Visualizing the world's Twitter data - Jer Thorp

把推特上的數據影像化 - Jer Thorp

68,656 views ・ 2013-02-21

TED-Ed


請雙擊下方英文字幕播放視頻。

00:00
Transcriber: Andrea McDonough Reviewer: Bedirhan Cinar
0
0
7000
譯者: Jephian Lin 審譯者: Coco Shen
00:14
A couple of years ago I started using Twitter,
1
14668
2110
幾年前,我開始使用推特(Twitter),
00:16
and one of the things that really charmed me about Twitter
2
16778
3106
而推特它其中一樣 真的很吸引我的一點
00:19
is that people would wake up in the morning
3
19884
2213
就是人們會一早起來
00:22
and they would say, "Good morning!"
4
22097
2259
然後他們會說:「早安!」
00:24
which I thought,
5
24356
1054
這讓我覺得,
00:25
I'm a Canadian,
6
25410
1113
因為我來自加拿大,
00:26
so I was a little bit,
7
26523
808
所以我有一點點
00:27
I liked that politeness.
8
27331
1769
喜歡這種禮貌。
00:29
And so, I'm also a giant nerd,
9
29100
2563
而,我同時也是一個電腦狂,
00:31
and so I wrote a computer program
10
31663
1417
所以我寫了一個電腦程式,
00:33
that would record 24 hours of everybody on Twitter
11
33080
3421
它會記錄二十四小時中 在推特上每一位
00:36
saying, "Good morning!"
12
36501
1324
說「早安」的人。
00:37
And then I asked myself my favorite question,
13
37825
2213
接著我自己 一個我很喜歡的問題:
00:40
"What would that look like?"
14
40038
1639
「這看起來會是什麼樣子?」
00:41
Well, as it turns out, I think it would look something like this.
15
41677
3305
嗯,結果就是, 我想它看起來像這樣。
00:44
Right, so we'd see this wave of people
16
44982
2063
好,所以我們可以看到 這股世界各地
00:47
saying, "Good morning!" across the world as they wake up.
17
47045
3445
在起床時說「早安」的人 的波動。
00:50
Now the green people, these are people that wake up
18
50490
1794
這些綠色的人,他們是
00:52
at around 8 o'clock in the morning,
19
52284
2075
大約八點起床的。
00:54
Who wakes up at 8 o'clock or says, "Good morning!" at 8?
20
54359
3096
有誰在八點起床或是 在八點的時候說「早安」?
00:57
And the orange people,
21
57455
859
而橘色的人,
00:58
they say, "Good morning!" around 9.
22
58314
3579
他們大約在九點的時候說「早安」。
01:01
And the red people, they say, "Good morning!" around 10.
23
61906
2845
接著是紅色的人, 他們大約在十點的時候說「早安」。
01:04
Yeah, more at 10's than, more at 10's than 8's.
24
64751
3311
沒錯,十點的,十點的比八點的多。
01:08
And actually if you look at this map,
25
68062
1127
而事實上如果你看 這張地圖,
01:09
we can learn a little bit about how people wake up
26
69189
1933
你可以了解到 各地的人們
01:11
in different parts of the world.
27
71122
1275
起床時間有什麼不同。
01:12
People on the West Coast, for example,
28
72397
1345
比如說,西岸的人們
01:13
they wake up a little bit later
29
73742
1353
他們比東岸的人們
01:15
than those people on the East Coast.
30
75095
2965
晚起一些些。
01:18
But that's not all that people say on Twitter, right?
31
78060
2358
但這不是推特上對話的全部,對吧?
01:20
We also get these really important tweets, like,
32
80418
2340
還有一些非常重要的推文:
01:22
"I just landed in Orlando!! [plane sign, plane sign]"
33
82758
4869
「我剛抵達奧蘭多!![飛機圖,飛機圖]」
01:27
Or, or, "I just landed in Texas [exclamation point]!"
34
87627
3518
或是「我剛抵達德州![驚嘆號]」
01:31
Or "I just landed in Honduras!"
35
91145
2274
或「我剛抵達洪都拉斯!」
01:33
These lists, they go on and on and on,
36
93419
2140
這些清單,他們到這玩 到那玩,
01:35
all these people, right?
37
95559
1873
都這些人,對吧?
01:37
So, on the outside, these people are just telling us
38
97432
2737
所以,表面上, 這些人只是告訴我們
01:40
something about how they're traveling.
39
100169
2369
一些他們旅行的事。
01:42
But we know the truth, don't we?
40
102538
1802
但我們知道事實,對吧?
01:44
These people are show-offs!
41
104340
1901
他們在炫耀!
01:46
They are showing off that they're in Cape Town and I'm not.
42
106241
4194
他們在炫耀他們在開普敦 我卻不是。
01:50
So I thought, how can we take this vanity
43
110435
2652
所以我想,我們可以如何 利用這虛榮心
01:53
and turn it into utility?
44
113087
1796
而轉成有用的東西?
01:54
So using a similar approach that I did with "Good morning,"
45
114883
3421
所以我用了 跟「早安」類似的方法,
01:58
I mapped all those people's trips
46
118304
2259
我把這些人的旅程 標在地圖上,
02:00
because I know where they're landing,
47
120563
2092
因為我知道他們目的地在哪。
02:02
they just told me,
48
122655
1070
是他們說的,
02:03
and I know where they live
49
123725
1231
而我知道他們住哪,
02:04
because they share that information on their Twitter profile.
50
124956
4012
因為他們在推特上 分享他們的個人資訊。
02:08
So what I'm able to do with 36 hours of Twitter
51
128968
3332
所以我能夠在 三十六小時的推特上做的事
02:12
is create a model of how people are traveling
52
132300
2921
就是建立一個 全世界的人們
02:15
around the world during that 36 hours.
53
135221
3018
在三十六小時內 旅行的模型。
02:18
And this is kind of a prototype
54
138239
1486
這其實是一個原型,
02:19
because I think if we listen to everybody
55
139725
2906
因為我想如果我們聆聽
02:22
on Twitter and Facebook and the rest of our social media,
56
142631
2758
人們在推特、臉書、 各種社群網站的紀錄,
02:25
we'd actually get a pretty clear picture
57
145389
1889
我們就可以得到,
02:27
of how people are traveling from one place to the other,
58
147278
3240
人們如何旅行的清楚畫面,
02:30
which is actually turns out to be a very useful thing for scientists,
59
150518
3170
這對科學家來說 將會非常有用,
02:33
particularly those who are studying how disease is spread.
60
153688
3738
尤其是對那些 研究疾病如何傳播的人來說。
02:37
So, I work upstairs in the New York Times,
61
157426
2187
所以,我在紐約時報樓上工作,
02:39
and for the last two years,
62
159613
1109
在過去兩年裡,
02:40
we've been working on a project called, "Cascade,"
63
160722
2101
我們一直在做一個叫做瀑布(Cascade)的專案,
02:42
which in some ways is kind of similar to this one.
64
162823
2649
在某些方面來說 跟這個很像。
02:45
But instead of modeling how people move,
65
165472
2222
但我們不是為人們如何移動 建構模型,
02:47
we're modeling how people talk.
66
167694
2168
而是為人們如何對話 建構模型。
02:49
We're looking at what does a discussion look like.
67
169862
3178
我們在看 一個像這樣的對話。
02:53
Well, here's an example.
68
173040
1853
嗯,這是一個例子。
02:54
This is a discussion around an article called,
69
174893
2815
這是關於一篇文章的討論。 這篇文章叫作
02:57
"The Island Where People Forget to Die".
70
177708
2009
「人們忘記死亡的島嶼」
02:59
It's about an island in Greece where people live
71
179717
1642
是在講希臘的一座島嶼,
03:01
a really, really, really, really, really, really long time.
72
181359
3070
上面住的人都 非常、非常、非常長壽。
03:04
And what we're seeing here
73
184429
1063
而我們可以看到的
03:05
is we're seeing a conversation that's stemming
74
185492
1922
是一連串從底部、
03:07
from that first tweet down in the bottom, left-hand corner.
75
187414
3038
左下角的第一篇推文 衍生出的討論串。
03:10
So we get to see the scope of this conversation
76
190452
2513
所以我們可以看到 這個討論串的廣度,
03:12
over about 9 hours right now,
77
192965
2168
現在是九小時左右的樣子,
03:15
we're going to creep up to 12 hours here in a second.
78
195133
2350
它會在幾秒後 蔓延成十二小時的樣子。
03:17
But, we can also see what that conversation
79
197483
2319
而,我們也可以用
03:19
looks like in three dimensions.
80
199802
1802
三度空間的方式 看這討論串。
03:21
And that three-dimensional view is actually much more useful for us.
81
201604
3304
而這立體的影像 對我們來說會更有用。
03:24
As humans, we are really used to things
82
204908
1289
身為人類,我們已經習慣
03:26
that are structured as three dimensions.
83
206197
1902
事物處於立體的狀態。
03:28
So, we can look at those little off-shoots of conversation,
84
208099
2679
所以,我們可以看到 一些討論串的分枝,
03:30
we can find out what exactly happened.
85
210778
2562
我們可以看到 到底發生哪些事情。
03:33
And this is an interactive, exploratory tool
86
213340
1903
這是一個互動的、 探索性的工具,
03:35
so we can go through every step in the conversation.
87
215243
2534
所以我們可以 點開每部份的討論。
03:37
We can look at who the people were,
88
217777
1366
我們可以看到 發文的人們是誰、
03:39
what they said,
89
219143
1060
說了什麼、
03:40
how old they are,
90
220203
1109
年紀多大、
03:41
where they live,
91
221312
1167
住在哪裡、
03:42
who follows them,
92
222479
992
誰跟著推文了,
03:43
and so on, and so on, and so on.
93
223471
2479
還有許多、許多、許多。
03:45
So, the Times creates about 6,500 pieces of content every month,
94
225950
4882
所以,紐約時報每個月發表了 大約 6,500 個文章,
03:50
and we can model every single one
95
230832
1658
而我們會為 每個文章的討論串
03:52
of the conversations that happen around them.
96
232490
1732
以及相關發生的事情 建構模型。
03:54
And they look somewhat different.
97
234222
1448
而它們看起來有點不一樣。
03:55
Depending on the story
98
235670
1167
跟文章內容有關,
03:56
and depending on how fast people are talking about it
99
236837
2727
也取決於人們 有多快會得到訊息、
03:59
and how far the conversation spreads,
100
239564
1835
或是討論串有傳得多遠,
04:01
these structures, which I call these conversational architectures,
101
241399
4218
這些結構, 我把它叫做討論結構,
04:05
end up looking different.
102
245617
2455
它們看起來都不一樣。
04:08
So, these projects that I've shown you,
103
248072
2102
所以, 這些我給你看的專案,
04:10
I think they all involve the same thing:
104
250174
2364
我想他們都 涉及同一件事:
04:12
we can take small pieces of data
105
252538
2075
我們把小量的數據
04:14
and by putting them together,
106
254613
1565
把它們放在一起,
04:16
we can generate more value,
107
256178
2236
就可以產生更多價值,
04:18
we can do more exciting things with them.
108
258414
2103
用它們做些更有趣的事。
04:20
But so far we've only talked about Twitter, right?
109
260517
2204
到目前為止, 我們只談到推特而已,對吧?
04:22
And Twitter isn't all the data.
110
262721
1965
而可用的數據並不只有推特而已。
04:24
We learned a moment ago
111
264686
1202
一些日子前, 我們知道
04:25
that there is tons and tons,
112
265888
1248
還有很多、很多、
04:27
tons more data out there.
113
267136
2224
很多的數據可用。
04:29
And specifically, I want you to think about one type of data
114
269360
3089
特別的是,我希望你們 想看看其中一種數據,
04:32
because all of you guys,
115
272449
1942
因為你們所有人、
04:34
everybody in this audience, we,
116
274391
1597
在場的所有人,我們、
04:35
we, me as well,
117
275988
1640
我們,我也是,
04:37
are data-making machines.
118
277629
2545
都是數據製造機。
04:40
We are producing data all the time.
119
280174
2534
我們隨時都在製造資訊。
04:42
Every single one of us, we're producing data.
120
282708
2205
我們之中每一個人, 都在製造數據。
04:44
Somebody else, though, is storing that data.
121
284913
2307
雖然,其它有些人 是在儲存數據。
04:47
Usually we put our trust into companies to store that data,
122
287220
5538
通常我們對一些公司付出信任 所以將數據儲存在那,
04:52
but what I want to suggest here
123
292758
2532
但我想要建議的是
04:55
is that rather than putting our trust
124
295290
1774
與其相信這些為我們
04:57
in companies to store that data,
125
297064
1735
保存數據的公司,
04:58
we should put the trust in ourselves
126
298799
1688
我們更應該相信自己
05:00
because we actually own that data.
127
300487
1919
因為我們是這些數據的擁有人。
05:02
Right, that is something we should remember.
128
302406
1867
沒錯,我們該記住這件事。
05:04
Everything that someone else measures about you,
129
304273
2927
每一樣別人拿來評量你的標準,
05:07
you actually own.
130
307200
2111
其實是你擁有的。
05:09
So, it's my hope,
131
309311
1167
所以,我的希望是,
05:10
maybe because I'm a Canadian,
132
310478
2190
也許是因為我是個加拿大人,
05:12
that all of us can come together
133
312668
1731
我希望我們所有人 帶著這些
05:14
with this really valuable data that we've been storing,
134
314399
3786
我們所儲存的珍貴的數據 聚在一起,
05:18
and we can collectively launch that data
135
318185
2878
然後我們可以 一起分享這些數據
05:21
toward some of the world's most difficulty problems
136
321063
2841
來解決這世上一些 最困難的問題,
05:23
because big data can solve big problems,
137
323904
3115
因為大的數據 可以解決大的問題,
05:27
but I think it can do it the best
138
327019
1635
但我想最好的狀況應是
05:28
if it's all of us who are in control.
139
328654
2870
我們眾人自己主導這件事情。
05:31
Thank you.
140
331524
1502
謝謝。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7