The next software revolution: programming biological cells | Sara-Jane Dunn

168,813 views ・ 2019-11-26

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jiasi Hao 校对人员: psjmz mz
00:12
The second half of the last century was completely defined
0
12750
4509
上世纪后半叶,全然是一个
00:17
by a technological revolution:
1
17283
1999
被科学革命所定义的时代:
00:19
the software revolution.
2
19306
1435
软件革命。
00:21
The ability to program electrons on a material called silicon
3
21313
4808
在一种硅半导体材料上 对电子进行编程的能力
使得我们许多人曾无法想象的
00:26
made possible technologies, companies and industries
4
26145
3073
00:29
that were at one point unimaginable to many of us,
5
29242
3977
科技、公司和行业变为可能。
00:33
but which have now fundamentally changed the way the world works.
6
33243
3915
这如今已彻底改变了 世界运作的方式。
00:38
The first half of this century, though,
7
38158
1921
不过,本世纪上半叶
00:40
is going to be transformed by a new software revolution:
8
40103
3978
将要被一个 崭新的软件革命所转化:
生物软件革命。
00:44
the living software revolution.
9
44105
2435
00:46
And this will be powered by the ability to program biochemistry
10
46921
4050
在一种名为生物的材料上 对生物化学进行编程的能力
00:50
on a material called biology.
11
50995
2295
将会支持这一革命。
00:53
And doing so will enable us to harness the properties of biology
12
53314
4141
如此一来, 我们将能够利用生物特征
00:57
to generate new kinds of therapies,
13
57479
2656
去开发新型疗法,
01:00
to repair damaged tissue,
14
60159
1868
去修复受损组织,
去重编缺陷细胞,
01:02
to reprogram faulty cells
15
62051
2725
01:04
or even build programmable operating systems out of biochemistry.
16
64800
4554
甚至利用生物化学 构建一个可编程的操作系统。
01:10
If we can realize this -- and we do need to realize it --
17
70420
3573
如果我们能实现它—— 而且我们确实需要实现它——
其影响将会如此巨大,
01:14
its impact will be so enormous
18
74017
2162
01:16
that it will make the first software revolution pale in comparison.
19
76203
3877
以至于第一个软件革命, 相比之下,会变得微不足道。
这是因为生物软件 可以变革整个医疗,
01:20
And that's because living software would transform the entirety of medicine,
20
80104
4234
01:24
agriculture and energy,
21
84362
1559
农业和能源领域,
01:25
and these are sectors that dwarf those dominated by IT.
22
85945
3828
以及那些被 IT 人员掌控的部门。
01:30
Imagine programmable plants that fix nitrogen more effectively
23
90812
4174
想象一下可编程植物: 能够更有效进行固氮,
或可以抵御新型真菌病原体,
01:35
or resist emerging fungal pathogens,
24
95010
2905
01:37
or even programming crops to be perennial rather than annual
25
97939
3537
甚至能够将农作物编程为 多年生而非一年生,
01:41
so you could double your crop yields each year.
26
101500
2268
使你的年产量可以翻倍。
01:43
That would transform agriculture
27
103792
2098
这会改变农业,
01:45
and how we'll keep our growing and global population fed.
28
105914
4104
同时改变全球不断增长的 粮食需求的方法。
01:50
Or imagine programmable immunity,
29
110794
2262
或想象可编程的免疫力,
设计并利用能够指导 你免疫系统的分子设备
01:53
designing and harnessing molecular devices that guide your immune system
30
113080
4238
01:57
to detect, eradicate or even prevent disease.
31
117342
3830
去检测、根除,甚至预防疾病。
这将改变医疗,
02:01
This would transform medicine
32
121196
1571
02:02
and how we'll keep our growing and aging population healthy.
33
122791
3489
同时改变我们试图保持 不断增长且老龄化的人口健康的方法。
02:07
We already have many of the tools that will make living software a reality.
34
127501
4203
我们已经拥有很多 能让生物软件成为现实的工具。
02:11
We can precisely edit genes with CRISPR.
35
131728
2347
我们能使用 CRISPR 技术 精确编辑基因。
我们能每次重写一个遗传密码。
02:14
We can rewrite the genetic code one base at a time.
36
134099
3083
02:17
We can even build functioning synthetic circuits out of DNA.
37
137206
4436
我们甚至能利用 DNA 开发一个合成电路。
02:22
But figuring out how and when to wield these tools
38
142428
2469
但是摸索出 如何且何时使用这些工具
02:24
is still a process of trial and error.
39
144921
2422
依旧是一个试错的过程。
02:27
It needs deep expertise, years of specialization.
40
147367
3660
它要求极高的专业性 和多年的领域专精。
而且实验方法难以发现,
02:31
And experimental protocols are difficult to discover
41
151051
3037
往往更是难以复制。
02:34
and all too often, difficult to reproduce.
42
154112
2582
02:37
And, you know, we have a tendency in biology to focus a lot on the parts,
43
157256
4473
在生物领域,我们倾向 仅专注于局部,
02:41
but we all know that something like flying wouldn't be understood
44
161753
3133
但我们都知道有些东西,例如飞行, 单就羽毛进行研究,
02:44
by only studying feathers.
45
164910
1339
是无法理解其原理的。
02:46
So programming biology is not yet as simple as programming your computer.
46
166846
4521
所以生物编程还未能像 电脑编程那样简单。
02:51
And then to make matters worse,
47
171391
1678
更糟糕的是,
02:53
living systems largely bear no resemblance to the engineered systems
48
173093
4010
生物系统和你我 每天编写的工程系统
02:57
that you and I program every day.
49
177127
2096
几乎毫无相似之处。
02:59
In contrast to engineered systems, living systems self-generate,
50
179691
4111
相比工程系统, 生物系统能自我生产、
03:03
they self-organize,
51
183826
1471
自我组织,
03:05
they operate at molecular scales.
52
185321
1687
并以分子规模运作。
03:07
And these molecular-level interactions
53
187032
2136
这些分子层级的相互作用
03:09
lead generally to robust macro-scale output.
54
189192
3018
通常会导致稳健的宏观规模输出,
03:12
They can even self-repair.
55
192234
2720
它甚至可以自我修复。
03:16
Consider, for example, the humble household plant,
56
196256
2994
试想家中一盆不起眼的植物,
03:19
like that one sat on your mantelpiece at home
57
199274
2187
比如你家壁炉台上的那盆
03:21
that you keep forgetting to water.
58
201485
1787
你老是忘记浇水的植物。
03:23
Every day, despite your neglect, that plant has to wake up
59
203749
3615
尽管你会忘记, 那盆植物每天都需要醒来
03:27
and figure out how to allocate its resources.
60
207388
2747
并思考如何分配它所有的资源。
03:30
Will it grow, photosynthesize, produce seeds, or flower?
61
210159
3571
它是生长、进行光合作用、 产生种子,还是开花?
03:33
And that's a decision that has to be made at the level of the whole organism.
62
213754
3939
这是这盆植物所需要做出的决定。
03:37
But a plant doesn't have a brain to figure all of that out.
63
217717
3481
但一盆植物没有大脑来弄清这件事。
03:41
It has to make do with the cells on its leaves.
64
221222
2717
这需要其叶片上细胞的帮助。
03:43
They have to respond to the environment
65
223963
1903
它们需要针对环境做出反应,
03:45
and make the decisions that affect the whole plant.
66
225890
2649
并且做出影响整盆植物的决定。
03:48
So somehow there must be a program running inside these cells,
67
228563
3988
所以在那些叶片细胞中 必定要有一个运行的程序,
03:52
a program that responds to input signals and cues
68
232575
2727
一个能响应输入信号与提示,
03:55
and shapes what that cell will do.
69
235326
1940
以及调整细胞行为的程序。
03:57
And then those programs must operate in a distributed way
70
237679
3247
之后,那些程序 必须以分布式运行,
04:00
across individual cells,
71
240950
1337
覆盖每一个细胞单元,
04:02
so that they can coordinate and that plant can grow and flourish.
72
242311
4123
从而进行协作 让植物茁壮成长。
04:07
If we could understand these biological programs,
73
247675
3316
如果我们能够了解那些生物程序,
如果我们能够明白那些生物计算,
04:11
if we could understand biological computation,
74
251015
3122
04:14
it would transform our ability to understand how and why
75
254161
3937
这将会转变我们对细胞 的行为方式和行为原因的
04:18
cells do what they do.
76
258122
1546
理解能力。
04:20
Because, if we understood these programs,
77
260152
1987
因为,如果我们了解那些程序,
当出现问题时, 我们可以为它们排错。
04:22
we could debug them when things go wrong.
78
262163
2133
04:24
Or we could learn from them how to design the kind of synthetic circuits
79
264320
4193
或我们可以向它们学习 如何设计这样
04:28
that truly exploit the computational power of biochemistry.
80
268537
4474
能充分利用生物化学 计算能力的合成电路。
04:34
My passion about this idea led me to a career in research
81
274407
3018
我对这个想法的热情, 让我进入了
04:37
at the interface of maths, computer science and biology.
82
277449
3631
数学、计算机科学 和生物学的交叉领域。
04:41
And in my work, I focus on the concept of biology as computation.
83
281104
4726
工作中,我专注于一个概念: 生物学计算。
04:46
And that means asking what do cells compute,
84
286334
3142
这代表着不断询问 细胞在计算什么,
04:49
and how can we uncover these biological programs?
85
289500
3517
以及我们如何能 解开这些生物程序的奥秘?
04:53
And I started to ask these questions together with some brilliant collaborators
86
293760
3757
我开始和微软研究院与剑桥大学
04:57
at Microsoft Research and the University of Cambridge,
87
297541
2571
的一些出色的合作人士 一起询问这些问题,
05:00
where together we wanted to understand
88
300136
2283
我们想要了解
05:02
the biological program running inside a unique type of cell:
89
302443
4177
在一种独特细胞中 运行的生物程序:
05:06
an embryonic stem cell.
90
306644
1894
胚胎干细胞( ES 细胞)。
05:09
These cells are unique because they're totally naïve.
91
309136
3160
这些细胞很独特,因为它们 非常稚嫩(即未高度分化)。
05:12
They can become anything they want:
92
312320
2168
它们能够分化 为它们想要变成的东西:
05:14
a brain cell, a heart cell, a bone cell, a lung cell,
93
314512
2565
一个脑细胞,一个心脏细胞, 一个骨细胞,一个肺细胞,
任何一种成熟细胞。
05:17
any adult cell type.
94
317101
1897
这一稚嫩状态让这些细胞 变得与众不同,
05:19
This naïvety, it sets them apart,
95
319022
1677
05:20
but it also ignited the imagination of the scientific community,
96
320723
3001
但也激发了科学界的想象力。
05:23
who realized, if we could tap into that potential,
97
323748
3263
科学家们意识到, 如果我们能挖掘这一特性的潜力,
我们将会拥有一个 强大的医疗工具。
05:27
we would have a powerful tool for medicine.
98
327035
2351
05:29
If we could figure out how these cells make the decision
99
329917
2621
如果我们能搞清 这些细胞是如何决定
05:32
to become one cell type or another,
100
332562
2131
自己要发育为何种细胞的,
05:34
we might be able to harness them
101
334717
1690
我们或许能够利用 ES 细胞的这一能力,
05:36
to generate cells that we need to repair diseased or damaged tissue.
102
336431
4553
生成我们需要的细胞, 来修复携带疾病的或受损的组织。
05:41
But realizing that vision is not without its challenges,
103
341794
2930
但这一愿景的实现存在着挑战,
05:44
not least because these particular cells,
104
344748
2764
不仅是因为这些特定细胞
05:47
they emerge just six days after conception.
105
347536
2829
在受孕的 6 天后才出现,
05:50
And then within a day or so, they're gone.
106
350826
2055
之后大约在 1 天内,就会消失。
05:52
They have set off down the different paths
107
352905
2057
它们走上了不同的道路,
05:54
that form all the structures and organs of your adult body.
108
354986
3050
共同形成成年人体 的所有结构和器官。
05:59
But it turns out that cell fates are a lot more plastic
109
359770
3079
但事实证明,细胞的命运
比我们所想象的更具有可塑性。
06:02
than we might have imagined.
110
362873
1413
06:04
About 13 years ago, some scientists showed something truly revolutionary.
111
364310
4321
大概在 13 年前,一些科学家们 展示了一些极具革命性的东西:
06:09
By inserting just a handful of genes into an adult cell,
112
369393
4346
通过把少量基因导入成熟细胞,
06:13
like one of your skin cells,
113
373763
1764
例如你的一个皮肤细胞,
06:15
you can transform that cell back to the naïve state.
114
375551
3959
你可以把这个成熟细胞 转化回未分化状态。
06:19
And it's a process that's actually known as "reprogramming,"
115
379534
3175
这一过程被称为“重编程”。
06:22
and it allows us to imagine a kind of stem cell utopia,
116
382733
3359
这让我们联想到 “干细胞乌托邦”,
06:26
the ability to take a sample of a patient's own cells,
117
386116
3641
这种能力可以采集 患者自身的细胞样本,
06:29
transform them back to the naïve state
118
389781
2360
将其转化回未分化的原始形态,
06:32
and use those cells to make whatever that patient might need,
119
392165
3130
并使用那些细胞 制造患者可能需要的细胞,
06:35
whether it's brain cells or heart cells.
120
395319
2075
不论是脑细胞,还是心脏细胞。
06:38
But over the last decade or so,
121
398541
1765
但在过去的 10 年,
06:40
figuring out how to change cell fate,
122
400330
3044
搞清楚如何改变细胞命运
06:43
it's still a process of trial and error.
123
403398
2152
仍然是一个试错的过程。
06:45
Even in cases where we've uncovered successful experimental protocols,
124
405911
4508
即使是在那些我们已经发现了 成功实验方法的情况下,
06:50
they're still inefficient,
125
410443
1467
它们仍旧低效,
06:51
and we lack a fundamental understanding of how and why they work.
126
411934
4238
而且我们缺少关于 它们如何以及为何运作的基本理解。
06:56
If you figured out how to change a stem cell into a heart cell,
127
416650
3005
如果你能摸清如何把一个干细胞 诱导为一个心脏细胞,
06:59
that hasn't got any way of telling you how to change a stem cell
128
419679
3089
你依然不知道如何把一个干细胞
07:02
into a brain cell.
129
422792
1201
诱导为一个脑细胞。
07:04
So we wanted to understand the biological program
130
424633
2931
所以我们想要了解
07:07
running inside an embryonic stem cell,
131
427588
2447
在 ES 细胞中运行的生物程序,
而且,了解该生物系统中 所运行的计算
07:10
and understanding the computation performed by a living system
132
430059
3506
07:13
starts with asking a devastatingly simple question:
133
433589
4253
始于提出一个极为简单的问题:
07:17
What is it that system actually has to do?
134
437866
3356
这个系统到底需要做什么?
07:21
Now, computer science actually has a set of strategies
135
441838
2850
计算机科学实际上已有一套策略
07:24
for dealing with what it is the software and hardware are meant to do.
136
444712
3827
来执行软件和硬件的功能。
07:28
When you write a program, you code a piece of software,
137
448563
2660
当你编写程序时, 你用代码编写了一个软件,
07:31
you want that software to run correctly.
138
451247
2000
你希望这个软件能够正确运行,
07:33
You want performance, functionality.
139
453271
1790
你希望它具备完善的功能与性能,
07:35
You want to prevent bugs.
140
455085
1217
能防止错误,
07:36
They can cost you a lot.
141
456326
1308
做到这些的成本很高。
07:38
So when a developer writes a program,
142
458168
1842
所以当一个开发者编写程序时,
他们能编写出一套技术规范。
07:40
they could write down a set of specifications.
143
460034
2270
07:42
These are what your program should do.
144
462328
1871
这些是你的程序应该做的“工作”。
07:44
Maybe it should compare the size of two numbers
145
464223
2268
或许它能比较两个数的大小,
07:46
or order numbers by increasing size.
146
466515
1792
或将数字进行正序排序。
这样的技术存在: 允许我们自动检查
07:49
Technology exists that allows us automatically to check
147
469037
4695
07:53
whether our specifications are satisfied,
148
473756
2378
我们的代码是否符合技术规范,
07:56
whether that program does what it should do.
149
476158
2633
程序是否在完成它的本职工作。
07:59
And so our idea was that in the same way,
150
479266
2856
于是我们的想法很类似,
实验观察值,也就是 我们在实验室中测量的东西,
08:02
experimental observations, things we measure in the lab,
151
482146
3068
08:05
they correspond to specifications of what the biological program should do.
152
485238
5033
符合生物编程本职工作中 怎样的技术规范?
08:10
So we just needed to figure out a way
153
490769
1876
所以我们只需要找到一个方法
08:12
to encode this new type of specification.
154
492669
3183
来编译这个新型的技术规范。
08:16
So let's say you've been busy in the lab and you've been measuring your genes
155
496594
3654
比方说,你在实验室忙活了很久, 你一直在测量基因,
发现如果基因 A 是活跃的,
08:20
and you've found that if Gene A is active,
156
500272
2436
08:22
then Gene B or Gene C seems to be active.
157
502732
3388
那么基因 B 或 C 也会看似活跃。
08:26
We can write that observation down as a mathematical expression
158
506678
3582
如果我们能用一种逻辑语言, 就可以将这种观察
08:30
if we can use the language of logic:
159
510284
2373
编写为一种数学表达:
08:33
If A, then B or C.
160
513125
2328
如果 A ,那么 B 或 C 。
08:36
Now, this is a very simple example, OK.
161
516242
2454
这是一个非常简单的例子,
08:38
It's just to illustrate the point.
162
518720
1743
只是为了解释清楚我的意思。
08:40
We can encode truly rich expressions
163
520487
2924
我们可以编译很多丰富的表达,
08:43
that actually capture the behavior of multiple genes or proteins over time
164
523435
4153
在多个不同的实验中, 随着时间的推移,这些表达可以捕捉
08:47
across multiple different experiments.
165
527612
2536
多种基因或蛋白质的行为。
08:50
And so by translating our observations
166
530521
2626
运用这种方法, 把我们的观察值
08:53
into mathematical expression in this way,
167
533171
1993
编译为一种数学表达,
08:55
it becomes possible to test whether or not those observations can emerge
168
535188
5098
现在有可能测试这些观察结果 是否可以从基因相互作用
09:00
from a program of genetic interactions.
169
540310
3054
的程序中得到。
我们开发了一个工具 来实现这个目的。
09:04
And we developed a tool to do just this.
170
544063
2556
09:06
We were able to use this tool to encode observations
171
546643
2882
我们能用这个工具 将观察值编译为
09:09
as mathematical expressions,
172
549549
1407
数学表达。
09:10
and then that tool would allow us to uncover the genetic program
173
550980
3610
该工具能让我们发现可以解释
09:14
that could explain them all.
174
554614
1538
所有原因的遗传程序。
09:17
And we then apply this approach
175
557481
2280
之后,我们运用这个方法
09:19
to uncover the genetic program running inside embryonic stem cells
176
559785
4083
来揭示 ES 细胞中运行的遗传程序,
09:23
to see if we could understand how to induce that naïve state.
177
563892
4189
来看看我们是否能理解 如何诱导未分化状态的细胞。
09:28
And this tool was actually built
178
568105
1952
这个工具实际上是建立在
经常被部署在世界各地 用于传统的软件验证
09:30
on a solver that's deployed routinely around the world
179
570081
2652
09:32
for conventional software verification.
180
572757
2269
的解算器上的。
09:35
So we started with a set of nearly 50 different specifications
181
575630
3691
我们从一套将近有 50 个 不同的技术规范开始,
09:39
that we generated from experimental observations of embryonic stem cells.
182
579345
4506
这些是我们从对 ES 细胞的 实验观察值中得出的。
09:43
And by encoding these observations in this tool,
183
583875
2636
利用这个工具, 通过编译这些观察值,
09:46
we were able to uncover the first molecular program
184
586535
3185
我们能够揭开第一个
09:49
that could explain all of them.
185
589744
1961
能够解释所有分子的程序。
09:52
Now, that's kind of a feat in and of itself, right?
186
592309
2513
这本身听着是一种壮举,是吧?
09:54
Being able to reconcile all of these different observations
187
594846
2902
将所有的观察值协调到一起,
09:57
is not the kind of thing you can do on the back of an envelope,
188
597772
3067
不是那种你可以 在信封背面做的事情,
10:00
even if you have a really big envelope.
189
600863
2648
即使你有一个很大的信封。
10:04
Because we've got this kind of understanding,
190
604190
2158
因为我们有着这样的理解,
10:06
we could go one step further.
191
606372
1462
我们能够再进一步。
10:07
We could use this program to predict what this cell might do
192
607858
3371
我们能够用这个程序 在尚未测试的条件下,
10:11
in conditions we hadn't yet tested.
193
611253
2176
来预测这个细胞可能会做什么。
10:13
We could probe the program in silico.
194
613453
2401
我们能够在硅上探索该程序。
10:16
And so we did just that:
195
616735
1247
所以我们行动了起来:
我们依据实验室检测值 生成了预测,
10:18
we generated predictions that we tested in the lab,
196
618006
3180
10:21
and we found that this program was highly predictive.
197
621210
3032
并发现该程序非常具有可预测性。
10:24
It told us how we could accelerate progress
198
624266
2625
它告诉我们如何能够
10:26
back to the naïve state quickly and efficiently.
199
626915
3060
加速细胞返回未分化状态的过程, 使之快速且有效。
10:29
It told us which genes to target to do that,
200
629999
2570
它告诉我们 可以针对哪些基因进行操作,
10:32
which genes might even hinder that process.
201
632593
2624
又有哪些基因会阻碍这一过程。
10:35
We even found the program predicted the order in which genes would switch on.
202
635241
4990
我们甚至发现了一个 能够预测基因开启顺序的程序。
10:40
So this approach really allowed us to uncover the dynamics
203
640980
3140
这个方法让我们得以
10:44
of what the cells are doing.
204
644144
2402
揭秘细胞行为的动态。
10:47
What we've developed, it's not a method that's specific to stem cell biology.
205
647728
3642
我们开发的不只是一种 仅限于干细胞生物的方法。
10:51
Rather, it allows us to make sense of the computation
206
651394
2684
相反,这能帮助我们理解
10:54
being carried out by the cell
207
654102
1685
在遗传相互作用的环境下
10:55
in the context of genetic interactions.
208
655811
2831
细胞内在的计算程序。
10:58
So really, it's just one building block.
209
658666
2288
所以这其实只是拼图中的一块。
11:00
The field urgently needs to develop new approaches
210
660978
2685
该领域急需开发新方法
11:03
to understand biological computation more broadly
211
663687
2695
来更广泛地在不同层次上
11:06
and at different levels,
212
666406
1367
了解生物计算,
11:07
from DNA right through to the flow of information between cells.
213
667797
4129
从 DNA 到细胞间的信息流。
11:11
Only this kind of transformative understanding
214
671950
2797
只有这样的变革性理解
11:14
will enable us to harness biology in ways that are predictable and reliable.
215
674771
4986
才能够使我们以可预测和可靠 的方式利用生物学。
但是对于编程生物学, 我们也将需要开发
11:21
But to program biology, we will also need to develop
216
681029
3042
允许实验人员和计算科学家
11:24
the kinds of tools and languages
217
684095
1995
11:26
that allow both experimentalists and computational scientists
218
686114
3408
使用的工具和语言
11:29
to design biological function
219
689546
2497
来设计生物函数,
并将这些设计编译成 细胞的机器代码,
11:32
and have those designs compile down to the machine code of the cell,
220
692067
3505
11:35
its biochemistry,
221
695596
1181
也就是它的生物化学,
11:36
so that we could then build those structures.
222
696801
2484
这样我们就可以构建这些结构。
11:39
Now, that's something akin to a living software compiler,
223
699309
3673
这就类似于一个 活的生物软件编译器,
我非常自豪能成为
11:43
and I'm proud to be part of a team at Microsoft
224
703006
2216
微软开发此类软件团队的一员。
11:45
that's working to develop one.
225
705246
1652
11:47
Though to say it's a grand challenge is kind of an understatement,
226
707366
3226
尽管,说这是一个 很大的挑战有点轻描淡写,
11:50
but if it's realized,
227
710616
1173
但如果能实现,
11:51
it would be the final bridge between software and wetware.
228
711813
3709
这将会成为 软件和湿件最后的桥梁。
但更广泛地说,如果我们 能够将其转变为真正的跨学科领域,
11:57
More broadly, though, programming biology is only going to be possible
229
717006
3415
12:00
if we can transform the field into being truly interdisciplinary.
230
720445
4279
编程生物学才会变成可能。
12:04
It needs us to bridge the physical and the life sciences,
231
724748
2952
这需要我们搭建起 物理与生命科学的桥梁,
12:07
and scientists from each of these disciplines
232
727724
2267
来自相关学术背景的科学家们
需要能够利用共同语言进行合作,
12:10
need to be able to work together with common languages
233
730015
2731
12:12
and to have shared scientific questions.
234
732770
2719
并分享共同的科学问题。
12:16
In the long term, it's worth remembering that many of the giant software companies
235
736757
3993
长远来看,值得记住的是:
当我们第一次开始 在硅微芯片上编程时,
12:20
and the technology that you and I work with every day
236
740774
2492
几乎无法想象有一天会出现
12:23
could hardly have been imagined
237
743290
1503
12:24
at the time we first started programming on silicon microchips.
238
744817
3605
我们如今每天都需要打交道的 那些大型软件公司和技术。
12:28
And if we start now to think about the potential for technology
239
748446
3031
如果我们现在开始思考
12:31
enabled by computational biology,
240
751501
2426
由计算生物学支持的科技潜能,
12:33
we'll see some of the steps that we need to take along the way
241
753951
2935
我们将会看到为实现这一目标
12:36
to make that a reality.
242
756910
1433
一路上需要做出的努力。
12:39
Now, there is the sobering thought that this kind of technology
243
759231
3082
如今存在一种令人警醒的想法:
12:42
could be open to misuse.
244
762337
1777
这种科技可能会被滥用。
12:44
If we're willing to talk about the potential
245
764138
2163
如果我们愿意探讨
编程免疫细胞的潜力,
12:46
for programming immune cells,
246
766325
1436
12:47
we should also be thinking about the potential of bacteria
247
767785
3188
我们也应该考虑到 改造后的细菌成功躲避
12:50
engineered to evade them.
248
770997
1661
那些免疫细胞的可能。
12:52
There might be people willing to do that.
249
772682
2087
可能有些人打算从事这方面的研究。
12:55
Now, one reassuring thought in this
250
775506
1722
关于这个话题也存在 一个令人欣慰的想法——
12:57
is that -- well, less so for the scientists --
251
777252
2289
科学家大概不这么认为——
12:59
is that biology is a fragile thing to work with.
252
779565
3269
生物太脆弱,在工作中难以把控。
13:02
So programming biology is not going to be something
253
782858
2412
所以编程生物学不会
13:05
you'll be doing in your garden shed.
254
785294
1848
进入你的生活。
13:07
But because we're at the outset of this,
255
787642
2080
但因为我们才刚起步,
13:09
we can move forward with our eyes wide open.
256
789746
2583
所以我们可以 大胆且谨慎的往前走。
13:12
We can ask the difficult questions up front,
257
792353
2324
我们可以事先提出难题,
13:14
we can put in place the necessary safeguards
258
794701
3040
我们可以采取必要的保护措施,
13:17
and, as part of that, we'll have to think about our ethics.
259
797765
2797
同时,作为其中的一部分, 还需要思考我们的道德标准,
13:20
We'll have to think about putting bounds on the implementation
260
800586
3172
我们将需要思考那些生物函数
13:23
of biological function.
261
803782
1498
实行的界限。
13:25
So as part of this, research in bioethics will have to be a priority.
262
805604
3715
所以其中的生物伦理学研究 将被优先考虑。
13:29
It can't be relegated to second place
263
809343
2407
在令人激动的科学创新中,
13:31
in the excitement of scientific innovation.
264
811774
2514
这个话题不能屈居第二。
13:35
But the ultimate prize, the ultimate destination on this journey,
265
815154
3474
但我们这场旅行的最终目的地
13:38
would be breakthrough applications and breakthrough industries
266
818652
3444
将会是突破性的应用 以及突破性行业,
从农业,医疗,到能源和材料,
13:42
in areas from agriculture and medicine to energy and materials
267
822120
3444
13:45
and even computing itself.
268
825588
2261
甚至计算机技术本身。
13:48
Imagine, one day we could be powering the planet sustainably
269
828490
3148
试想,有一天,我们能 使用终极绿色能源
13:51
on the ultimate green energy
270
831662
1859
为地球提供可持续的动力,
13:53
if we could mimic something that plants figured out millennia ago:
271
833545
3943
因为我们已经能够模仿植物 在千年前发现的东西:
13:57
how to harness the sun's energy with an efficiency that is unparalleled
272
837512
3771
如何利用我们现有太阳能电池
14:01
by our current solar cells.
273
841307
1856
无法比拟的效率来利用太阳能。
14:03
If we understood that program of quantum interactions
274
843695
2601
如果我们能理解 让植物高效吸收太阳光的
14:06
that allow plants to absorb sunlight so efficiently,
275
846320
3264
量子相互作用的程序,
14:09
we might be able to translate that into building synthetic DNA circuits
276
849608
3944
我们或许能将其编译为 能够为太阳能电池提供
14:13
that offer the material for better solar cells.
277
853576
2913
更好材料的合成 DNA 电路。
14:17
There are teams and scientists working on the fundamentals of this right now,
278
857349
3693
现在有一些团队和科学家 正着手于解决这个课题的基本问题,
如果这个课题能获得 足够的关注和正确的投资,
14:21
so perhaps if it got the right attention and the right investment,
279
861066
3243
在未来的 10 或 15 年内, 或许就有可能实现。
14:24
it could be realized in 10 or 15 years.
280
864333
2280
14:27
So we are at the beginning of a technological revolution.
281
867457
3197
我们正处在科技革新的开端。
了解这种古老的生物计算类型
14:31
Understanding this ancient type of biological computation
282
871067
3221
14:34
is the critical first step.
283
874312
2132
是关键的第一步。
14:36
And if we can realize this,
284
876468
1317
如果我们能意识到这件事,
14:37
we would enter in the era of an operating system
285
877809
2842
就将进入一个拥有 能够运行生物软件
14:40
that runs living software.
286
880675
1905
的操作系统的时代。
14:42
Thank you very much.
287
882604
1166
非常感谢。
14:43
(Applause)
288
883794
2690
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7