Can we build AI without losing control over it? | Sam Harris

3,794,879 views ・ 2016-10-19

TED


請雙擊下方英文字幕播放視頻。

譯者: Hans Chiang 審譯者: Qiyun Xing
00:13
I'm going to talk about a failure of intuition
0
13000
2216
我要談一種我們很多人 遭受的、直覺上的失誤。
00:15
that many of us suffer from.
1
15240
1600
00:17
It's really a failure to detect a certain kind of danger.
2
17480
3040
那其實是一種使你無法察覺到 特定種類危險的失誤。
00:21
I'm going to describe a scenario
3
21360
1736
我會描述一個情境
00:23
that I think is both terrifying
4
23120
3256
是我認為很可怕
00:26
and likely to occur,
5
26400
1760
而且很有機會發生的,
00:28
and that's not a good combination,
6
28840
1656
這不是很好的組合,
00:30
as it turns out.
7
30520
1536
一如預期。
00:32
And yet rather than be scared, most of you will feel
8
32080
2456
然而比起感到害怕,
大部分的人會覺得 我正在說的東西有點酷。
00:34
that what I'm talking about is kind of cool.
9
34560
2080
00:37
I'm going to describe how the gains we make
10
37200
2976
我將會描述我們在 人工智能領域的進展
00:40
in artificial intelligence
11
40200
1776
00:42
could ultimately destroy us.
12
42000
1776
如何能最終消滅我們。
00:43
And in fact, I think it's very difficult to see how they won't destroy us
13
43800
3456
事實上,我認為很難看不出 他們為何不會消滅我們,
或者驅使我們消滅自己。
00:47
or inspire us to destroy ourselves.
14
47280
1680
00:49
And yet if you're anything like me,
15
49400
1856
如果你是和我類似的人,
00:51
you'll find that it's fun to think about these things.
16
51280
2656
你會發現思考這類事情很有趣。
00:53
And that response is part of the problem.
17
53960
3376
那種反應也是問題的一部分。
00:57
OK? That response should worry you.
18
57360
1720
對嗎?那種反應應該讓你感到擔心。
00:59
And if I were to convince you in this talk
19
59920
2656
如果我是打算在這個裡演講說服你,
01:02
that we were likely to suffer a global famine,
20
62600
3416
我們很可能會遭受全球性的飢荒,
01:06
either because of climate change or some other catastrophe,
21
66040
3056
無論是因為氣候變遷或某種大災難,
01:09
and that your grandchildren, or their grandchildren,
22
69120
3416
而你的孫子們或者孫子的孫子們
01:12
are very likely to live like this,
23
72560
1800
非常可能要這樣生活,
01:15
you wouldn't think,
24
75200
1200
你不會覺得:
01:17
"Interesting.
25
77440
1336
「有意思,
01:18
I like this TED Talk."
26
78800
1200
我喜歡這個 TED 演講。」
01:21
Famine isn't fun.
27
81200
1520
飢荒並不有趣。
01:23
Death by science fiction, on the other hand, is fun,
28
83800
3376
另一方面來說, 科幻式的死亡,是有趣的。
01:27
and one of the things that worries me most about the development of AI at this point
29
87200
3976
而現階段人工智能的發展 最讓我擔心的是,
01:31
is that we seem unable to marshal an appropriate emotional response
30
91200
4096
我們似乎無法組織出 一個適當的情緒反應,
01:35
to the dangers that lie ahead.
31
95320
1816
針對眼前的威脅。
01:37
I am unable to marshal this response, and I'm giving this talk.
32
97160
3200
我無法組織出這個回應, 可是我在這裡講這個。
01:42
It's as though we stand before two doors.
33
102120
2696
就像我們站在兩扇門前面。
01:44
Behind door number one,
34
104840
1256
一號門後面,
01:46
we stop making progress in building intelligent machines.
35
106120
3296
我們停止發展製造有智能的機器。
01:49
Our computer hardware and software just stops getting better for some reason.
36
109440
4016
我們的電腦硬體和軟體 就因故停止變得更好。
01:53
Now take a moment to consider why this might happen.
37
113480
3000
現在花一點時間想想 為什麼這會發生。
01:57
I mean, given how valuable intelligence and automation are,
38
117080
3656
我的意思是,人工智能 和自動化如此有價值,
02:00
we will continue to improve our technology if we are at all able to.
39
120760
3520
我們會持續改善我們的科技, 只要我們有能力做。
02:05
What could stop us from doing this?
40
125200
1667
有什麼東西能阻止我們這麼做呢?
02:07
A full-scale nuclear war?
41
127800
1800
一場全面性的核子戰爭?
02:11
A global pandemic?
42
131000
1560
一場全球性的流行病?
02:14
An asteroid impact?
43
134320
1320
一次小行星撞擊地球?
02:17
Justin Bieber becoming president of the United States?
44
137640
2576
小賈斯汀成為美國總統?
02:20
(Laughter)
45
140240
2280
(笑聲)
02:24
The point is, something would have to destroy civilization as we know it.
46
144760
3920
重點是:必須有什麼東西 會毀滅我們所知的文明。
02:29
You have to imagine how bad it would have to be
47
149360
4296
你必須想像到底能有多糟
02:33
to prevent us from making improvements in our technology
48
153680
3336
才能阻止我們持續改善我們的科技,
02:37
permanently,
49
157040
1216
永久地,
02:38
generation after generation.
50
158280
2016
一代又一代人。
02:40
Almost by definition, this is the worst thing
51
160320
2136
幾乎從定義上,這就是
人類歷史上發生過的最糟的事。
02:42
that's ever happened in human history.
52
162480
2016
02:44
So the only alternative,
53
164520
1296
所以唯一的替代選項,
02:45
and this is what lies behind door number two,
54
165840
2336
這是在二號門之後的東西,
02:48
is that we continue to improve our intelligent machines
55
168200
3136
是我們繼續改善我們的智能機器,
02:51
year after year after year.
56
171360
1600
年復一年,年復一年。
02:53
At a certain point, we will build machines that are smarter than we are,
57
173720
3640
到某個時間點,我們會造出 比我們還聰明的機器,
02:58
and once we have machines that are smarter than we are,
58
178080
2616
而我們一旦造出比我們聰明的機器,
03:00
they will begin to improve themselves.
59
180720
1976
它們就會開始改善自己。
03:02
And then we risk what the mathematician IJ Good called
60
182720
2736
然後我們承擔數學家 IJ Good 稱為
03:05
an "intelligence explosion,"
61
185480
1776
「人工智能爆發」的風險,
03:07
that the process could get away from us.
62
187280
2000
那個過程會脫離我們的掌握。
03:10
Now, this is often caricatured, as I have here,
63
190120
2816
這時常被漫畫化,如我的這張圖,
03:12
as a fear that armies of malicious robots
64
192960
3216
一種恐懼:充滿惡意的機械人軍團
03:16
will attack us.
65
196200
1256
會攻擊我們。
03:17
But that isn't the most likely scenario.
66
197480
2696
但這不是最可能發生的情境。
03:20
It's not that our machines will become spontaneously malevolent.
67
200200
4856
並不是說我們的機器會變得 自然地帶有敵意。
03:25
The concern is really that we will build machines
68
205080
2616
問題在於我們將會造出
03:27
that are so much more competent than we are
69
207720
2056
遠比我們更有競爭力的機器,
03:29
that the slightest divergence between their goals and our own
70
209800
3776
只要我們和他們的目標 有些微的歧異,
03:33
could destroy us.
71
213600
1200
就會讓我們被毀滅。
03:35
Just think about how we relate to ants.
72
215960
2080
就想想我們和螞蟻的關係。
03:38
We don't hate them.
73
218600
1656
我們不討厭牠們。
03:40
We don't go out of our way to harm them.
74
220280
2056
我們不會特別去傷害牠們。
03:42
In fact, sometimes we take pains not to harm them.
75
222360
2376
甚至有時我們為了 不傷害牠們而承受痛苦。
03:44
We step over them on the sidewalk.
76
224760
2016
我們在人行道跨越他們。
03:46
But whenever their presence
77
226800
2136
但當牠們的存在
03:48
seriously conflicts with one of our goals,
78
228960
2496
和我們的目標嚴重衝突,
03:51
let's say when constructing a building like this one,
79
231480
2477
譬如當我們要建造一棟 和這裡一樣的建築物,
03:53
we annihilate them without a qualm.
80
233981
1960
我們會毫無不安地除滅牠們。
03:56
The concern is that we will one day build machines
81
236480
2936
問題在於有一天我們會造出機器,
03:59
that, whether they're conscious or not,
82
239440
2736
無論他們是有意識或者沒有意識,
04:02
could treat us with similar disregard.
83
242200
2000
會對我們如螞蟻般的不予理會。
04:05
Now, I suspect this seems far-fetched to many of you.
84
245760
2760
現在,我懷疑這種說法 對這裡大部分的人來說不著邊際。
04:09
I bet there are those of you who doubt that superintelligent AI is possible,
85
249360
6336
我確信你們有些人懷疑 超級人工智能出現的可能,
04:15
much less inevitable.
86
255720
1656
更別說它必然出現。
04:17
But then you must find something wrong with one of the following assumptions.
87
257400
3620
但接著你一點會發現 接下來其中一個假設有點問題。
04:21
And there are only three of them.
88
261044
1572
以下只有三個假設。
04:23
Intelligence is a matter of information processing in physical systems.
89
263800
4719
智能是關於資訊 在物質系統裡處理的過程。
04:29
Actually, this is a little bit more than an assumption.
90
269320
2615
其實這個陳述已經不只是一個假設,
04:31
We have already built narrow intelligence into our machines,
91
271959
3457
我們已經在我們的機器裡 安裝了有限的智能,
04:35
and many of these machines perform
92
275440
2016
而很多這樣的機器已經表現出
04:37
at a level of superhuman intelligence already.
93
277480
2640
某種程度的超人類智能。
04:40
And we know that mere matter
94
280840
2576
而我們知道這個現象
04:43
can give rise to what is called "general intelligence,"
95
283440
2616
可能導致被稱為「通用智能」的東西,
04:46
an ability to think flexibly across multiple domains,
96
286080
3656
一種能跨多個領域靈活思考的能力,
04:49
because our brains have managed it. Right?
97
289760
3136
因為我們的腦 已經掌握了這個,對吧?
04:52
I mean, there's just atoms in here,
98
292920
3936
我的意思是,裡面都只是原子,
04:56
and as long as we continue to build systems of atoms
99
296880
4496
只要我們繼續製造基於原子的系統,
05:01
that display more and more intelligent behavior,
100
301400
2696
越來越能表現智能的行為,
05:04
we will eventually, unless we are interrupted,
101
304120
2536
我們終究會,除非我們被打斷,
05:06
we will eventually build general intelligence
102
306680
3376
我們終究會造出通用智能
05:10
into our machines.
103
310080
1296
裝進我們的機器裡。
05:11
It's crucial to realize that the rate of progress doesn't matter,
104
311400
3656
關鍵是理解到發展的速率無關緊要,
05:15
because any progress is enough to get us into the end zone.
105
315080
3176
因為任何進展都足以 帶我們到終結之境。
05:18
We don't need Moore's law to continue. We don't need exponential progress.
106
318280
3776
我們不需要摩爾定律才能繼續。 我們不需要指數型的發展。
05:22
We just need to keep going.
107
322080
1600
我們只需要繼續前進。
05:25
The second assumption is that we will keep going.
108
325480
2920
第二個假設是我們會繼續前進。
05:29
We will continue to improve our intelligent machines.
109
329000
2760
我們會持續改善我們的智能機器。
05:33
And given the value of intelligence --
110
333000
4376
而因為智能的價值──
05:37
I mean, intelligence is either the source of everything we value
111
337400
3536
我的意思是,智能是所有 我們珍視的事物的源頭,
05:40
or we need it to safeguard everything we value.
112
340960
2776
或者我們需要智能 來保護我們珍視的事物。
05:43
It is our most valuable resource.
113
343760
2256
智能是我們最珍貴的資源。
05:46
So we want to do this.
114
346040
1536
所以我們想要這麼做。
05:47
We have problems that we desperately need to solve.
115
347600
3336
我們有許多亟需解決的問題。
05:50
We want to cure diseases like Alzheimer's and cancer.
116
350960
3200
我們想要治癒疾病 如阿茲海默症和癌症。
05:54
We want to understand economic systems. We want to improve our climate science.
117
354960
3936
我們想要了解經濟系統。 我們想要改進我們的氣候科學。
05:58
So we will do this, if we can.
118
358920
2256
所以我們會這麼做,只要我們可以。
06:01
The train is already out of the station, and there's no brake to pull.
119
361200
3286
火車已經出站,而沒有煞車可以拉。
06:05
Finally, we don't stand on a peak of intelligence,
120
365880
5456
最後一點,我們不站在智能的巔峰,
06:11
or anywhere near it, likely.
121
371360
1800
或者根本不在那附近。
06:13
And this really is the crucial insight.
122
373640
1896
而這真的是一種重要的洞察。
06:15
This is what makes our situation so precarious,
123
375560
2416
正是這個讓我們的處境如此危險可疑,
06:18
and this is what makes our intuitions about risk so unreliable.
124
378000
4040
這也讓我們對風險的直覺 變得很不可靠。
06:23
Now, just consider the smartest person who has ever lived.
125
383120
2720
現在,想想這世界上最聰明的人。
06:26
On almost everyone's shortlist here is John von Neumann.
126
386640
3416
每個人的清單上幾乎都會有 約翰·馮·諾伊曼。
06:30
I mean, the impression that von Neumann made on the people around him,
127
390080
3336
我是指, 馮·諾伊曼 對他周圍的人造成的印象,
06:33
and this included the greatest mathematicians and physicists of his time,
128
393440
4056
而這包括和他同時代 最棒的數學家和物理學家,
06:37
is fairly well-documented.
129
397520
1936
被好好地記錄了。
06:39
If only half the stories about him are half true,
130
399480
3776
只要有一半關於他的故事一半是真的,
06:43
there's no question
131
403280
1216
那毫無疑問
06:44
he's one of the smartest people who has ever lived.
132
404520
2456
他是世界上活過最聰明的人之一。
06:47
So consider the spectrum of intelligence.
133
407000
2520
所以考慮智能的頻譜。
06:50
Here we have John von Neumann.
134
410320
1429
約翰·馮·諾伊曼在這裡。
06:53
And then we have you and me.
135
413560
1334
然後你和我在這裡。
06:56
And then we have a chicken.
136
416120
1296
然後雞在這裡。
06:57
(Laughter)
137
417440
1936
(笑聲)
06:59
Sorry, a chicken.
138
419400
1216
抱歉,雞應該在那裡。
07:00
(Laughter)
139
420640
1256
(笑聲)
07:01
There's no reason for me to make this talk more depressing than it needs to be.
140
421920
3736
我實在無意把這個演講 弄得比它本身更讓人感到沮喪。
07:05
(Laughter)
141
425680
1600
(笑聲)
07:08
It seems overwhelmingly likely, however, that the spectrum of intelligence
142
428339
3477
智能的頻譜似乎勢不可擋地
07:11
extends much further than we currently conceive,
143
431840
3120
往比我們能理解的更遠的地方延伸,
07:15
and if we build machines that are more intelligent than we are,
144
435880
3216
如果我們造出 比我們更有智能的機器,
07:19
they will very likely explore this spectrum
145
439120
2296
他們很可能會探索這個頻譜,
07:21
in ways that we can't imagine,
146
441440
1856
以我們無法想像的方式,
07:23
and exceed us in ways that we can't imagine.
147
443320
2520
然後以我們無法想像的方式超越我們。
07:27
And it's important to recognize that this is true by virtue of speed alone.
148
447000
4336
重要的是認識到這說法 僅因速度的優勢即為真。
07:31
Right? So imagine if we just built a superintelligent AI
149
451360
5056
對吧?請想像如果我們造出了 一個超級人工智能,
07:36
that was no smarter than your average team of researchers
150
456440
3456
它不比你一般在史丹佛或麻省理工 遇到的研究團隊聰明。
07:39
at Stanford or MIT.
151
459920
2296
07:42
Well, electronic circuits function about a million times faster
152
462240
2976
電子電路作用的速率 比起生化作用快一百萬倍,
07:45
than biochemical ones,
153
465240
1256
07:46
so this machine should think about a million times faster
154
466520
3136
所以這個機器思考應該 比製造它的心智快一百萬倍。
07:49
than the minds that built it.
155
469680
1816
07:51
So you set it running for a week,
156
471520
1656
如果你設定讓它運行一星期,
07:53
and it will perform 20,000 years of human-level intellectual work,
157
473200
4560
他會執行人類兩萬年的智能工作,
07:58
week after week after week.
158
478400
1960
一週接著一週接著一週。
08:01
How could we even understand, much less constrain,
159
481640
3096
我們如何可能理解,較不嚴格地說,
08:04
a mind making this sort of progress?
160
484760
2280
一個達成如此進展的心智?
08:08
The other thing that's worrying, frankly,
161
488840
2136
另一個另人擔心的事,老實說,
08:11
is that, imagine the best case scenario.
162
491000
4976
是想像最好的情況。
08:16
So imagine we hit upon a design of superintelligent AI
163
496000
4176
想像我們想到一個沒有安全顧慮的 超級人工智能的設計,
08:20
that has no safety concerns.
164
500200
1376
08:21
We have the perfect design the first time around.
165
501600
3256
我們第一次就做出了完美的設計。
08:24
It's as though we've been handed an oracle
166
504880
2216
如同我們被給予了一個神諭,
08:27
that behaves exactly as intended.
167
507120
2016
完全照我們的預期地動作。
08:29
Well, this machine would be the perfect labor-saving device.
168
509160
3720
這個機器會是完美的人力節約裝置。
08:33
It can design the machine that can build the machine
169
513680
2429
它能設計一個機器,
那機器能製造出能做任何人工的機器,
08:36
that can do any physical work,
170
516133
1763
08:37
powered by sunlight,
171
517920
1456
以太陽能驅動,
08:39
more or less for the cost of raw materials.
172
519400
2696
幾乎只需要原料的成本。
08:42
So we're talking about the end of human drudgery.
173
522120
3256
所以我們是在談人類苦役的終結。
08:45
We're also talking about the end of most intellectual work.
174
525400
2800
我們也是在談大部分 智力工作的終結。
08:49
So what would apes like ourselves do in this circumstance?
175
529200
3056
像我們一樣的猩猩 在這種情況下會做什麼?
08:52
Well, we'd be free to play Frisbee and give each other massages.
176
532280
4080
我們可能可以自由地 玩飛盤和互相按摩。
08:57
Add some LSD and some questionable wardrobe choices,
177
537840
2856
加上一點迷幻藥和可議的服裝選擇,
09:00
and the whole world could be like Burning Man.
178
540720
2176
整個世界都可以像在過火人祭典。
09:02
(Laughter)
179
542920
1640
(笑聲)
09:06
Now, that might sound pretty good,
180
546320
2000
那聽起來也許很不錯,
09:09
but ask yourself what would happen
181
549280
2376
但請問,在我們目前的經濟和政治 秩序下,會發生什麼事情?
09:11
under our current economic and political order?
182
551680
2736
09:14
It seems likely that we would witness
183
554440
2416
我們很可能會見證
09:16
a level of wealth inequality and unemployment
184
556880
4136
一種我們從未見過的 財富不均和失業程度。
09:21
that we have never seen before.
185
561040
1496
09:22
Absent a willingness to immediately put this new wealth
186
562560
2616
缺乏一種意願來把這份新財富馬上
09:25
to the service of all humanity,
187
565200
1480
放在服務全人類,
09:27
a few trillionaires could grace the covers of our business magazines
188
567640
3616
少數幾個萬億富翁 能登上我們的財經雜誌,
09:31
while the rest of the world would be free to starve.
189
571280
2440
而其他人可以自由地選擇挨餓。
09:34
And what would the Russians or the Chinese do
190
574320
2296
而俄國和中國會怎麼做?
09:36
if they heard that some company in Silicon Valley
191
576640
2616
當他們聽說矽谷的某個公司
09:39
was about to deploy a superintelligent AI?
192
579280
2736
即將部署一個超級人工智能,
09:42
This machine would be capable of waging war,
193
582040
2856
這個機器能夠發動戰爭,
09:44
whether terrestrial or cyber,
194
584920
2216
無論是領土侵略或者網路電子戰,
09:47
with unprecedented power.
195
587160
1680
以前所未見的威力。
09:50
This is a winner-take-all scenario.
196
590120
1856
這是個贏者全拿的劇本。
09:52
To be six months ahead of the competition here
197
592000
3136
在這個競爭領先六個月
09:55
is to be 500,000 years ahead,
198
595160
2776
等於領先五十萬年,
09:57
at a minimum.
199
597960
1496
最少。
09:59
So it seems that even mere rumors of this kind of breakthrough
200
599480
4736
所以即使僅僅是這種突破的謠言
10:04
could cause our species to go berserk.
201
604240
2376
都能使我們這個種族走向狂暴。
10:06
Now, one of the most frightening things,
202
606640
2896
現在,最讓人驚恐的事情,
10:09
in my view, at this moment,
203
609560
2776
在我的看法,在這個時刻,
10:12
are the kinds of things that AI researchers say
204
612360
4296
是人工智慧研究者在試著表現得 讓人安心時說的那類話。
10:16
when they want to be reassuring.
205
616680
1560
10:19
And the most common reason we're told not to worry is time.
206
619000
3456
而最常用來告訴我們 現在不要擔心的理由是時間。
10:22
This is all a long way off, don't you know.
207
622480
2056
這還有很長的路要走,你不知道嗎,
10:24
This is probably 50 or 100 years away.
208
624560
2440
起碼還要 50 到 100 年。
10:27
One researcher has said,
209
627720
1256
一個研究人員曾說,
10:29
"Worrying about AI safety
210
629000
1576
「憂心人工智慧安全
10:30
is like worrying about overpopulation on Mars."
211
630600
2280
如同憂心火星人口爆炸。」
10:34
This is the Silicon Valley version
212
634116
1620
這是矽谷版本的
10:35
of "don't worry your pretty little head about it."
213
635760
2376
「別杞人憂天。」
(笑聲)
10:38
(Laughter)
214
638160
1336
10:39
No one seems to notice
215
639520
1896
似乎沒人注意到
10:41
that referencing the time horizon
216
641440
2616
以時間當參考
10:44
is a total non sequitur.
217
644080
2576
是一個不合理的推論。
10:46
If intelligence is just a matter of information processing,
218
646680
3256
如果智能只是關於資訊的處理,
10:49
and we continue to improve our machines,
219
649960
2656
而我們持續改善我們的機器,
10:52
we will produce some form of superintelligence.
220
652640
2880
我們會製作出某種形式的超級智能。
10:56
And we have no idea how long it will take us
221
656320
3656
而且我們不知道要花我們多長的時間
11:00
to create the conditions to do that safely.
222
660000
2400
來創造安全地這麼做的條件。
11:04
Let me say that again.
223
664200
1296
讓我再說一次,
11:05
We have no idea how long it will take us
224
665520
3816
我們不知道要花我們多長的時間
11:09
to create the conditions to do that safely.
225
669360
2240
來創造安全地這麼做的條件。
11:12
And if you haven't noticed, 50 years is not what it used to be.
226
672920
3456
而且如果你還沒注意到, 50 年已經不像以前的概念。
11:16
This is 50 years in months.
227
676400
2456
這是 50 年以月來表示。
11:18
This is how long we've had the iPhone.
228
678880
1840
這是我們有了 iPhone 的時間。
11:21
This is how long "The Simpsons" has been on television.
229
681440
2600
這是《辛普森家庭》 在電視上播映的時間。
11:24
Fifty years is not that much time
230
684680
2376
50 年不是那麼長的時間
11:27
to meet one of the greatest challenges our species will ever face.
231
687080
3160
來面對對我們這個種族來說 最巨大的挑戰之一。
11:31
Once again, we seem to be failing to have an appropriate emotional response
232
691640
4016
再一次說,我們似乎 無法產生適當的情緒反應,
11:35
to what we have every reason to believe is coming.
233
695680
2696
對應我們有所有的理由 相信將發生的事。
11:38
The computer scientist Stuart Russell has a nice analogy here.
234
698400
3976
資訊科學家斯圖亞特·羅素 有個很好的比喻。
11:42
He said, imagine that we received a message from an alien civilization,
235
702400
4896
他說,想像我們收到一則 外星文明的訊息,
11:47
which read:
236
707320
1696
寫道:
11:49
"People of Earth,
237
709040
1536
「地球的人們,
11:50
we will arrive on your planet in 50 years.
238
710600
2360
我們 50 年內會到達你們的星球。
11:53
Get ready."
239
713800
1576
作好準備。」
11:55
And now we're just counting down the months until the mothership lands?
240
715400
4256
而現在我們只是在倒數 外星母艦還剩幾個月登陸?
11:59
We would feel a little more urgency than we do.
241
719680
3000
我們會比我們現在稍微感到緊迫。
12:04
Another reason we're told not to worry
242
724680
1856
另一個我們被告知不用擔心的原因
12:06
is that these machines can't help but share our values
243
726560
3016
是這些機器不得不和我們 有一樣的價值觀,
12:09
because they will be literally extensions of ourselves.
244
729600
2616
因為他們實際上只是我們的延伸。
12:12
They'll be grafted onto our brains,
245
732240
1816
它們會被植入我們的大腦裡,
12:14
and we'll essentially become their limbic systems.
246
734080
2360
而我們基本上變成 他們大腦的邊緣系統。
12:17
Now take a moment to consider
247
737120
1416
現在用一點時間想想
12:18
that the safest and only prudent path forward,
248
738560
3176
這最安全而且唯一謹慎的往前的路,
12:21
recommended,
249
741760
1336
被推薦的,
12:23
is to implant this technology directly into our brains.
250
743120
2800
是將這個科技植入我們的腦內。
12:26
Now, this may in fact be the safest and only prudent path forward,
251
746600
3376
這也許的確是最安全 而且唯一謹慎的往前的路,
12:30
but usually one's safety concerns about a technology
252
750000
3056
但通常科技的安全性問題
12:33
have to be pretty much worked out before you stick it inside your head.
253
753080
3656
應該在把東西插到你腦袋裡之前 就該大部分解決了。
12:36
(Laughter)
254
756760
2016
(笑聲)
12:38
The deeper problem is that building superintelligent AI on its own
255
758800
5336
更深層的問題是, 打造超級人工智能本身,
12:44
seems likely to be easier
256
764160
1736
似乎相對容易於
12:45
than building superintelligent AI
257
765920
1856
打造超級人工智慧
12:47
and having the completed neuroscience
258
767800
1776
並擁有完整的神經科學,
12:49
that allows us to seamlessly integrate our minds with it.
259
769600
2680
讓我們可以把我們的心智 無縫與之整合。
12:52
And given that the companies and governments doing this work
260
772800
3176
而假設正在從事人工智能 研發的許多公司和政府,
12:56
are likely to perceive themselves as being in a race against all others,
261
776000
3656
很可能察覺他們 正在和所有其他人競爭,
12:59
given that to win this race is to win the world,
262
779680
3256
假設贏了這個競爭就是贏得世界,
13:02
provided you don't destroy it in the next moment,
263
782960
2456
假設你在下一刻不會毀了世界,
13:05
then it seems likely that whatever is easier to do
264
785440
2616
那麼很可能比較容易做的事
13:08
will get done first.
265
788080
1200
就會先被做完。
13:10
Now, unfortunately, I don't have a solution to this problem,
266
790560
2856
現在,很不幸地, 我沒有這個問題的解決方法,
13:13
apart from recommending that more of us think about it.
267
793440
2616
除了建議我們更多人思考這個問題。
我想我們需要類似曼哈頓計畫的東西,
13:16
I think we need something like a Manhattan Project
268
796080
2376
13:18
on the topic of artificial intelligence.
269
798480
2016
針對人工智能這個課題。
13:20
Not to build it, because I think we'll inevitably do that,
270
800520
2736
不是因為我們不可避免地 要這麼做而做,
而是試著理解如何避免軍備競賽,
13:23
but to understand how to avoid an arms race
271
803280
3336
13:26
and to build it in a way that is aligned with our interests.
272
806640
3496
而且用一種符合 我們利益的方式打造之。
13:30
When you're talking about superintelligent AI
273
810160
2136
當你在談論能夠對其本身 造成改變的超級人工智能,
13:32
that can make changes to itself,
274
812320
2256
13:34
it seems that we only have one chance to get the initial conditions right,
275
814600
4616
這似乎說明我們只有一次機會 把初始條件做對,
13:39
and even then we will need to absorb
276
819240
2056
而且我們會必須承受
13:41
the economic and political consequences of getting them right.
277
821320
3040
為了將它們做對的經濟和政治後果。
13:45
But the moment we admit
278
825760
2056
但一旦我們承認
13:47
that information processing is the source of intelligence,
279
827840
4000
資訊處理是智能的源頭,
13:52
that some appropriate computational system is what the basis of intelligence is,
280
832720
4800
某些適當的電腦系統是智能的基礎,
13:58
and we admit that we will improve these systems continuously,
281
838360
3760
而且我們承認我們會 持續改進這些系統,
14:03
and we admit that the horizon of cognition very likely far exceeds
282
843280
4456
而且我們承認認知的極限 有可能遠遠超越
14:07
what we currently know,
283
847760
1200
我們目前所知,
14:10
then we have to admit
284
850120
1216
我們就會承認
14:11
that we are in the process of building some sort of god.
285
851360
2640
我們正在打造某種神明的過程裡。
14:15
Now would be a good time
286
855400
1576
現在是個好時機
14:17
to make sure it's a god we can live with.
287
857000
1953
來確保那是個我們能夠 與之共存的神明。
14:20
Thank you very much.
288
860120
1536
謝謝大家。
14:21
(Applause)
289
861680
5093
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7