉,雞應該在那裡。
07:00
(Laughter)
139
420640
1256
(笑聲)
07:01
There's no reason for me to make this talk more depressing than it needs to be.
140
421920
3736
我實在無意把這個演講 弄得比它本身更讓人感到沮喪。
07:05
(Laughter)
141
425680
1600
(笑聲)
07:08
It seems overwhelmingly likely, however, that the spectrum of intelligence
142
428339
3477
智能的頻譜似乎勢不可擋地
07:11
extends much further than we currently conceive,
143
431840
3120
往比我們能理解的更遠的地方延伸,
07:15
and if we build machines that are more intelligent than we are,
144
435880
3216
如果我們造出 比我們更有智能的機器,
07:19
they will very likely explore this spectrum
145
439120
2296
他們很可能會探索這個頻譜,
07:21
in ways that we can't imagine,
146
441440
1856
以我們無法想像的方式,
07:23
and exceed us in ways that we can't imagine.
147
443320
2520
然後以我們無法想像的方式超越我們。
07:27
And it's important to recognize that this is true by virtue of speed alone.
148
447000
4336
重要的是認識到這說法 僅因速度的優勢即為真。
07:31
Right? So imagine if we just built a superintelligent AI
149
451360
5056
對吧?請想像如果我們造出了 一個超級人工智能,
07:36
that was no smarter than your average team of researchers
150
456440
3456
它不比你一般在史丹佛或麻省理工 遇到的研究團隊聰明。
07:39
at Stanford or MIT.
151
459920
2296
07:42
Well, electronic circuits function about a million times faster
152
462240
2976
電子電路作用的速率 比起生化作用快一百萬倍,
07:45
than biochemical ones,
153
465240
1256
07:46
so this machine should think about a million times faster
154
466520
3136
所以這個機器思考應該 比製造它的心智快一百萬倍。
07:49
than the minds that built it.
155
469680
1816
07:51
So you set it running for a week,
156
471520
1656
如果你設定讓它運行一星期,
07:53
and it will perform 20,000 years of human-level intellectual work,
157
473200
4560
他會執行人類兩萬年的智能工作,
07:58
week after week after week.
158
478400
1960
一週接著一週接著一週。
08:01
How could we even understand, much less constrain,
159
481640
3096
我們如何可能理解,較不嚴格地說,
08:04
a mind making this sort of progress?
160
484760
2280
一個達成如此進展的心智?
08:08
The other thing that's worrying, frankly,
161
488840
2136
另一個另人擔心的事,老實說,
08:11
is that, imagine the best case scenario.
162
491000
4976
是想像最好的情況。
08:16
So imagine we hit upon a design of superintelligent AI
163
496000
4176
想像我們想到一個沒有安全顧慮的 超級人工智能的設計,
08:20
that has no safety concerns.
164
500200
1376
08:21
We have the perfect design the first time around.
165
501600
3256
我們第一次就做出了完美的設計。
08:24
It's as though we've been handed an oracle
166
504880
2216
如同我們被給予了一個神諭,
08:27
that behaves exactly as intended.
167
507120
2016
完全照我們的預期地動作。
08:29
Well, this machine would be the perfect labor-saving device.
168
509160
3720
這個機器會是完美的人力節約裝置。
08:33
It can design the machine that can build the machine
169
513680
2429
它能設計一個機器,
那機器能製造出能做任何人工的機器,
08:36
that can do any physical work,
170
516133
1763
08:37
powered by sunlight,
171
517920
1456
以太陽能驅動,
08:39
more or less for the cost of raw materials.
172
519400
2696
幾乎只需要原料的成本。
08:42
So we're talking about the end of human drudgery.
173
522120
3256
所以我們是在談人類苦役的終結。
08:45
We're also talking about the end of most intellectual work.
174
525400
2800
我們也是在談大部分 智力工作的終結。
08:49
So what would apes like ourselves do in this circumstance?
175
529200
3056
像我們一樣的猩猩 在這種情況下會做什麼?
08:52
Well, we'd be free to play Frisbee and give each other massages.
176
532280
4080
我們可能可以自由地 玩飛盤和互相按摩。
08:57
Add some LSD and some questionable wardrobe choices,
177
537840
2856
加上一點迷幻藥和可議的服裝選擇,
09:00
and the whole world could be like Burning Man.
178
540720
2176
整個世界都可以像在過火人祭典。
09:02
(Laughter)
179
542920
1640
(笑聲)
09:06
Now, that might sound pretty good,
180
546320
2000
那聽起來也許很不錯,
09:09
but ask yourself what would happen
181
549280
2376
但請問,在我們目前的經濟和政治 秩序下,會發生什麼事情?
09:11
under our current economic and political order?
182
551680
2736
09:14
It seems likely that we would witness
183
554440
2416
我們很可能會見證
09:16
a level of wealth inequality and unemployment
184
556880
4136
一種我們從未見過的 財富不均和失業程度。
09:21
that we have never seen before.
185
561040
1496
09:22
Absent a willingness to immediately put this new wealth
186
562560
2616
缺乏一種意願來把這份新財富馬上
09:25
to the service of all humanity,
187
565200
1480
放在服務全人類,
09:27
a few trillionaires could grace the covers of our business magazines
188
567640
3616
少數幾個萬億富翁 能登上我們的財經雜誌,
09:31
while the rest of the world would be free to starve.
189
571280
2440
而其他人可以自由地選擇挨餓。
09:34
And what would the Russians or the Chinese do
190
574320
2296
而俄國和中國會怎麼做?
09:36
if they heard that some company in Silicon Valley
191
576640
2616
當他們聽說矽谷的某個公司
09:39
was about to deploy a superintelligent AI?
192
579280
2736
即將部署一個超級人工智能,
09:42
This machine would be capable of waging war,
193
582040
2856
這個機器能夠發動戰爭,
09:44
whether terrestrial or cyber,
194
584920
2216
無論是領土侵略或者網路電子戰,
09:47
with unprecedented power.
195
587160
1680
以前所未見的威力。
09:50
This is a winner-take-all scenario.
196
590120
1856
這是個贏者全拿的劇本。
09:52
To be six months ahead of the competition here
197
592000
3136
在這個競爭領先六個月
09:55
is to be 500,000 years ahead,
198
595160
2776
等於領先五十萬年,
09:57
at a minimum.
199
597960
1496
最少。
09:59
So it seems that even mere rumors of this kind of breakthrough
200
599480
4736
所以即使僅僅是這種突破的謠言
10:04
could cause our species to go berserk.
201
604240
2376
都能使我們這個種族走向狂暴。
10:06
Now, one of the most frightening things,
202
606640
2896
現在,最讓人驚恐的事情,
10:09
in my view, at this moment,
203
609560
2776
在我的看法,在這個時刻,
10:12
are the kinds of things that AI researchers say
204
612360
4296
是人工智慧研究者在試著表現得 讓人安心時說的那類話。
10:16
when they want to be reassuring.
205
616680
1560
10:19
And the most common reason we're told not to worry is time.
206
619000
3456
而最常用來告訴我們 現在不要擔心的理由是時間。
10:22
This is all a long way off, don't you know.
207
622480
2056
這還有很長的路要走,你不知道嗎,
10:24
This is probably 50 or 100 years away.
208
624560
2440
起碼還要 50 到 100 年。
10:27
One researcher has said,
209
627720
1256
一個研究人員曾說,
10:29
"Worrying about AI safety
210
629000
1576
「憂心人工智慧安全
10:30
is like worrying about overpopulation on Mars."
211
630600
2280
如同憂心火星人口爆炸。」
10:34
This is the Silicon Valley version
212
634116
1620
這是矽谷版本的
10:35
of "don't worry your pretty little head about it."
213
635760
2376
「別杞人憂天。」
(笑聲)
10:38
(Laughter)
214
638160
1336
10:39
No one seems to notice
215
639520
1896
似乎沒人注意到
10:41
that referencing the time horizon
216
641440
2616
以時間當參考
10:44
is a total non sequitur.
217
644080
2576
是一個不合理的推論。
10:46
If intelligence is just a matter of information processing,
218
646680
3256
如果智能只是關於資訊的處理,
10:49
and we continue to improve our machines,
219
649960
2656
而我們持續改善我們的機器,
10:52
we will produce some form of superintelligence.
220
652640
2880
我們會製作出某種形式的超級智能。
10:56
And we have no idea how long it will take us
221
656320
3656
而且我們不知道要花我們多長的時間
11:00
to create the conditions to do that safely.
222
660000
2400
來創造安全地這麼做的條件。
11:04
Let me say that again.
223
664200
1296
讓我再說一次,
11:05
We have no idea how long it will take us
224
665520
3816
我們不知道要花我們多長的時間
11:09
to create the conditions to do that safely.
225
669360
2240
來創造安全地這麼做的條件。
11:12
And if you haven't noticed, 50 years is not what it used to be.
226
672920
3456
而且如果你還沒注意到, 50 年已經不像以前的概念。
11:16
This is 50 years in months.
227
676400
2456
這是 50 年以月來表示。
11:18
This is how long we've had the iPhone.
228
678880
1840
這是我們有了 iPhone 的時間。
11:21
This is how long "The Simpsons" has been on television.
229
681440
2600
這是《辛普森家庭》 在電視上播映的時間。
11:24
Fifty years is not that much time
230
684680
2376
50 年不是那麼長的時間
11:27
to meet one of the greatest challenges our species will ever face.
231
687080
3160
來面對對我們這個種族來說 最巨大的挑戰之一。
11:31
Once again, we seem to be failing to have an appropriate emotional response
232
691640
4016
再一次說,我們似乎 無法產生適當的情緒反應,
11:35
to what we have every reason to believe is coming.
233
695680
2696
對應我們有所有的理由 相信將發生的事。
11:38
The computer scientist Stuart Russell has a nice analogy here.
234
698400
3976
資訊科學家斯圖亞特·羅素 有個很好的比喻。
11:42
He said, imagine that we received a message from an alien civilization,
235
702400
4896
他說,想像我們收到一則 外星文明的訊息,
11:47
which read:
236
707320
1696
寫道:
11:49
"People of Earth,
237
709040
1536
「地球的人們,
11:50
we will arrive on your planet in 50 years.
238
710600
2360
我們 50 年內會到達你們的星球。
11:53
Get ready."
239
713800
1576
作好準備。」
11:55
And now we're just counting down the months until the mothership lands?
240
715400
4256
而現在我們只是在倒數 外星母艦還剩幾個月登陸?
11:59
We would feel a little more urgency than we do.
241
719680
3000
我們會比我們現在稍微感到緊迫。
12:04
Another reason we're told not to worry
242
724680
1856
另一個我們被告知不用擔心的原因
12:06
is that these machines can't help but share our values
243
726560
3016
是這些機器不得不和我們 有一樣的價值觀,
12:09
because they will be literally extensions of ourselves.
244
729600
2616
因為他們實際上只是我們的延伸。
12:12
They'll be grafted onto our brains,
245
732240
1816
它們會被植入我們的大腦裡,
12:14
and we'll essentially become their limbic systems.
246
734080
2360
而我們基本上變成 他們大腦的邊緣系統。
12:17
Now take a moment to consider
247
737120
1416
現在用一點時間想想
12:18
that the safest and only prudent path forward,
248
738560
3176
這最安全而且唯一謹慎的往前的路,
12:21
recommended,
249
741760
1336
被推薦的,
12:23
is to implant this technology directly into our brains.
250
743120
2800
是將這個科技植入我們的腦內。
12:26
Now, this may in fact be the safest and only prudent path forward,
251
746600
3376
這也許的確是最安全 而且唯一謹慎的往前的路,
12:30
but usually one's safety concerns about a technology
252
750000
3056
但通常科技的安全性問題
12:33
have to be pretty much worked out before you stick it inside your head.
253
753080
3656
應該在把東西插到你腦袋裡之前 就該大部分解決了。
12:36
(Laughter)
254
756760
2016
(笑聲)
12:38
The deeper problem is that building superintelligent AI on its own
255
758800
5336
更深層的問題是, 打造超級人工智能本身,
12:44
seems likely to be easier
256
764160
1736
似乎相對容易於
12:45
than building superintelligent AI
257
765920
1856
打造超級人工智慧
12:47
and having the completed neuroscience
258
767800
1776
並擁有完整的神經科學,
12:49
that allows us to seamlessly integrate our minds with it.
259
769600
2680
讓我們可以把我們的心智 無縫與之整合。
12:52
And given that the companies and governments doing this work
260
772800
3176
而假設正在從事人工智能 研發的許多公司和政府,
12:56
are likely to perceive themselves as being in a race against all others,
261
776000
3656
很可能察覺他們 正在和所有其他人競爭,
12:59
given that to win this race is to win the world,
262
779680
3256
假設贏了這個競爭就是贏得世界,
13:02
provided you don't destroy it in the next moment,
263
782960
2456
假設你在下一刻不會毀了世界,
13:05
then it seems likely that whatever is easier to do
264
785440
2616
那麼很可能比較容易做的事
13:08
will get done first.
265
788080
1200
就會先被做完。
13:10
Now, unfortunately, I don't have a solution to this problem,
266
790560
2856
現在,很不幸地, 我沒有這個問題的解決方法,
13:13
apart from recommending that more of us think about it.
267
793440
2616
除了建議我們更多人思考這個問題。
我想我們需要類似曼哈頓計畫的東西,
13:16
I think we need something like a Manhattan Project
268
796080
2376
13:18
on the topic of artificial intelligence.
269
798480
2016
針對人工智能這個課題。
13:20
Not to build it, because I think we'll inevitably do that,
270
800520
2736
不是因為我們不可避免地 要這麼做而做,
而是試著理解如何避免軍備競賽,
13:23
but to understand how to avoid an arms race
271
803280
3336
13:26
and to build it in a way that is aligned with our interests.
272
806640
3496
而且用一種符合 我們利益的方式打造之。
13:30
When you're talking about superintelligent AI
273
810160
2136
當你在談論能夠對其本身 造成改變的超級人工智能,
13:32
that can make changes to itself,
274
812320
2256
13:34
it seems that we only have one chance to get the initial conditions right,
275
814600
4616
這似乎說明我們只有一次機會 把初始條件做對,
13:39
and even then we will need to absorb
276
819240
2056
而且我們會必須承受
13:41
the economic and political consequences of getting them right.
277
821320
3040
為了將它們做對的經濟和政治後果。
13:45
But the moment we admit
278
825760
2056
但一旦我們承認
13:47
that information processing is the source of intelligence,
279
827840
4000
資訊處理是智能的源頭,
13:52
that some appropriate computational system is what the basis of intelligence is,
280
832720
4800
某些適當的電腦系統是智能的基礎,
13:58
and we admit that we will improve these systems continuously,
281
838360
3760
而且我們承認我們會 持續改進這些系統,
14:03
and we admit that the horizon of cognition very likely far exceeds
282
843280
4456
而且我們承認認知的極限 有可能遠遠超越
14:07
what we currently know,
283
847760
1200
我們目前所知,
14:10
then we have to admit
284
850120
1216
我們就會承認
14:11
that we are in the process of building some sort of god.
285
851360
2640
我們正在打造某種神明的過程裡。
14:15
Now would be a good time
286
855400
1576
現在是個好時機
14:17
to make sure it's a god we can live with.
287
857000
1953
來確保那是個我們能夠 與之共存的神明。
14:20
Thank you very much.
288
860120
1536
謝謝大家。
14:21
(Applause)
289
861680
5093
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog