The next software revolution: programming biological cells | Sara-Jane Dunn

170,508 views ・ 2019-11-26

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jiasi Hao 校对人员: psjmz mz
00:12
The second half of the last century was completely defined
0
12750
4509
上世纪后半叶,全然是一个
00:17
by a technological revolution:
1
17283
1999
被科学革命所定义的时代:
00:19
the software revolution.
2
19306
1435
软件革命。
00:21
The ability to program electrons on a material called silicon
3
21313
4808
在一种硅半导体材料上 对电子进行编程的能力
使得我们许多人曾无法想象的
00:26
made possible technologies, companies and industries
4
26145
3073
00:29
that were at one point unimaginable to many of us,
5
29242
3977
科技、公司和行业变为可能。
00:33
but which have now fundamentally changed the way the world works.
6
33243
3915
这如今已彻底改变了 世界运作的方式。
00:38
The first half of this century, though,
7
38158
1921
不过,本世纪上半叶
00:40
is going to be transformed by a new software revolution:
8
40103
3978
将要被一个 崭新的软件革命所转化:
生物软件革命。
00:44
the living software revolution.
9
44105
2435
00:46
And this will be powered by the ability to program biochemistry
10
46921
4050
在一种名为生物的材料上 对生物化学进行编程的能力
00:50
on a material called biology.
11
50995
2295
将会支持这一革命。
00:53
And doing so will enable us to harness the properties of biology
12
53314
4141
如此一来, 我们将能够利用生物特征
00:57
to generate new kinds of therapies,
13
57479
2656
去开发新型疗法,
01:00
to repair damaged tissue,
14
60159
1868
去修复受损组织,
去重编缺陷细胞,
01:02
to reprogram faulty cells
15
62051
2725
01:04
or even build programmable operating systems out of biochemistry.
16
64800
4554
甚至利用生物化学 构建一个可编程的操作系统。
01:10
If we can realize this -- and we do need to realize it --
17
70420
3573
如果我们能实现它—— 而且我们确实需要实现它——
其影响将会如此巨大,
01:14
its impact will be so enormous
18
74017
2162
01:16
that it will make the first software revolution pale in comparison.
19
76203
3877
以至于第一个软件革命, 相比之下,会变得微不足道。
这是因为生物软件 可以变革整个医疗,
01:20
And that's because living software would transform the entirety of medicine,
20
80104
4234
01:24
agriculture and energy,
21
84362
1559
农业和能源领域,
01:25
and these are sectors that dwarf those dominated by IT.
22
85945
3828
以及那些被 IT 人员掌控的部门。
01:30
Imagine programmable plants that fix nitrogen more effectively
23
90812
4174
想象一下可编程植物: 能够更有效进行固氮,
或可以抵御新型真菌病原体,
01:35
or resist emerging fungal pathogens,
24
95010
2905
01:37
or even programming crops to be perennial rather than annual
25
97939
3537
甚至能够将农作物编程为 多年生而非一年生,
01:41
so you could double your crop yields each year.
26
101500
2268
使你的年产量可以翻倍。
01:43
That would transform agriculture
27
103792
2098
这会改变农业,
01:45
and how we'll keep our growing and global population fed.
28
105914
4104
同时改变全球不断增长的 粮食需求的方法。
01:50
Or imagine programmable immunity,
29
110794
2262
或想象可编程的免疫力,
设计并利用能够指导 你免疫系统的分子设备
01:53
designing and harnessing molecular devices that guide your immune system
30
113080
4238
01:57
to detect, eradicate or even prevent disease.
31
117342
3830
去检测、根除,甚至预防疾病。
这将改变医疗,
02:01
This would transform medicine
32
121196
1571
02:02
and how we'll keep our growing and aging population healthy.
33
122791
3489
同时改变我们试图保持 不断增长且老龄化的人口健康的方法。
02:07
We already have many of the tools that will make living software a reality.
34
127501
4203
我们已经拥有很多 能让生物软件成为现实的工具。
02:11
We can precisely edit genes with CRISPR.
35
131728
2347
我们能使用 CRISPR 技术 精确编辑基因。
我们能每次重写一个遗传密码。
02:14
We can rewrite the genetic code one base at a time.
36
134099
3083
02:17
We can even build functioning synthetic circuits out of DNA.
37
137206
4436
我们甚至能利用 DNA 开发一个合成电路。
02:22
But figuring out how and when to wield these tools
38
142428
2469
但是摸索出 如何且何时使用这些工具
02:24
is still a process of trial and error.
39
144921
2422
依旧是一个试错的过程。
02:27
It needs deep expertise, years of specialization.
40
147367
3660
它要求极高的专业性 和多年的领域专精。
而且实验方法难以发现,
02:31
And experimental protocols are difficult to discover
41
151051
3037
往往更是难以复制。
02:34
and all too often, difficult to reproduce.
42
154112
2582
02:37
And, you know, we have a tendency in biology to focus a lot on the parts,
43
157256
4473
在生物领域,我们倾向 仅专注于局部,
02:41
but we all know that something like flying wouldn't be understood
44
161753
3133
但我们都知道有些东西,例如飞行, 单就羽毛进行研究,
02:44
by only studying feathers.
45
164910
1339
是无法理解其原理的。
02:46
So programming biology is not yet as simple as programming your computer.
46
166846
4521
所以生物编程还未能像 电脑编程那样简单。
02:51
And then to make matters worse,
47
171391
1678
更糟糕的是,
02:53
living systems largely bear no resemblance to the engineered systems
48
173093
4010
生物系统和你我 每天编写的工程系统
02:57
that you and I program every day.
49
177127
2096
几乎毫无相似之处。
02:59
In contrast to engineered systems, living systems self-generate,
50
179691
4111
相比工程系统, 生物系统能自我生产、
03:03
they self-organize,
51
183826
1471
自我组织,
03:05
they operate at molecular scales.
52
185321
1687
并以分子规模运作。
03:07
And these molecular-level interactions
53
187032
2136
这些分子层级的相互作用
03:09
lead generally to robust macro-scale output.
54
189192
3018
通常会导致稳健的宏观规模输出,
03:12
They can even self-repair.
55
192234
2720
它甚至可以自我修复。
03:16
Consider, for example, the humble household plant,
56
196256
2994
试想家中一盆不起眼的植物,
03:19
like that one sat on your mantelpiece at home
57
199274
2187
比如你家壁炉台上的那盆
03:21
that you keep forgetting to water.
58
201485
1787
你老是忘记浇水的植物。
03:23
Every day, despite your neglect, that plant has to wake up
59
203749
3615
尽管你会忘记, 那盆植物每天都需要醒来
03:27
and figure out how to allocate its resources.
60
207388
2747
并思考如何分配它所有的资源。
03:30
Will it grow, photosynthesize, produce seeds, or flower?
61
210159
3571
它是生长、进行光合作用、 产生种子,还是开花?
03:33
And that's a decision that has to be made at the level of the whole organism.
62
213754
3939
这是这盆植物所需要做出的决定。
03:37
But a plant doesn't have a brain to figure all of that out.
63
217717
3481
但一盆植物没有大脑来弄清这件事。
03:41
It has to make do with the cells on its leaves.
64
221222
2717
这需要其叶片上细胞的帮助。
03:43
They have to respond to the environment
65
223963
1903
它们需要针对环境做出反应,
03:45
and make the decisions that affect the whole plant.
66
225890
2649
并且做出影响整盆植物的决定。
03:48
So somehow there must be a program running inside these cells,
67
228563
3988
所以在那些叶片细胞中 必定要有一个运行的程序,
03:52
a program that responds to input signals and cues
68
232575
2727
一个能响应输入信号与提示,
03:55
and shapes what that cell will do.
69
235326
1940
以及调整细胞行为的程序。
03:57
And then those programs must operate in a distributed way
70
237679
3247
之后,那些程序 必须以分布式运行,
04:00
across individual cells,
71
240950
1337
覆盖每一个细胞单元,
04:02
so that they can coordinate and that plant can grow and flourish.
72
242311
4123
从而进行协作 让植物茁壮成长。
04:07
If we could understand these biological programs,
73
247675
3316
如果我们能够了解那些生物程序,
如果我们能够明白那些生物计算,
04:11
if we could understand biological computation,
74
251015
3122
04:14
it would transform our ability to understand how and why
75
254161
3937
这将会转变我们对细胞 的行为方式和行为原因的
04:18
cells do what they do.
76
258122
1546
理解能力。
04:20
Because, if we understood these programs,
77
260152
1987
因为,如果我们了解那些程序,
当出现问题时, 我们可以为它们排错。
04:22
we could debug them when things go wrong.
78
262163
2133
04:24
Or we could learn from them how to design the kind of synthetic circuits
79
264320
4193
或我们可以向它们学习 如何设计这样
04:28
that truly exploit the computational power of biochemistry.
80
268537
4474
能充分利用生物化学 计算能力的合成电路。
04:34
My passion about this idea led me to a career in research
81
274407
3018
我对这个想法的热情, 让我进入了
04:37
at the interface of maths, computer science and biology.
82
277449
3631
数学、计算机科学 和生物学的交叉领域。
04:41
And in my work, I focus on the concept of biology as computation.
83
281104
4726
工作中,我专注于一个概念: 生物学计算。
04:46
And that means asking what do cells compute,
84
286334
3142
这代表着不断询问 细胞在计算什么,
04:49
and how can we uncover these biological programs?
85
289500
3517
以及我们如何能 解开这些生物程序的奥秘?
04:53
And I started to ask these questions together with some brilliant collaborators
86
293760
3757
我开始和微软研究院与剑桥大学
04:57
at Microsoft Research and the University of Cambridge,
87
297541
2571
的一些出色的合作人士 一起询问这些问题,
05:00
where together we wanted to understand
88
300136
2283
我们想要了解
05:02
the biological program running inside a unique type of cell:
89
302443
4177
在一种独特细胞中 运行的生物程序:
05:06
an embryonic stem cell.
90
306644
1894
胚胎干细胞( ES 细胞)。
05:09
These cells are unique because they're totally naïve.
91
309136
3160
这些细胞很独特,因为它们 非常稚嫩(即未高度分化)。
05:12
They can become anything they want:
92
312320
2168
它们能够分化 为它们想要变成的东西:
05:14
a brain cell, a heart cell, a bone cell, a lung cell,
93
314512
2565
一个脑细胞,一个心脏细胞, 一个骨细胞,一个肺细胞,
任何一种成熟细胞。
05:17
any adult cell type.
94
317101
1897
这一稚嫩状态让这些细胞 变得与众不同,
05:19
This naïvety, it sets them apart,
95
319022
1677
05:20
but it also ignited the imagination of the scientific community,
96
320723
3001
但也激发了科学界的想象力。
05:23
who realized, if we could tap into that potential,
97
323748
3263
科学家们意识到, 如果我们能挖掘这一特性的潜力,
我们将会拥有一个 强大的医疗工具。
05:27
we would have a powerful tool for medicine.
98
327035
2351
05:29
If we could figure out how these cells make the decision
99
329917
2621
如果我们能搞清 这些细胞是如何决定
05:32
to become one cell type or another,
100
332562
2131
自己要发育为何种细胞的,
05:34
we might be able to harness them
101
334717
1690
我们或许能够利用 ES 细胞的这一能力,
05:36
to generate cells that we need to repair diseased or damaged tissue.
102
336431
4553
生成我们需要的细胞, 来修复携带疾病的或受损的组织。
05:41
But realizing that vision is not without its challenges,
103
341794
2930
但这一愿景的实现存在着挑战,
05:44
not least because these particular cells,
104
344748
2764
不仅是因为这些特定细胞
05:47
they emerge just six days after conception.
105
347536
2829
在受孕的 6 天后才出现,
05:50
And then within a day or so, they're gone.
106
350826
2055
之后大约在 1 天内,就会消失。
05:52
They have set off down the different paths
107
352905
2057
它们走上了不同的道路,
05:54
that form all the structures and organs of your adult body.
108
354986
3050
共同形成成年人体 的所有结构和器官。
05:59
But it turns out that cell fates are a lot more plastic
109
359770
3079
但事实证明,细胞的命运
比我们所想象的更具有可塑性。
06:02
than we might have imagined.
110
362873
1413
06:04
About 13 years ago, some scientists showed something truly revolutionary.
111
364310
4321
大概在 13 年前,一些科学家们 展示了一些极具革命性的东西:
06:09
By inserting just a handful of genes into an adult cell,
112
369393
4346
通过把少量基因导入成熟细胞,
06:13
like one of your skin cells,
113
373763
1764
例如你的一个皮肤细胞,
06:15
you can transform that cell back to the naïve state.
114
375551
3959
你可以把这个成熟细胞 转化回未分化状态。
06:19
And it's a process that's actually known as "reprogramming,"
115
379534
3175
这一过程被称为“重编程”。
06:22
and it allows us to imagine a kind of stem cell utopia,
116
382733
3359
这让我们联想到 “干细胞乌托邦”,
06:26
the ability to take a sample of a patient's own cells,
117
386116
3641
这种能力可以采集 患者自身的细胞样本,
06:29
transform them back to the naïve state
118
389781
2360
将其转化回未分化的原始形态,
06:32
and use those cells to make whatever that patient might need,
119
392165
3130
并使用那些细胞 制造患者可能需要的细胞,
06:35
whether it's brain cells or heart cells.
120
395319
2075
不论是脑细胞,还是心脏细胞。
06:38
But over the last decade or so,
121
398541
1765
但在过去的 10 年,
06:40
figuring out how to change cell fate,
122
400330
3044
搞清楚如何改变细胞命运
06:43
it's still a process of trial and error.
123
403398
2152
仍然是一个试错的过程。
06:45
Even in cases where we've uncovered successful experimental protocols,
124
405911
4508
即使是在那些我们已经发现了 成功实验方法的情况下,
06:50
they're still inefficient,
125
410443
1467
它们仍旧低效,
06:51
and we lack a fundamental understanding of how and why they work.
126
411934
4238
而且我们缺少关于 它们如何以及为何运作的基本理解。
06:56
If you figured out how to change a stem cell into a heart cell,
127
416650
3005
如果你能摸清如何把一个干细胞 诱导为一个心脏细胞,
06:59
that hasn't got any way of telling you how to change a stem cell
128
419679
3089
你依然不知道如何把一个干细胞
07:02
into a brain cell.
129
422792
1201
诱导为一个脑细胞。
07:04
So we wanted to understand the biological program
130
424633
2931
所以我们想要了解
07:07
running inside an embryonic stem cell,
131
427588
2447
在 ES 细胞中运行的生物程序,
而且,了解该生物系统中 所运行的计算
07:10
and understanding the computation performed by a living system
132
430059
3506
07:13
starts with asking a devastatingly simple question:
133
433589
4253
始于提出一个极为简单的问题:
07:17
What is it that system actually has to do?
134
437866
3356
这个系统到底需要做什么?
07:21
Now, computer science actually has a set of strategies
135
441838
2850
计算机科学实际上已有一套策略
07:24
for dealing with what it is the software and hardware are meant to do.
136
444712
3827
来执行软件和硬件的功能。
07:28
When you write a program, you code a piece of software,
137
448563
2660
当你编写程序时, 你用代码编写了一个软件,
07:31
you want that software to run correctly.
138
451247
2000
你希望这个软件能够正确运行,
07:33
You want performance, functionality.
139
453271
1790
你希望它具备完善的功能与性能,
07:35
You want to prevent bugs.
140
455085
1217
能防止错误,
07:36
They can cost you a lot.
141
456326
1308
做到这些的成本很高。
07:38
So when a developer writes a program,
142
458168
1842
所以当一个开发者编写程序时,
他们能编写出一套技术规范。
07:40
they could write down a set of specifications.
143
460034
2270
07:42
These are what your program should do.
144
462328
1871
这些是你的程序应该做的“工作”。
07:44
Maybe it should compare the size of two numbers
145
464223
2268
或许它能比较两个数的大小,
07:46
or order numbers by increasing size.
146
466515
1792
或将数字进行正序排序。
这样的技术存在: 允许我们自动检查
07:49
Technology exists that allows us automatically to check
147
469037
4695
07:53
whether our specifications are satisfied,
148
473756
2378
我们的代码是否符合技术规范,
07:56
whether that program does what it should do.
149
476158
2633
程序是否在完成它的本职工作。
07:59
And so our idea was that in the same way,
150
479266
2856
于是我们的想法很类似,
实验观察值,也就是 我们在实验室中测量的东西,
08:02
experimental observations, things we measure in the lab,
151
482146
3068
08:05
they correspond to specifications of what the biological program should do.
152
485238
5033
符合生物编程本职工作中 怎样的技术规范?
08:10
So we just needed to figure out a way
153
490769
1876
所以我们只需要找到一个方法
08:12
to encode this new type of specification.
154
492669
3183
来编译这个新型的技术规范。
08:16
So let's say you've been busy in the lab and you've been measuring your genes
155
496594
3654
比方说,你在实验室忙活了很久, 你一直在测量基因,
发现如果基因 A 是活跃的,
08:20
and you've found that if Gene A is active,
156
500272
2436
08:22
then Gene B or Gene C seems to be active.
157
502732
3388
那么基因 B 或 C 也会看似活跃。
08:26
We can write that observation down as a mathematical expression
158
506678
3582
如果我们能用一种逻辑语言, 就可以将这种观察
08:30
if we can use the language of logic:
159
510284
2373
编写为一种数学表达:
08:33
If A, then B or C.
160
513125
2328
如果 A ,那么 B 或 C 。
08:36
Now, this is a very simple example, OK.
161
516242
2454
这是一个非常简单的例子,
08:38
It's just to illustrate the point.
162
518720
1743
只是为了解释清楚我的意思。
08:40
We can encode truly rich expressions
163
520487
2924
我们可以编译很多丰富的表达,
08:43
that actually capture the behavior of multiple genes or proteins over time
164
523435
4153
在多个不同的实验中, 随着时间的推移,这些表达可以捕捉
08:47
across multiple different experiments.
165
527612
2536
多种基因或蛋白质的行为。
08:50
And so by translating our observations
166
530521
2626
运用这种方法, 把我们的观察值
08:53
into mathematical expression in this way,
167
533171
1993
编译为一种数学表达,
08:55
it becomes possible to test whether or not those observations can emerge
168
535188
5098
现在有可能测试这些观察结果 是否可以从基因相互作用
09:00
from a program of genetic interactions.
169
540310
3054
的程序中得到。
我们开发了一个工具 来实现这个目的。
09:04
And we developed a tool to do just this.
170
544063
2556
09:06
We were able to use this tool to encode observations
171
546643
2882
我们能用这个工具 将观察值编译为
09:09
as mathematical expressions,
172
549549
1407
数学表达。
09:10
and then that tool would allow us to uncover the genetic program
173
550980
3610
该工具能让我们发现可以解释
09:14
that could explain them all.
174
554614
1538
所有原因的遗传程序。
09:17
And we then apply this approach
175
557481
2280
之后,我们运用这个方法
09:19
to uncover the genetic program running inside embryonic stem cells
176
559785
4083
来揭示 ES 细胞中运行的遗传程序,
09:23
to see if we could understand how to induce that naïve state.
177
563892
4189
来看看我们是否能理解 如何诱导未分化状态的细胞。
09:28
And this tool was actually built
178
568105
1952
这个工具实际上是建立在
经常被部署在世界各地 用于传统的软件验证
09:30
on a solver that's deployed routinely around the world
179
570081
2652
09:32
for conventional software verification.
180
572757
2269
的解算器上的。
09:35
So we started with a set of nearly 50 different specifications
181
575630
3691
我们从一套将近有 50 个 不同的技术规范开始,
09:39
that we generated from experimental observations of embryonic stem cells.
182
579345
4506
这些是我们从对 ES 细胞的 实验观察值中得出的。
09:43
And by encoding these observations in this tool,
183
583875
2636
利用这个工具, 通过编译这些观察值,
09:46
we were able to uncover the first molecular program
184
586535
3185
我们能够揭开第一个
09:49
that could explain all of them.
185
589744
1961
能够解释所有分子的程序。
09:52
Now, that's kind of a feat in and of itself, right?
186
592309
2513
这本身听着是一种壮举,是吧?
09:54
Being able to reconcile all of these different observations
187
594846
2902
将所有的观察值协调到一起,
09:57
is not the kind of thing you can do on the back of an envelope,
188
597772
3067
不是那种你可以 在信封背面做的事情,
10:00
even if you have a really big envelope.
189
600863
2648
即使你有一个很大的信封。
10:04
Because we've got this kind of understanding,
190
604190
2158
因为我们有着这样的理解,
10:06
we could go one step further.
191
606372
1462
我们能够再进一步。
10:07
We could use this program to predict what this cell might do
192
607858
3371
我们能够用这个程序 在尚未测试的条件下,
10:11
in conditions we hadn't yet tested.
193
611253
2176
来预测这个细胞可能会做什么。
10:13
We could probe the program in silico.
194
613453
2401
我们能够在硅上探索该程序。
10:16
And so we did just that:
195
616735
1247
所以我们行动了起来:
我们依据实验室检测值 生成了预测,
10:18
we generated predictions that we tested in the lab,
196
618006
3180
10:21
and we found that this program was highly predictive.
197
621210
3032
并发现该程序非常具有可预测性。
10:24
It told us how we could accelerate progress
198
624266
2625
它告诉我们如何能够
10:26
back to the naïve state quickly and efficiently.
199
626915
3060
加速细胞返回未分化状态的过程, 使之快速且有效。
10:29
It told us which genes to target to do that,
200
629999
2570
它告诉我们 可以针对哪些基因进行操作,
10:32
which genes might even hinder that process.
201
632593
2624
又有哪些基因会阻碍这一过程。
10:35
We even found the program predicted the order in which genes would switch on.
202
635241
4990
我们甚至发现了一个 能够预测基因开启顺序的程序。
10:40
So this approach really allowed us to uncover the dynamics
203
640980
3140
这个方法让我们得以
10:44
of what the cells are doing.
204
644144
2402
揭秘细胞行为的动态。
10:47
What we've developed, it's not a method that's specific to stem cell biology.
205
647728
3642
我们开发的不只是一种 仅限于干细胞生物的方法。
10:51
Rather, it allows us to make sense of the computation
206
651394
2684
相反,这能帮助我们理解
10:54
being carried out by the cell
207
654102
1685
在遗传相互作用的环境下
10:55
in the context of genetic interactions.
208
655811
2831
细胞内在的计算程序。
10:58
So really, it's just one building block.
209
658666
2288
所以这其实只是拼图中的一块。
11:00
The field urgently needs to develop new approaches
210
660978
2685
该领域急需开发新方法
11:03
to understand biological computation more broadly
211
663687
2695
来更广泛地在不同层次上
11:06
and at different levels,
212
666406
1367
了解生物计算,
11:07
from DNA right through to the flow of information between cells.
213
667797
4129
从 DNA 到细胞间的信息流。
11:11
Only this kind of transformative understanding
214
671950
2797
只有这样的变革性理解
11:14
will enable us to harness biology in ways that are predictable and reliable.
215
674771
4986
才能够使我们以可预测和可靠 的方式利用生物学。
但是对于编程生物学, 我们也将需要开发
11:21
But to program biology, we will also need to develop
216
681029
3042
允许实验人员和计算科学家
11:24
the kinds of tools and languages
217
684095
1995
11:26
that allow both experimentalists and computational scientists
218
686114
3408
使用的工具和语言
11:29
to design biological function
219
689546
2497
来设计生物函数,
并将这些设计编译成 细胞的机器代码,
11:32
and have those designs compile down to the machine code of the cell,
220
692067
3505
11:35
its biochemistry,
221
695596
1181
也就是它的生物化学,
11:36
so that we could then build those structures.
222
696801
2484
这样我们就可以构建这些结构。
11:39
Now, that's something akin to a living software compiler,
223
699309
3673
这就类似于一个 活的生物软件编译器,
我非常自豪能成为
11:43
and I'm proud to be part of a team at Microsoft
224
703006
2216
微软开发此类软件团队的一员。
11:45
that's working to develop one.
225
705246
1652
11:47
Though to say it's a grand challenge is kind of an understatement,
226
707366
3226
尽管,说这是一个 很大的挑战有点轻描淡写,
11:50
but if it's realized,
227
710616
1173
但如果能实现,
11:51
it would be the final bridge between software and wetware.
228
711813
3709
这将会成为 软件和湿件最后的桥梁。
但更广泛地说,如果我们 能够将其转变为真正的跨学科领域,
11:57
More broadly, though, programming biology is only going to be possible
229
717006
3415
12:00
if we can transform the field into being truly interdisciplinary.
230
720445
4279
编程生物学才会变成可能。
12:04
It needs us to bridge the physical and the life sciences,
231
724748
2952
这需要我们搭建起 物理与生命科学的桥梁,
12:07
and scientists from each of these disciplines
232
727724
2267
来自相关学术背景的科学家们
需要能够利用共同语言进行合作,
12:10
need to be able to work together with common languages
233
730015
2731
12:12
and to have shared scientific questions.
234
732770
2719
并分享共同的科学问题。
12:16
In the long term, it's worth remembering that many of the giant software companies
235
736757
3993
长远来看,值得记住的是:
当我们第一次开始 在硅微芯片上编程时,
12:20
and the technology that you and I work with every day
236
740774
2492
几乎无法想象有一天会出现
12:23
could hardly have been imagined
237
743290
1503
12:24
at the time we first started programming on silicon microchips.
238
744817
3605
我们如今每天都需要打交道的 那些大型软件公司和技术。
12:28
And if we start now to think about the potential for technology
239
748446
3031
如果我们现在开始思考
12:31
enabled by computational biology,
240
751501
2426
由计算生物学支持的科技潜能,
12:33
we'll see some of the steps that we need to take along the way
241
753951
2935
我们将会看到为实现这一目标
12:36
to make that a reality.
242
756910
1433
一路上需要做出的努力。
12:39
Now, there is the sobering thought that this kind of technology
243
759231
3082
如今存在一种令人警醒的想法:
12:42
could be open to misuse.
244
762337
1777
这种科技可能会被滥用。
12:44
If we're willing to talk about the potential
245
764138
2163
如果我们愿意探讨
编程免疫细胞的潜力,
12:46
for programming immune cells,
246
766325
1436
12:47
we should also be thinking about the potential of bacteria
247
767785
3188
我们也应该考虑到 改造后的细菌成功躲避
12:50
engineered to evade them.
248
770997
1661
那些免疫细胞的可能。
12:52
There might be people willing to do that.
249
772682
2087
可能有些人打算从事这方面的研究。
12:55
Now, one reassuring thought in this
250
775506
1722
关于这个话题也存在 一个令人欣慰的想法——
12:57
is that -- well, less so for the scientists --
251
777252
2289
科学家大概不这么认为——
12:59
is that biology is a fragile thing to work with.
252
779565
3269
生物太脆弱,在工作中难以把控。
13:02
So programming biology is not going to be something
253
782858
2412
所以编程生物学不会
13:05
you'll be doing in your garden shed.
254
785294
1848
进入你的生活。
13:07
But because we're at the outset of this,
255
787642
2080
但因为我们才刚起步,
13:09
we can move forward with our eyes wide open.
256
789746
2583
所以我们可以 大胆且谨慎的往前走。
13:12
We can ask the difficult questions up front,
257
792353
2324
我们可以事先提出难题,
13:14
we can put in place the necessary safeguards
258
794701
3040
我们可以采取必要的保护措施,
13:17
and, as part of that, we'll have to think about our ethics.
259
797765
2797
同时,作为其中的一部分, 还需要思考我们的道德标准,
13:20
We'll have to think about putting bounds on the implementation
260
800586
3172
我们将需要思考那些生物函数
13:23
of biological function.
261
803782
1498
实行的界限。
13:25
So as part of this, research in bioethics will have to be a priority.
262
805604
3715
所以其中的生物伦理学研究 将被优先考虑。
13:29
It can't be relegated to second place
263
809343
2407
在令人激动的科学创新中,
13:31
in the excitement of scientific innovation.
264
811774
2514
这个话题不能屈居第二。
13:35
But the ultimate prize, the ultimate destination on this journey,
265
815154
3474
但我们这场旅行的最终目的地
13:38
would be breakthrough applications and breakthrough industries
266
818652
3444
将会是突破性的应用 以及突破性行业,
从农业,医疗,到能源和材料,
13:42
in areas from agriculture and medicine to energy and materials
267
822120
3444
13:45
and even computing itself.
268
825588
2261
甚至计算机技术本身。
13:48
Imagine, one day we could be powering the planet sustainably
269
828490
3148
试想,有一天,我们能 使用终极绿色能源
13:51
on the ultimate green energy
270
831662
1859
为地球提供可持续的动力,
13:53
if we could mimic something that plants figured out millennia ago:
271
833545
3943
因为我们已经能够模仿植物 在千年前发现的东西:
13:57
how to harness the sun's energy with an efficiency that is unparalleled
272
837512
3771
如何利用我们现有太阳能电池
14:01
by our current solar cells.
273
841307
1856
无法比拟的效率来利用太阳能。
14:03
If we understood that program of quantum interactions
274
843695
2601
如果我们能理解 让植物高效吸收太阳光的
14:06
that allow plants to absorb sunlight so efficiently,
275
846320
3264
量子相互作用的程序,
14:09
we might be able to translate that into building synthetic DNA circuits
276
849608
3944
我们或许能将其编译为 能够为太阳能电池提供
14:13
that offer the material for better solar cells.
277
853576
2913
更好材料的合成 DNA 电路。
14:17
There are teams and scientists working on the fundamentals of this right now,
278
857349
3693
现在有一些团队和科学家 正着手于解决这个课题的基本问题,
如果这个课题能获得 足够的关注和正确的投资,
14:21
so perhaps if it got the right attention and the right investment,
279
861066
3243
在未来的 10 或 15 年内, 或许就有可能实现。
14:24
it could be realized in 10 or 15 years.
280
864333
2280
14:27
So we are at the beginning of a technological revolution.
281
867457
3197
我们正处在科技革新的开端。
了解这种古老的生物计算类型
14:31
Understanding this ancient type of biological computation
282
871067
3221
14:34
is the critical first step.
283
874312
2132
是关键的第一步。
14:36
And if we can realize this,
284
876468
1317
如果我们能意识到这件事,
14:37
we would enter in the era of an operating system
285
877809
2842
就将进入一个拥有 能够运行生物软件
14:40
that runs living software.
286
880675
1905
的操作系统的时代。
14:42
Thank you very much.
287
882604
1166
非常感谢。
14:43
(Applause)
288
883794
2690
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog