The next software revolution: programming biological cells | Sara-Jane Dunn

169,774 views

2019-11-26 ใƒป TED


New videos

The next software revolution: programming biological cells | Sara-Jane Dunn

169,774 views ใƒป 2019-11-26

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Somyeong Kim ๊ฒ€ํ† : Jihyeon J. Kim
00:12
The second half of the last century was completely defined
0
12750
4509
์ง€๋‚œ ์„ธ๊ธฐ์˜ ํ›„๋ฐ˜๊ธฐ๋Š”
๋‹จ ํ•˜๋‚˜์˜ ๊ธฐ์ˆ ํ˜๋ช…์œผ๋กœ ๋Œ€ํ‘œ๋ฉ๋‹ˆ๋‹ค.
00:17
by a technological revolution:
1
17283
1999
๋ฐ”๋กœ ์†Œํ”„ํŠธ์›จ์–ด ํ˜๋ช…์ž…๋‹ˆ๋‹ค.
00:19
the software revolution.
2
19306
1435
๊ทœ์†Œ๋ผ๋Š” ๋ฌผ์งˆ์— ์ „์ž๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๋Š” ๋Šฅ๋ ฅ์€
00:21
The ability to program electrons on a material called silicon
3
21313
4808
ํ•œ๋•Œ ์šฐ๋ฆฌ๊ฐ€ ์ƒ์ƒ๋„ ํ•˜์ง€ ๋ชปํ–ˆ์ง€๋งŒ,
00:26
made possible technologies, companies and industries
4
26145
3073
00:29
that were at one point unimaginable to many of us,
5
29242
3977
์ง€๊ธˆ์€ ์„ธ์ƒ์˜ ์ž‘๋™ ๋ฐฉ์‹์„ ์™„์ „ํžˆ ๋ฐ”๊พธ์–ด ๋†“์€
๋งŽ์€ ๊ธฐ์ˆ ๊ณผ ์‚ฐ์—…, ํšŒ์‚ฌ๋“ค์„ ๊ฐ€๋Šฅ์ผ€ ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:33
but which have now fundamentally changed the way the world works.
6
33243
3915
00:38
The first half of this century, though,
7
38158
1921
๋ฐ˜๋ฉด ์ด๋ฒˆ ์„ธ๊ธฐ์˜ ์ „๋ฐ˜๊ธฐ์—๋Š”
00:40
is going to be transformed by a new software revolution:
8
40103
3978
๋˜ ๋‹ค๋ฅธ ์†Œํ”„ํŠธ์›จ์–ด ํ˜๋ช…์ด ํฐ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์˜ฌ ๊ฒ๋‹ˆ๋‹ค.
00:44
the living software revolution.
9
44105
2435
๋ฐ”๋กœ ์ƒ์ฒด ์†Œํ”„ํŠธ์›จ์–ด ํ˜๋ช…์ž…๋‹ˆ๋‹ค.
00:46
And this will be powered by the ability to program biochemistry
10
46921
4050
์ด ํ˜๋ช…์€ ์ƒ์ฒด๋ผ๋Š” ๋ฌผ์งˆ์„
์ƒํ™”ํ•™์ ์œผ๋กœ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๋Š” ๋Šฅ๋ ฅ์—์„œ ๋น„๋กฏ๋  ๊ฒ๋‹ˆ๋‹ค.
00:50
on a material called biology.
11
50995
2295
00:53
And doing so will enable us to harness the properties of biology
12
53314
4141
๊ทธ๋Ÿฌ๋ฉด ์šฐ๋ฆฌ๋Š” ์ƒ๋ฌผํ•™์˜ ์„ฑ๊ณผ๋ฅผ ์ด์šฉํ•ด
00:57
to generate new kinds of therapies,
13
57479
2656
์ƒˆ๋กœ์šด ์น˜๋ฃŒ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๊ณ ,
01:00
to repair damaged tissue,
14
60159
1868
์†์ƒ๋œ ์ƒ์ฒด ์กฐ์ง์„ ๋ณต๊ตฌํ•˜๋ฉฐ,
01:02
to reprogram faulty cells
15
62051
2725
๊ฒฐํ•จ ์žˆ๋Š” ์„ธํฌ๋ฅผ ์žฌํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๊ฑฐ๋‚˜,
01:04
or even build programmable operating systems out of biochemistry.
16
64800
4554
ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ์ƒํ™”ํ•™์  ์šด์˜์ฒด์ œ๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
01:10
If we can realize this -- and we do need to realize it --
17
70420
3573
์šฐ๋ฆฌ๊ฐ€ ์ด๋ฅผ ์‹คํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๋˜ ๋ฐ˜๋“œ์‹œ ์‹คํ˜„ํ•ด์•ผ๊ฒ ์ง€๋งŒ,
01:14
its impact will be so enormous
18
74017
2162
๊ธฐ์กด์˜ ์†Œํ”„ํŠธ์›จ์–ด ํ˜๋ช…์ด ๋น›๋ฐ”๋ž  ๋งŒํผ
01:16
that it will make the first software revolution pale in comparison.
19
76203
3877
๊ต‰์žฅํ•œ ์—ฌํŒŒ๋ฅผ ๋ฏธ์น  ๊ฒ๋‹ˆ๋‹ค.
01:20
And that's because living software would transform the entirety of medicine,
20
80104
4234
์ƒ์ฒด ์†Œํ”„ํŠธ์›จ์–ด๋Š” ์ œ์•ฝ, ๋†์—…, ์—๋„ˆ์ง€ ์‚ฐ์—…๋“ฑ
IT์™€ ์ง์ ‘์ ์ธ ์—ฐ๊ด€์„ฑ์ด ์—†๋Š” ์ˆ˜๋งŽ์€ ๋ถ„์•ผ์—๊นŒ์ง€
01:24
agriculture and energy,
21
84362
1559
01:25
and these are sectors that dwarf those dominated by IT.
22
85945
3828
๋ง‰๋Œ€ํ•œ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์˜ฌ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
01:30
Imagine programmable plants that fix nitrogen more effectively
23
90812
4174
ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ์‹๋ฌผ์„ ์ƒ์ƒํ•ด ๋ด…์‹œ๋‹ค.
์ด ์‹๋ฌผ์€ ์งˆ์†Œ๋ฅผ ๋” ํšจ๊ณผ์ ์œผ๋กœ ๊ณ ์ •ํ•˜๊ณ ,
01:35
or resist emerging fungal pathogens,
24
95010
2905
์œ ํ–‰ํ•˜๋Š” ๊ณฐํŒก์ด๊ท ์— ์ €ํ•ญํ•˜๋ฉฐ,
01:37
or even programming crops to be perennial rather than annual
25
97939
3537
์ผ ๋…„์— ํ•œ ๋ฒˆ ๋Œ€์‹  ๋‘ ๋ฒˆ์”ฉ ์—ด๋งค๋ฅผ ๋งบ์–ด
01:41
so you could double your crop yields each year.
26
101500
2268
์ˆ˜ํ™•๋Ÿ‰์„ ๋‘ ๋ฐฐ๋กœ ๋Š˜๋ฆด ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
01:43
That would transform agriculture
27
103792
2098
์ด๋Š” ๋†์—…์˜ ์–‘์ƒ์„ ์™„์ „ํžˆ ๋ฐ”๊พธ์–ด
01:45
and how we'll keep our growing and global population fed.
28
105914
4104
์ ์  ์ฆ๊ฐ€ํ•˜๋Š” ์„ธ๊ณ„ ์ธ๊ตฌ์˜ ์‹๋Ÿ‰ ์†Œ๋น„๋Ÿ‰์„ ์ถฉ๋‹นํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:50
Or imagine programmable immunity,
29
110794
2262
์ด๋ฒˆ์—๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ๋ฉด์—ญ์ฒด๊ณ„๋ฅผ ์ƒ์ƒํ•ด๋ด…์‹œ๋‹ค.
01:53
designing and harnessing molecular devices that guide your immune system
30
113080
4238
๋ถ„์ž ๋‹จ์œ„๋กœ ์ œ์ž‘๋œ ์ƒํ™”ํ•™์  ๋„๊ตฌ๋“ค์ด ๋‹น์‹ ์˜ ๋ฉด์—ญ์ฒด๊ณ„๋ฅผ ๋„์™€
01:57
to detect, eradicate or even prevent disease.
31
117342
3830
์งˆ๋ณ‘์„ ๊ฐ์ง€ํ•˜๊ณ , ์ œ๊ฑฐํ•˜๋ฉฐ, ๋˜๋Š” ์˜ˆ๋ฐฉํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
02:01
This would transform medicine
32
121196
1571
์ด๋Š” ์˜ํ•™์˜ ์–‘์ƒ์„ ์™„์ „ํžˆ ๋ฐ”๊พธ์–ด
02:02
and how we'll keep our growing and aging population healthy.
33
122791
3489
์ ์  ์ฆ๊ฐ€ํ•˜๊ณ  ๊ณ ๋ นํ™”๋˜๋Š” ์„ธ๊ณ„ ์ธ๊ตฌ์˜ ๊ฑด๊ฐ•์„ ์ง€ํ‚ฌ ๋ฐฉ๋ฒ•์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:07
We already have many of the tools that will make living software a reality.
34
127501
4203
์ด๋ฏธ ์ƒ๋ฌผ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์‹คํ˜„์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋งŽ์€ ๋„๊ตฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
02:11
We can precisely edit genes with CRISPR.
35
131728
2347
CRISPR ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์œ ์ „์ž๋ฅผ ์ •๋ฐ€ํžˆ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๊ณ ,
02:14
We can rewrite the genetic code one base at a time.
36
134099
3083
์œ ์ „ ๋ถ€ํ˜ธ๋ฅผ ๊ฐœ๋ณ„ ์—ผ๊ธฐ ์ˆ˜์ค€์—์„œ ๊ณ ์ณ์“ธ ์ˆ˜ ์žˆ์œผ๋ฉฐ,
02:17
We can even build functioning synthetic circuits out of DNA.
37
137206
4436
DNA๋กœ๋ถ€ํ„ฐ ์‹ค์ œ ์ž‘๋™ํ•˜๋Š” ํ•ฉ์„ฑ ํšŒ๋กœ๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
02:22
But figuring out how and when to wield these tools
38
142428
2469
ํ•˜์ง€๋งŒ ์ด ๋„๊ตฌ๋“ค์„ ์–ธ์ œ, ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š”์ง€๋Š”
02:24
is still a process of trial and error.
39
144921
2422
์—ฌ์ „ํžˆ ์‹œํ–‰์ฐฉ์˜ค๋ฅผ ํ†ตํ•ด ๋ฐฐ์šธ ์ˆ˜๋ฐ–์— ์—†์Šต๋‹ˆ๋‹ค.
02:27
It needs deep expertise, years of specialization.
40
147367
3660
์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋†’์€ ์ „๋ฌธ์„ฑ๊ณผ ๋‹ค๋…„๊ฐ„์˜ ๊ฒฝํ—˜์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
02:31
And experimental protocols are difficult to discover
41
151051
3037
์ด ๋ถ„์•ผ์˜ ์‹คํ—˜๊ฒฐ๊ณผ๋“ค์€ ์ฐพ์•„๋ณด๊ธฐ ํž˜๋“ค๋ฉฐ
02:34
and all too often, difficult to reproduce.
42
154112
2582
๋ถˆํ–‰ํ•˜๊ฒŒ๋„ ๋งŽ์€ ๊ฒฝ์šฐ ์žฌํ˜„ํ•˜๊ธฐ๋„ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
02:37
And, you know, we have a tendency in biology to focus a lot on the parts,
43
157256
4473
๊ฒŒ๋‹ค๊ฐ€, ์šฐ๋ฆฌ๋Š” ์ƒ๋ฌผ์„ ์—ฐ๊ตฌํ•  ๋•Œ ๊ฐ๊ฐ์˜ ๊ธฐ๊ด€์—๋งŒ ๋„ˆ๋ฌด ์ฃผ์˜๋ฅผ ๊ธฐ์šธ์ด๊ณค ํ•ฉ๋‹ˆ๋‹ค.
02:41
but we all know that something like flying wouldn't be understood
44
161753
3133
ํ•˜์ง€๋งŒ ๋ˆ„๊ตฌ๋‚˜ ์•Œ๋“ฏ์ด, ๊นƒํ„ธ๋งŒ ๋”ฐ๋กœ ์—ฐ๊ตฌํ•ด์„œ๋Š”
์ ˆ๋Œ€ ์ƒˆ๋“ค์ด ๋‚˜๋Š” ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
02:44
by only studying feathers.
45
164910
1339
02:46
So programming biology is not yet as simple as programming your computer.
46
166846
4521
๊ทธ๋ž˜์„œ ์ƒ์ฒด ํ”„๋กœ๊ทธ๋ž˜๋ฐ์€ ์•„์ง ์ปดํ“จํ„ฐ๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๊ฐ„๋‹จ์น˜ ์•Š์Šต๋‹ˆ๋‹ค.
02:51
And then to make matters worse,
47
171391
1678
๋ฌธ์ œ๋ฅผ ๋” ์•…ํ™”์‹œํ‚ค๋Š” ๊ฑด,
02:53
living systems largely bear no resemblance to the engineered systems
48
173093
4010
์—ฌ๋Ÿฌ๋ถ„๊ณผ ์ œ๊ฐ€ ๋งค์ผ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๋Š” ๊ธฐ๊ณ„์ ์ธ ์‹œ์Šคํ…œ์ด
02:57
that you and I program every day.
49
177127
2096
์ƒ์ฒด ์‹œ์Šคํ…œ๊ณผ ๋ณ„๋กœ ๊ณตํ†ต์ ์ด ์—†๋‹ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:59
In contrast to engineered systems, living systems self-generate,
50
179691
4111
๊ธฐ๊ณ„์ ์ธ ์‹œ์Šคํ…œ๊ณผ ๋‹ค๋ฅด๊ฒŒ, ์ƒ์ฒด ์‹œ์Šคํ…œ์€ ์Šค์Šค๋กœ ๋ฐœ์ƒํ•˜๊ณ ,
03:03
they self-organize,
51
183826
1471
์Šค์Šค๋กœ ์ž์‹ ์„ ๊ตฌ์„ฑํ•˜๋ฉฐ,
03:05
they operate at molecular scales.
52
185321
1687
๋ถ„์ž๋‹จ์œ„์—์„œ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.
03:07
And these molecular-level interactions
53
187032
2136
๋˜ ์ด๋Ÿฐ ๋ถ„์ž๋‹จ์œ„์˜ ์ƒํ˜ธ์ž‘์šฉ์€
03:09
lead generally to robust macro-scale output.
54
189192
3018
๋Œ€๊ฐœ ๋šœ๋ ทํ•œ ๊ฑฐ์‹œ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค.
03:12
They can even self-repair.
55
192234
2720
์ƒ์ฒด ์‹œ์Šคํ…œ์€ ์Šค์Šค๋กœ๋ฅผ ๋ณต๊ตฌํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
03:16
Consider, for example, the humble household plant,
56
196256
2994
์˜ˆ๋ฅผ ๋“ค์–ด, ์ง‘์—์„œ ํ‚ค์šฐ๋Š” ์ž‘์€ ์‹๋ฌผ,
03:19
like that one sat on your mantelpiece at home
57
199274
2187
์—ฌ๋Ÿฌ๋ถ„์ด ์ž๊พธ๋งŒ ๋ฌผ ์ฃผ๊ธฐ๋ฅผ ์žŠ์–ด๋ฒ„๋ฆฌ๋Š”
03:21
that you keep forgetting to water.
58
201485
1787
๊ทธ ํ™”๋ถ„์„ ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค.
03:23
Every day, despite your neglect, that plant has to wake up
59
203749
3615
์—ฌ๋Ÿฌ๋ถ„์ด ์•Œ์•„์ฐจ๋ฆฌ์ง€ ๋ชปํ•ด๋„, ์ด ์‹๋ฌผ์€ ๋งค์ผ ์ž ์—์„œ ๊นจ์–ด
03:27
and figure out how to allocate its resources.
60
207388
2747
์ž์‹ ์˜ ์ž์›์„ ์–ด๋–ป๊ฒŒ ๋ฐฐ๋ถ„ํ• ์ง€ ๊ฒฐ์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:30
Will it grow, photosynthesize, produce seeds, or flower?
61
210159
3571
์„ฑ์žฅํ•ด์•ผ ํ• ๊นŒ์š”, ๊ด‘ํ•ฉ์„ฑํ•ด์•ผ ํ• ๊นŒ์š”, ์•„๋‹ˆ๋ฉด ์”จ์•—์„ ๋งŒ๋“ค๊ฑฐ๋‚˜ ๊ฝƒ์„ ํ”ผ์›Œ์•ผ ํ• ๊นŒ์š”?
03:33
And that's a decision that has to be made at the level of the whole organism.
62
213754
3939
์ด ๊ฒฐ์ •์€ ๊ฐ ๊ธฐ๊ด€์ด ์•„๋‹ˆ๋ผ ์ „์ฒด ๊ฐœ์ฒด ์ˆ˜์ค€์—์„œ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:37
But a plant doesn't have a brain to figure all of that out.
63
217717
3481
ํ•˜์ง€๋งŒ ์‹๋ฌผ์—๊ฒŒ๋Š” ๊ฒฐ์ •์„ ๋‚ด๋ฆด ๋‡Œ๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์—,
03:41
It has to make do with the cells on its leaves.
64
221222
2717
์žŽ ์„ธํฌ๋งŒ์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:43
They have to respond to the environment
65
223963
1903
์žŽ ์„ธํฌ๋“ค์€ ํ™˜๊ฒฝ์— ๋ฐ˜์‘ํ•ด
03:45
and make the decisions that affect the whole plant.
66
225890
2649
์ „์ฒด ๊ฐœ์ฒด์— ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฒฐ์ •์„ ๋‚ด๋ ค์•ผ ํ•ฉ๋‹ˆ๋‹ค.
03:48
So somehow there must be a program running inside these cells,
67
228563
3988
๊ทธ๋Ÿฌ๋‹ˆ ์ด ์„ธํฌ๋“ค์—๋Š” ์–ด๋–ค ํ”„๋กœ๊ทธ๋žจ์ด ๋‚ด์žฅ๋˜์–ด ์žˆ์–ด,
03:52
a program that responds to input signals and cues
68
232575
2727
์ž…๋ ฅ๋˜๋Š” ์‹ ํ˜ธ์— ๋ฐ˜์‘ํ•ด
03:55
and shapes what that cell will do.
69
235326
1940
์ž์‹ ์ด ๋ฌด์—‡์„ ํ• ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์ด ๋ถ„๋ช…ํ•ฉ๋‹ˆ๋‹ค.
03:57
And then those programs must operate in a distributed way
70
237679
3247
์„ธํฌ๋“ค์ด ์„œ๋กœ ํ˜‘๋™ํ•ด ์ „์ฒด ๊ฐœ์ฒด๋ฅผ ํ‚ค์›Œ๋‚ด๋ ค๋ฉด
04:00
across individual cells,
71
240950
1337
์ด ํ”„๋กœ๊ทธ๋žจ์€
04:02
so that they can coordinate and that plant can grow and flourish.
72
242311
4123
๋ถ„์‚ฐ ๋ฐฉ์‹์œผ๋กœ ์ž‘๋™ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
04:07
If we could understand these biological programs,
73
247675
3316
์ด ์ƒ๋ฌผํ•™์  ํ”„๋กœ๊ทธ๋žจ, ์ƒ๋ฌผํ•™์  ์—ฐ์‚ฐ์„
04:11
if we could understand biological computation,
74
251015
3122
์šฐ๋ฆฌ๊ฐ€ ๊ทœ๋ช…ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋ฉด
04:14
it would transform our ability to understand how and why
75
254161
3937
์„ธํฌ๋“ค์ด ์–ด๋–ป๊ฒŒ, ์™œ ์–ด๋–ค ์ผ์„ ํ•˜๋Š”์ง€
ํ›จ์”ฌ ์ž˜ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
04:18
cells do what they do.
76
258122
1546
04:20
Because, if we understood these programs,
77
260152
1987
์ƒ๋ฌผํ•™์  ํ”„๋กœ๊ทธ๋žจ์„ ์ดํ•ดํ•˜๋ฉด,
04:22
we could debug them when things go wrong.
78
262163
2133
๋ฌด์–ธ๊ฐ€ ๋ฌธ์ œ๊ฐ€ ์ƒ๊ฒผ์„ ๋•Œ ๊ทธ๊ฑธ ๋””๋ฒ„๊น…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:24
Or we could learn from them how to design the kind of synthetic circuits
79
264320
4193
๋˜๋Š” ์ด ํ”„๋กœ๊ทธ๋žจ๋“ค์„ ๋ชจ๋ฐฉํ•ด ์ƒ์ฒด์˜ ์ƒํ™”ํ•™์  ์—ฐ์‚ฐ๋Šฅ๋ ฅ์„ ์˜จ์ „ํžˆ ํ™œ์šฉํ•˜๋Š”
04:28
that truly exploit the computational power of biochemistry.
80
268537
4474
ํ•ฉ์„ฑ ํšŒ๋กœ๋ฅผ ์„ค๊ณ„ํ• ์ˆ˜๋„ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
04:34
My passion about this idea led me to a career in research
81
274407
3018
์ด๋Ÿฐ ๋น„์ „์— ๋Œ€ํ•œ ์—ด์ •์ด
์ €๋ฅผ ์ˆ˜ํ•™๊ณผ ์ปดํ“จํ„ฐ ๊ณผํ•™, ์ƒ๋ฌผํ•™์˜ ์ ‘์ ์„ ์—ฐ๊ตฌํ•˜๋„๋ก ์ด๋Œ์—ˆ์Šต๋‹ˆ๋‹ค.
04:37
at the interface of maths, computer science and biology.
82
277449
3631
04:41
And in my work, I focus on the concept of biology as computation.
83
281104
4726
์ €๋Š” ์ƒ๋ฌผํ•™์„ ์ปดํ“จํ„ฐ ๊ณผํ•™์˜ ๊ด€์ ์—์„œ ๋ฐ”๋ผ๋ด…๋‹ˆ๋‹ค.
04:46
And that means asking what do cells compute,
84
286334
3142
์„ธํฌ๊ฐ€ ๋ฌด์—‡์„ ์—ฐ์‚ฐํ•˜๋Š”์ง€,
04:49
and how can we uncover these biological programs?
85
289500
3517
์–ด๋–ป๊ฒŒ ์ƒ๋ฌผํ•™์  ํ”„๋กœ๊ทธ๋žจ์˜ ๋น„๋ฐ€์„ ๋ฐํ˜€๋‚ผ ์ˆ˜ ์žˆ์„์ง€ ๋ฌป์Šต๋‹ˆ๋‹ค.
04:53
And I started to ask these questions together with some brilliant collaborators
86
293760
3757
์บ ๋ธŒ๋ฆฟ์ง€ ๋Œ€ํ•™๊ต์— ์žˆ๋Š” ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ ์—ฐ๊ตฌ์†Œ์˜ ๋™๋ฃŒ๋“ค๊ณผ ํ•จ๊ป˜
04:57
at Microsoft Research and the University of Cambridge,
87
297541
2571
์ด ๋ฌธ์ œ๋ฅผ ์—ฐ๊ตฌํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:00
where together we wanted to understand
88
300136
2283
์ €ํฌ๋Š” ์–ด๋–ค ๋…ํŠนํ•œ ์„ธํฌ์— ๋‚ด์žฅ๋œ
05:02
the biological program running inside a unique type of cell:
89
302443
4177
์ƒ์ฒด ํ”„๋กœ๊ทธ๋žจ์„ ์ดํ•ดํ•˜๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:06
an embryonic stem cell.
90
306644
1894
๋ฐ”๋กœ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์ž…๋‹ˆ๋‹ค.
05:09
These cells are unique because they're totally naรฏve.
91
309136
3160
๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๋Š” ์•„์ง ๋ถ„ํ™”๊ฐ€ ์ผ์–ด๋‚˜์ง€ ์•Š์€ ์›์‹œ ์ƒํƒœ๋ผ๋Š” ์ ์—์„œ ํŠน๋ณ„ํ•ฉ๋‹ˆ๋‹ค.
05:12
They can become anything they want:
92
312320
2168
์ด ์„ธํฌ๋Š” ์ž์‹ ์ด ์›ํ•˜๋Š” ์–ด๋–ค ์„ธํฌ๋กœ๋˜ ๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:14
a brain cell, a heart cell, a bone cell, a lung cell,
93
314512
2565
๋‡Œ์„ธํฌ, ์‹ฌ์žฅ ์„ธํฌ, ๋ผˆ ์„ธํฌ, ๊ฐ„ ์„ธํฌ,
05:17
any adult cell type.
94
317101
1897
๋ถ„ํ™”๋ฅผ ๋งˆ์นœ ์–ด๋–ค ์„ธํฌ๋กœ๋“ ์ง€์š”.
05:19
This naรฏvety, it sets them apart,
95
319022
1677
๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๋ฅผ ๊ตฌ๋ณ„ ์ง“๋Š” ์ด ๋งŒ๋Šฅ์„ฑ์€
05:20
but it also ignited the imagination of the scientific community,
96
320723
3001
๊ณผํ•™๊ณ„์˜ ์ƒ์ƒ๋ ฅ์— ๋ถˆ์„ ์ง€ํˆ์Šต๋‹ˆ๋‹ค.
05:23
who realized, if we could tap into that potential,
97
323748
3263
๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์˜ ์ž ์žฌ๋Šฅ๋ ฅ์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด
05:27
we would have a powerful tool for medicine.
98
327035
2351
์˜ํ•™์ ์œผ๋กœ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๊ฐ€ ๋  ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
05:29
If we could figure out how these cells make the decision
99
329917
2621
๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๊ฐ€ ์–ด๋–ค ์„ธํฌ๋กœ ๋ถ„ํ™”ํ• ์ง€
05:32
to become one cell type or another,
100
332562
2131
์Šค์Šค๋กœ ์„ ํƒํ•˜๋Š” ๊ณผ์ •์„ ๋ฐํ˜€๋‚ด๋ฉด
05:34
we might be able to harness them
101
334717
1690
์šฐ๋ฆฌ๋Š” ์ด ์„ธํฌ๋ฅผ ์‚ฌ์šฉํ•ด
05:36
to generate cells that we need to repair diseased or damaged tissue.
102
336431
4553
๊ฐ์—ผ๋˜๊ฑฐ๋‚˜ ์†์ƒ๋œ ์กฐ์ง ๋ณต๊ตฌ์— ํ•„์š”ํ•œ ์„ธํฌ๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
05:41
But realizing that vision is not without its challenges,
103
341794
2930
ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ๋น„์ „์„ ์‹คํ˜„์‹œํ‚ค๋Š”๋ฐ๋Š” ๋ช‡ ๊ฐ€์ง€ ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
05:44
not least because these particular cells,
104
344748
2764
๊ทธ ์ค‘ ํ•˜๋‚˜๋Š”, ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๊ฐ€
05:47
they emerge just six days after conception.
105
347536
2829
์ˆ˜์ • ํ›„ ๋‹จ 6์ผ ํ›„์— ๋‚˜ํƒ€๋‚œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
05:50
And then within a day or so, they're gone.
106
350826
2055
๊ทธ๋Ÿฌ๊ณ ๋Š” ํ•˜๋ฃจ ์ดํ‹€๋งŒ์— ์‚ฌ๋ผ์ ธ๋ฒ„๋ฆฝ๋‹ˆ๋‹ค.
05:52
They have set off down the different paths
107
352905
2057
์ด๋ฏธ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐฉํ–ฅ์œผ๋กœ ๋ถ„ํ™”๋ฅผ ์‹œ์ž‘ํ•ด
05:54
that form all the structures and organs of your adult body.
108
354986
3050
์„ฑ์ธ์˜ ๋ชธ์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ฐ์ข… ๊ธฐ๊ด€๋“ค์„ ๊ตฌ์„ฑํ•˜๊ธฐ ์‹œ์ž‘ํ•œ ๊ฒƒ์ด์ฃ .
05:59
But it turns out that cell fates are a lot more plastic
109
359770
3079
ํ•˜์ง€๋งŒ ์„ธํฌ์šด๋ช…์€ ์šฐ๋ฆฌ๊ฐ€ ์˜ˆ์ƒํ–ˆ๋˜ ๊ฒƒ๋ณด๋‹ค
06:02
than we might have imagined.
110
362873
1413
๋” ๊ฐ€์†Œ์ ์ธ ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ์Šต๋‹ˆ๋‹ค.
06:04
About 13 years ago, some scientists showed something truly revolutionary.
111
364310
4321
13๋…„ ์ „ ์ฏค์—, ๋ช‡ ๋ช…์˜ ๊ณผํ•™์ž๋“ค์ด ์ •๋ง ๋†€๋ผ์šด ๋ฐœ๊ฒฌ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:09
By inserting just a handful of genes into an adult cell,
112
369393
4346
์•ฝ๊ฐ„์˜ ์œ ์ „์ž๋ฅผ ์„ฑ์ธ ์„ธํฌ,
06:13
like one of your skin cells,
113
373763
1764
์˜ˆ๋ฅผ ๋“ค์–ด ์—ฌ๋Ÿฌ๋ถ„์˜ ํ”ผ๋ถ€ ์„ธํฌ์— ์‚ฝ์ž…ํ•ด์„œ
06:15
you can transform that cell back to the naรฏve state.
114
375551
3959
๋‹ค์‹œ ์›์‹œ ์ƒํƒœ๋กœ ๋˜๋Œ๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑธ์š”.
06:19
And it's a process that's actually known as "reprogramming,"
115
379534
3175
"์žฌํ”„๋กœ๊ทธ๋ž˜๋ฐ"์œผ๋กœ ์•Œ๋ ค์ง„ ์ด ๊ธฐ์ „์„ ํ†ตํ•ด
06:22
and it allows us to imagine a kind of stem cell utopia,
116
382733
3359
์ค„๊ธฐ์„ธํฌ๋ฅผ ๋งŒ๋ณ‘ํ†ต์น˜์•ฝ์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฏธ๋ž˜๋ฅผ ์ƒ์ƒํ•ด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:26
the ability to take a sample of a patient's own cells,
117
386116
3641
ํ™˜์ž์˜ ์„ธํฌ๋ฅผ ์ฑ„์ทจํ•ด
06:29
transform them back to the naรฏve state
118
389781
2360
๋ถ„ํ™” ์ „์˜ ์›์‹œ ์ƒํƒœ๋กœ ๋˜๋Œ๋ ค์„œ
06:32
and use those cells to make whatever that patient might need,
119
392165
3130
ํ™˜์ž์—๊ฒŒ ํ•„์š”ํ•œ ์„ธํฌ๋ผ๋ฉด ๋ฌด์—‡์ด๋“ ,
06:35
whether it's brain cells or heart cells.
120
395319
2075
๋‡Œ์„ธํฌ๋“  ์‹ฌ์žฅ ์„ธํฌ๋“  ๋งŒ๋“ค ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
06:38
But over the last decade or so,
121
398541
1765
ํ•˜์ง€๋งŒ ์ง€๋‚œ 10๋…„๊ฐ„์˜ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ ,
06:40
figuring out how to change cell fate,
122
400330
3044
์„ธํฌ ์šด๋ช…์„ ๋ฐ”๊พธ๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ๋Š” ์—ฐ๊ตฌ๋Š”
06:43
it's still a process of trial and error.
123
403398
2152
์—ฌ์ „ํžˆ ์‹œํ–‰์ฐฉ์˜ค์˜ ์—ฐ์†์ž…๋‹ˆ๋‹ค.
06:45
Even in cases where we've uncovered successful experimental protocols,
124
405911
4508
์„ฑ๊ณต์ ์ธ ์‹คํ—˜ ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋‚ผ ๋•Œ๋„ ์žˆ์ง€๋งŒ,
06:50
they're still inefficient,
125
410443
1467
๊ทธ ์ˆซ์ž๋Š” ์—ฌ์ „ํžˆ ๋ถˆ์ถฉ๋ถ„ํ•˜๊ณ ,
06:51
and we lack a fundamental understanding of how and why they work.
126
411934
4238
์šฐ๋ฆฌ๋Š” ๊ทธ ๋ฐฉ๋ฒ•๋“ค์ด ์–ด๋–ป๊ฒŒ, ์™œ ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ค๋Š”์ง€ ์ž˜ ์ดํ•ดํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.
06:56
If you figured out how to change a stem cell into a heart cell,
127
416650
3005
์ค„๊ธฐ์„ธํฌ๋ฅผ ์‹ฌ์žฅ ์„ธํฌ๋กœ ๋ถ„ํ™”์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ์•„๋ƒˆ๋‹ค๊ณ  ํ•ด๋„,
06:59
that hasn't got any way of telling you how to change a stem cell
128
419679
3089
๊ทธ ๋ฐœ๊ฒฌ์€ ์ค„๊ธฐ์„ธํฌ๋ฅผ ๋‡Œ์„ธํฌ๋กœ ๋ถ„ํ™”์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š”
07:02
into a brain cell.
129
422792
1201
์•„๋ฌด ๊ฒƒ๋„ ์•Œ๋ ค์ฃผ์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
07:04
So we wanted to understand the biological program
130
424633
2931
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์šฐ๋ฆฌ๋Š” ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์— ๋‚ด์žฅ๋œ
07:07
running inside an embryonic stem cell,
131
427588
2447
์ƒ๋ฌผํ•™์  ํ”„๋กœ๊ทธ๋žจ์„ ์ดํ•ดํ•˜๊ณ  ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค.
07:10
and understanding the computation performed by a living system
132
430059
3506
์ƒ์ฒด ์‹œ์Šคํ…œ์ด ์ˆ˜ํ–‰ํ•˜๋Š” ์—ฐ์‚ฐ์„ ์ดํ•ดํ•˜๋ ค๋ฉด,
07:13
starts with asking a devastatingly simple question:
133
433589
4253
๋จผ์ € ์ •๋ง ๊ฐ„๋‹จํ•œ ์งˆ๋ฌธ์„ ํ•˜๋‚˜ ๋˜์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
07:17
What is it that system actually has to do?
134
437866
3356
๊ทธ ์‹œ์Šคํ…œ์ด ๋ฌด์—‡์„ ํ•ด์•ผ ํ• ๊นŒ์š”?
07:21
Now, computer science actually has a set of strategies
135
441838
2850
์ปดํ“จํ„ฐ ๊ณผ ํ•™์—๋Š” ์†Œํ”„ํŠธ์›จ์–ด์™€ ํ•˜๋“œ์›จ์–ด๊ฐ€ ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”์ง€
07:24
for dealing with what it is the software and hardware are meant to do.
136
444712
3827
๊ทœ์ •ํ•˜๊ธฐ ์œ„ํ•œ ์—ฌ๋Ÿฌ ๊ธฐ์ˆ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
07:28
When you write a program, you code a piece of software,
137
448563
2660
์–ด๋–ค ํ”„๋กœ๊ทธ๋žจ์„ ์ž‘์„ฑํ•  ๋•Œ, ๋‹ค์‹œ ๋งํ•ด ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์ฝ”๋”ฉํ•  ๋•Œ
07:31
you want that software to run correctly.
138
451247
2000
์šฐ๋ฆฌ๋Š” ๊ทธ ์†Œํ”„ํŠธ์›จ์–ด๊ฐ€ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ž‘๋™ํ•˜๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
07:33
You want performance, functionality.
139
453271
1790
๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์„ ๋น ๋ฅด๊ฒŒ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋ฐ”๋ผ๊ณ ,
07:35
You want to prevent bugs.
140
455085
1217
๋ฒ„๊ทธ๊ฐ€ ์—†๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
07:36
They can cost you a lot.
141
456326
1308
๋ฒ„๊ทธ๋Š” ํฐ ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ฌ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
07:38
So when a developer writes a program,
142
458168
1842
๊ทธ๋ž˜์„œ ๊ฐœ๋ฐœ์ž๊ฐ€ ํ”„๋กœ๊ทธ๋žจ์„ ์ž‘์„ฑํ•  ๋•Œ๋Š”,
07:40
they could write down a set of specifications.
143
460034
2270
์—ฌ๋Ÿฌ ๋ช…์‹œ ์‚ฌํ•ญ์„ ๊ธฐ๋กํ•ด ๋‘ก๋‹ˆ๋‹ค.
07:42
These are what your program should do.
144
462328
1871
์ด๊ฒƒ์ด ๋ฐ”๋กœ ํ”„๋กœ๊ทธ๋žจ์ด ํ•ด์•ผ ํ•  ์ผ์ž…๋‹ˆ๋‹ค.
07:44
Maybe it should compare the size of two numbers
145
464223
2268
๋‘ ์ˆซ์ž์˜ ํฌ๊ธฐ๋ฅผ ๋น„๊ตํ•˜๋Š” ์ผ์ผ ์ˆ˜๋„ ์žˆ๊ณ ,
07:46
or order numbers by increasing size.
146
466515
1792
์ˆซ์ž๋“ค์„ ์˜ค๋ฆ„์ฐจ์ˆœ์œผ๋กœ ์ •๋ ฌํ•˜๋Š” ์ผ์ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
07:49
Technology exists that allows us automatically to check
147
469037
4695
๊ฐœ๋ฐœ์ž์—๊ฒŒ๋Š” ํ”„๋กœ๊ทธ๋žจ์ด ์ž์‹ ์˜ ๋ช…์‹œ ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•˜๋Š”์ง€,
07:53
whether our specifications are satisfied,
148
473756
2378
์ฆ‰ ํ•ด์•ผ ํ•  ์ผ์„ ์ž˜ ํ•ด๋‚ด๋Š”์ง€
07:56
whether that program does what it should do.
149
476158
2633
์ž๋™์œผ๋กœ ํ™•์ธํ•ด ์ฃผ๋Š” ๊ธฐ์ˆ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
07:59
And so our idea was that in the same way,
150
479266
2856
๊ฐ™์€ ๋งฅ๋ฝ์—์„œ ์ €ํฌ๋Š”
์‹คํ—˜์‹ค์—์„œ ์–ป๋Š” ๊ด€์ธก ๊ฒฐ๊ณผ, ์ธก์ •๊ฐ’๋“ค์ด
08:02
experimental observations, things we measure in the lab,
151
482146
3068
08:05
they correspond to specifications of what the biological program should do.
152
485238
5033
์ƒ์ฒด ํ”„๋กœ๊ทธ๋žจ์ด ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๋ช…์‹œ ์‚ฌํ•ญ์— ํ•ด๋‹นํ•˜๋Š” ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ–ˆ์Šต๋‹ˆ๋‹ค.
08:10
So we just needed to figure out a way
153
490769
1876
์ €ํฌ๋Š” ์ด ์ƒˆ๋กœ์šด ์ข…๋ฅ˜์˜ ๋ช…์‹œ ์‚ฌํ•ญ์„
08:12
to encode this new type of specification.
154
492669
3183
๋ถ€ํ˜ธํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•๋งŒ ์ฐพ์œผ๋ฉด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
08:16
So let's say you've been busy in the lab and you've been measuring your genes
155
496594
3654
์‹คํ—˜์‹ค์—์„œ ์œ ์ „์ž๋“ค์„ ์˜ค๋žซ๋™์•ˆ ๊ด€์ฐฐํ•ด๋ณด๋‹ˆ
08:20
and you've found that if Gene A is active,
156
500272
2436
์œ ์ „์ž A๊ฐ€ ํ™œ์„ฑํ™”๋˜์–ด ์žˆ์„ ๋•Œ๋Š”,
08:22
then Gene B or Gene C seems to be active.
157
502732
3388
์œ ์ „์ž B๋‚˜ ์œ ์ „์ž C๋„ ํ™œ์„ฑ์ƒํƒœ์— ์žˆ๋‹ค๋Š” ๊ฑธ ๋ฐœ๊ฒฌํ–ˆ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค.
08:26
We can write that observation down as a mathematical expression
158
506678
3582
๊ทธ๋Ÿฌ๋ฉด ์ด ๊ด€์ธก ๊ฒฐ๊ณผ๋ฅผ ๋…ผ๋ฆฌ ์–ธ์–ด๋ฅผ ์‚ฌ์šฉํ•ด์„œ
08:30
if we can use the language of logic:
159
510284
2373
์ˆ˜ํ•™์  ํ‘œํ˜„์œผ๋กœ ์˜ฎ๊ฒจ ์ ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:33
If A, then B or C.
160
513125
2328
๋งŒ์•ฝ A๋ผ๋ฉด, B ๋˜๋Š” C์ด๋‹ค.
08:36
Now, this is a very simple example, OK.
161
516242
2454
๋ฌผ๋ก  ํ˜„์‹ค์€ ์ด๋งŒํผ ๊ฐ„๋‹จํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
08:38
It's just to illustrate the point.
162
518720
1743
์ด ์˜ˆ์‹œ๋Š” ๊ทธ์ € ์„ค๋ช…์„ ์œ„ํ•œ ๊ฒ๋‹ˆ๋‹ค.
08:40
We can encode truly rich expressions
163
520487
2924
ํ•˜์ง€๋งŒ ๋” ํ’๋ถ€ํ•œ ๋…ผ๋ฆฌ ํ‘œํ˜„์„ ์‚ฌ์šฉํ•˜๋ฉด
08:43
that actually capture the behavior of multiple genes or proteins over time
164
523435
4153
์„œ๋กœ ๋‹ค๋ฅธ ์—ฌ๋Ÿฌ ์‹คํ—˜์—์„œ ๊ฒ€์ฆ๋œ,
๋ณต์ˆ˜ ์œ ์ „์ž์™€ ๋‹จ๋ฐฑ์งˆ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ํ–‰๋™์„ ๋ถ€ํ˜ธํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:47
across multiple different experiments.
165
527612
2536
08:50
And so by translating our observations
166
530521
2626
์ด๋ ‡๊ฒŒ ๊ด€์ธก ๊ฒฐ๊ณผ๋ฅผ
์ˆ˜ํ•™์  ํ‘œํ˜„์œผ๋กœ ๋ฐ”๊พธ๋ฉด,
08:53
into mathematical expression in this way,
167
533171
1993
08:55
it becomes possible to test whether or not those observations can emerge
168
535188
5098
์ด ๊ฒฐ๊ณผ๊ฐ€ ์œ ์ „์ž ์‚ฌ์ด์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ธฐ์ˆ ํ•˜๋Š”
ํŠน์ • ํ”„๋กœ๊ทธ๋žจ์˜ ๊ฒฐ๊ณผ์™€ ๋ชจ์ˆœ์ด ์—†๋Š”์ง€ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:00
from a program of genetic interactions.
169
540310
3054
09:04
And we developed a tool to do just this.
170
544063
2556
์ด ์ž‘์—…์„ ์œ„ํ•œ ๋„๊ตฌ๋ฅผ ์ €ํฌ๊ฐ€ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
09:06
We were able to use this tool to encode observations
171
546643
2882
์ด ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ๊ด€์ธก ๊ฒฐ๊ณผ๋ฅผ
์ˆ˜ํ•™์  ํ‘œํ˜„์œผ๋กœ ๋ถ€ํ˜ธํ™”ํ•˜๊ณ ,
09:09
as mathematical expressions,
172
549549
1407
09:10
and then that tool would allow us to uncover the genetic program
173
550980
3610
๋ถ€ํ˜ธํ™”ํ•œ ๊ด€์ธก ๊ฒฐ๊ณผ๋ฅผ ๋ชจ๋‘ ์„ค๋ช…ํ•ด์ฃผ๋Š”
์œ ์ „์ž ํ”„๋กœ๊ทธ๋žจ์„ ์ฐพ์•„๋‚ผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
09:14
that could explain them all.
174
554614
1538
09:17
And we then apply this approach
175
557481
2280
์ดํ›„ ์ €ํฌ๋Š” ๊ฐ™์€ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด
09:19
to uncover the genetic program running inside embryonic stem cells
176
559785
4083
๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์— ๋‚ด์žฅ๋œ ์œ ์ „์ž ํ”„๋กœ๊ทธ๋žจ์„ ์ดํ•ดํ•˜๊ณ 
09:23
to see if we could understand how to induce that naรฏve state.
177
563892
4189
์„ธํฌ๋ฅผ ๋ถ„ํ™” ์ „์˜ ์›์‹œ์ƒํƒœ๋กœ ๋˜๋Œ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์„ ์ฐพ๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:28
And this tool was actually built
178
568105
1952
์ด ๋„๊ตฌ๋Š” ์‚ฌ์‹ค
์„ธ๊ณ„ ๊ณณ๊ณณ์—์„œ ์†Œํ”„ํŠธ์›จ์–ด ๊ฒ€์ฆ์„ ์œ„ํ•ด ์ผ์ƒ์ ์œผ๋กœ ํ™œ์šฉ๋˜๋Š”
09:30
on a solver that's deployed routinely around the world
179
570081
2652
09:32
for conventional software verification.
180
572757
2269
์†”๋ฒ„(ํ’€์ด ํ”„๋กœ๊ทธ๋žจ)๋ฅผ ๊ธฐ์ดˆ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
09:35
So we started with a set of nearly 50 different specifications
181
575630
3691
๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๋ฅผ ๊ด€์ฐฐํ•˜๋ฉฐ ๊ธฐ๋กํ•œ
09:39
that we generated from experimental observations of embryonic stem cells.
182
579345
4506
50๊ฐœ์— ๋‹ฌํ•˜๋Š” ๋ช…์‹œ ์‚ฌํ•ญ๋“ค์„
09:43
And by encoding these observations in this tool,
183
583875
2636
์ด ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•ด ๋ถ€ํ˜ธํ™”ํ•ด์„œ
09:46
we were able to uncover the first molecular program
184
586535
3185
๊ทธ ๋ชจ๋‘๋ฅผ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์ฒซ ๋ฒˆ์งธ ๋ถ„์ž ํ”„๋กœ๊ทธ๋žจ์„
09:49
that could explain all of them.
185
589744
1961
์ฐพ์•„๋‚ด๋Š” ๋ฐ ์„ฑ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค.
09:52
Now, that's kind of a feat in and of itself, right?
186
592309
2513
์ด๊ฒƒ ๋งŒ์œผ๋กœ๋„ ์ถฉ๋ถ„ํžˆ ํฐ ์„ฑ๊ณผ์ž…๋‹ˆ๋‹ค, ๊ทธ๋ ‡์ฃ ?
09:54
Being able to reconcile all of these different observations
187
594846
2902
์„œ๋กœ ๋‹ค๋ฅธ ์ˆ˜ ๋งŽ์€ ๊ด€์ธก ๊ฒฐ๊ณผ์— ๋น ์ง์—†์ด ๋ถ€ํ•ฉํ•˜๋Š” ๊ฐ€์„ค์„ ์ฐพ๋Š” ์ž‘์—…์€
09:57
is not the kind of thing you can do on the back of an envelope,
188
597772
3067
๊ฒฐ์ฝ” ์ฃผ๋จน๊ตฌ๊ตฌ์‹์œผ๋กœ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
10:00
even if you have a really big envelope.
189
600863
2648
์—ฌ๋Ÿฌ๋ถ„ ์†๊ฐ€๋ฝ์ด ์•„๋ฌด๋ฆฌ ๋งŽ๋”๋ผ๋„์š”.
10:04
Because we've got this kind of understanding,
190
604190
2158
๋ฌธ์ œ๋ฅผ ์—ฌ๊ธฐ๊นŒ์ง€ ํ•ด๊ฒฐํ–ˆ์œผ๋‹ˆ
10:06
we could go one step further.
191
606372
1462
ํ•œ ๊ฑธ์Œ ๋” ๋‚˜๊ฐ€๋ด…์‹œ๋‹ค.
10:07
We could use this program to predict what this cell might do
192
607858
3371
๋ฐํ˜€์ง„ ์œ ์ „์ž ํ”„๋กœ๊ทธ๋žจ์„ ๋ฐ”ํƒ•์œผ๋กœ
์•„์ง ์‹คํ—˜ํ•˜์ง€ ์•Š์€ ์กฐ๊ฑด์—์„œ์˜ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์˜ ํ–‰๋™์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
10:11
in conditions we hadn't yet tested.
193
611253
2176
10:13
We could probe the program in silico.
194
613453
2401
์ €ํฌ๋Š” ์œ ์ „์ž ํ”„๋กœ๊ทธ๋žจ์„ ์ปดํ“จํ„ฐ๋กœ ์˜ฎ๊ฒจ์„œ
10:16
And so we did just that:
195
616735
1247
์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค.
10:18
we generated predictions that we tested in the lab,
196
618006
3180
๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์‹คํ—˜์‹ค์—์„œ ์ง์ ‘ ๊ฒ€์ฆํ•ด๋ณธ ๊ฒฐ๊ณผ
10:21
and we found that this program was highly predictive.
197
621210
3032
์ €ํฌ๊ฐ€ ์ฐพ์•„๋‚ธ ํ”„๋กœ๊ทธ๋žจ์˜ ์˜ˆ์ธก์€ ๋งค์šฐ ์ •ํ™•ํ–ˆ์Šต๋‹ˆ๋‹ค.
10:24
It told us how we could accelerate progress
198
624266
2625
์ด ํ”„๋กœ๊ทธ๋žจ์€ ์„ธํฌ์˜ ์—ญ๋ถ„ํ™” ๊ณผ์ •์„
10:26
back to the naรฏve state quickly and efficiently.
199
626915
3060
์†์‰ฝ๊ฒŒ, ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ€์†์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ๋ ค์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค.
10:29
It told us which genes to target to do that,
200
629999
2570
์–ด๋–ค ์œ ์ „์ž๋ฅผ ํ‘œ์ ์œผ๋กœ ํ•ด์•ผํ•˜๋Š”์ง€,
10:32
which genes might even hinder that process.
201
632593
2624
๋˜ ์–ด๋–ค ์œ ์ „์ž๊ฐ€ ์—ญ๋ถ„ํ™” ๊ณผ์ •์„ ์ €ํ•ดํ• ์ง€๋„์š”.
10:35
We even found the program predicted the order in which genes would switch on.
202
635241
4990
์ด ํ”„๋กœ๊ทธ๋žจ์€ ์œ ์ „์ž๋“ค์ด ํ™œ์„ฑํ™” ๋˜๋Š” ์ˆœ์„œ๋„ ์˜ˆ์ธกํ•ด๋ƒˆ์Šต๋‹ˆ๋‹ค.
10:40
So this approach really allowed us to uncover the dynamics
203
640980
3140
์ €ํฌ์˜ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์„ธํฌ ํ™œ๋™์˜ ์ˆจ๊ฒจ์ง„ ์ž‘๋™ ์›๋ฆฌ๋ฅผ
10:44
of what the cells are doing.
204
644144
2402
๋ฐํ˜€๋‚ด๋Š” ๋ฐ ์•„์ฃผ ์„ฑ๊ณต์ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
10:47
What we've developed, it's not a method that's specific to stem cell biology.
205
647728
3642
์ด ๋ฐฉ๋ฒ•์€ ์ค„๊ธฐ์„ธํฌ๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ๋งŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹™๋‹ˆ๋‹ค.
10:51
Rather, it allows us to make sense of the computation
206
651394
2684
๋” ๋ฒ”์šฉ์ ์œผ๋กœ, ์„ธํฌ๊ฐ€ ์ˆ˜ํ–‰ํ•˜๋Š” ์—ฐ์‚ฐ์„
10:54
being carried out by the cell
207
654102
1685
์œ ์ „์ž ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ด€์ ์—์„œ
10:55
in the context of genetic interactions.
208
655811
2831
์ดํ•ดํ•˜๊ฒŒ ํ•ด์ฃผ๋Š” ๋„๊ตฌ๋ผ ๋งํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:58
So really, it's just one building block.
209
658666
2288
์–ด๋Š ๊ฑด๋ฌผ์—๋‚˜ ์“ฐ์ผ ์ˆ˜ ์žˆ๋Š” ๋ฒฝ๋Œ์ธ ์…ˆ์ž…๋‹ˆ๋‹ค.
11:00
The field urgently needs to develop new approaches
210
660978
2685
์ด ๋ถ„์•ผ์—๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์ด ์ ˆ์‹คํžˆ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
11:03
to understand biological computation more broadly
211
663687
2695
์ƒ๋ฌผํ•™์  ์—ฐ์‚ฐ์„ ๋” ํญ๋„“๊ฒŒ,
11:06
and at different levels,
212
666406
1367
DNA์—์„œ ์„ธํฌ ๊ฐ„ ์ •๋ณด ๊ตํ™˜์— ์ด๋ฅด๋Š”
11:07
from DNA right through to the flow of information between cells.
213
667797
4129
๋‹ค์–‘ํ•œ ์ˆ˜์ค€์—์„œ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ์š”.
11:11
Only this kind of transformative understanding
214
671950
2797
์ด๋Ÿฐ ๊ทผ๋ณธ์ ์ธ ์ดํ•ด๊ฐ€ ๋’ท๋ฐ›์นจ ๋˜์–ด์•ผ๋งŒ
11:14
will enable us to harness biology in ways that are predictable and reliable.
215
674771
4986
์ƒ๋ฌผํ•™์„ ์•ˆ์ •์ ์ด๊ณ  ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ๋ฐฉ์‹์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:21
But to program biology, we will also need to develop
216
681029
3042
์•„์ง ์ƒ์ฒด ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ์œ„ํ•ด์„œ๋Š”,
๋‹ค๋ฅธ ๋„๊ตฌ์™€ ์–ธ์–ด๋„ ๊ฐœ๋ฐœ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
11:24
the kinds of tools and languages
217
684095
1995
11:26
that allow both experimentalists and computational scientists
218
686114
3408
์‹คํ—˜ ์ƒ๋ฌผํ•™์ž์™€ ์ปดํ“จํ„ฐ ๊ณผํ•™์ž ๋ชจ๋‘
11:29
to design biological function
219
689546
2497
์ƒ๋ฌผํ•™์  ๊ธฐ๋Šฅ์„ ์„ค๊ณ„ํ•˜๊ณ 
11:32
and have those designs compile down to the machine code of the cell,
220
692067
3505
๊ทธ๊ฒƒ์„ ์ปดํŒŒ์ผํ•ด ์„ธํฌ์˜ ๊ธฐ๊ณ„์–ด, ์ฆ‰ ์ƒํ™”ํ•™์  ์ •๋ณด๋กœ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์–ด์•ผ๋งŒ
11:35
its biochemistry,
221
695596
1181
11:36
so that we could then build those structures.
222
696801
2484
์ƒ์ฒด ํ”„๋กœ๊ทธ๋žจ์„ ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:39
Now, that's something akin to a living software compiler,
223
699309
3673
์ƒ์ฒด ์†Œํ”„ํŠธ์›จ์–ด ์ปดํŒŒ์ผ๋Ÿฌ๋ผ๊ณ  ๋ถ€๋ฅผ ๋งŒํ•œ ๋„๊ตฌ์ธ๋ฐ,
11:43
and I'm proud to be part of a team at Microsoft
224
703006
2216
์ž๋ž‘์Šค๋Ÿฝ๊ฒŒ๋„ ์ œ๊ฐ€ ์†ํ•œ ๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ ํŒ€์—์„œ
11:45
that's working to develop one.
225
705246
1652
๊ฐœ๋ฐœ ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค.
11:47
Though to say it's a grand challenge is kind of an understatement,
226
707366
3226
ํฐ ๋„์ „์ด๋ผ๋Š” ํ‘œํ˜„์œผ๋กœ๋„ ๋ถ€์กฑํ•  ๋งŒํผ ์–ด๋ ค์šด ๊ณผ์ œ์ด์ง€๋งŒ,
11:50
but if it's realized,
227
710616
1173
๋งŒ์•ฝ ์‹คํ˜„๋œ๋‹ค๋ฉด,
11:51
it would be the final bridge between software and wetware.
228
711813
3709
์ปดํ“จํ„ฐ์™€ ์ƒ์ฒด ์†Œํ”„ํŠธ์›จ์–ด ์‚ฌ์ด๋ฅผ ์ž‡๋Š” ๋งˆ์ง€๋ง‰ ๋‹ค๋ฆฌ๋ฅผ ๋†“๊ฒŒ ๋  ๊ฒ๋‹ˆ๋‹ค.
11:57
More broadly, though, programming biology is only going to be possible
229
717006
3415
๋” ๋„“์€ ๊ด€์ ์—์„œ, ์ƒ์ฒด ํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด ๊ฐ€๋Šฅํ•˜๋ ค๋ฉด
12:00
if we can transform the field into being truly interdisciplinary.
230
720445
4279
์ด ๋ถ„์•ผ์—์„œ ํ•™๋ฌธ ๊ฐ„ ๊ต๋ฅ˜๊ฐ€ ์›ํ™œํžˆ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
12:04
It needs us to bridge the physical and the life sciences,
231
724748
2952
๋ฌผ์ƒ ๊ณผํ•™๊ณผ ์ƒ๋ช…๊ณผํ•™์ด ์ด์–ด์ง€๊ณ ,
12:07
and scientists from each of these disciplines
232
727724
2267
๊ฐ๊ฐ์˜ ๋ถ„์•ผ๋ฅผ ์—ฐ๊ตฌํ•˜๋Š” ๊ณผํ•™์ž๋“ค์ด
12:10
need to be able to work together with common languages
233
730015
2731
๊ณตํ†ต์˜ ์–ธ์–ด๋ฅผ ๊ฐ–๊ณ  ํ•จ๊ป˜ ์ผํ•˜๋ฉฐ
12:12
and to have shared scientific questions.
234
732770
2719
๊ณผํ•™์  ์งˆ๋ฌธ์„ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
12:16
In the long term, it's worth remembering that many of the giant software companies
235
736757
3993
๋ฏธ๋ž˜๋ฅผ ๋ณผ ๋•Œ, ์ง€๊ธˆ์˜ ๊ฑฐ๋Œ€ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ์—…๋“ค๊ณผ
12:20
and the technology that you and I work with every day
236
740774
2492
์šฐ๋ฆฌ๊ฐ€ ์ผ์ƒ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ์ฒจ๋‹จ ๊ธฐ์ˆ ๋“ค์ด
12:23
could hardly have been imagined
237
743290
1503
์‹ค๋ฆฌ์ฝ˜ ๋งˆ์ดํฌ๋กœ์นฉ์— ์ฒ˜์Œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ์‹œ์ž‘ํ–ˆ์„ ๋•Œ๋Š”
12:24
at the time we first started programming on silicon microchips.
238
744817
3605
์ƒ์ƒ์กฐ์ฐจ ํ•˜์ง€ ๋ชปํ–ˆ๋˜ ๊ฒƒ๋“ค์ด์—ˆ์Œ์„ ๊ธฐ์–ตํ•  ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
12:28
And if we start now to think about the potential for technology
239
748446
3031
์ „์‚ฐ์ƒ๋ฌผํ•™์ด ์—ฐ ๊ธฐ์ˆ  ๋ฐœ์ „์˜ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด
12:31
enabled by computational biology,
240
751501
2426
์ง€๊ธˆ๋ถ€ํ„ฐ ์ƒ๊ฐํ•ด๋ณธ๋‹ค๋ฉด
12:33
we'll see some of the steps that we need to take along the way
241
753951
2935
๊ทธ ๋ฏธ๋ž˜๋ฅผ ์‹คํ˜„์‹œํ‚ค๊ธฐ ์œ„ํ•ด
์šฐ๋ฆฌ๊ฐ€ ๋ฌด์—‡์„ ํ•ด์•ผํ•  ์ง€ ์•Œ ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.
12:36
to make that a reality.
242
756910
1433
12:39
Now, there is the sobering thought that this kind of technology
243
759231
3082
ํ•œ ๊ฐ€์ง€ ์—ผ๋ ค์Šค๋Ÿฌ์šด ๊ฒƒ์€
์ด๋Ÿฐ ๊ธฐ์ˆ ์ด ์˜ค๋‚จ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
12:42
could be open to misuse.
244
762337
1777
12:44
If we're willing to talk about the potential
245
764138
2163
ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ๋ฉด์—ญ์„ธํฌ์˜
12:46
for programming immune cells,
246
766325
1436
๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๋งํ•˜๋ ค๋ฉด
12:47
we should also be thinking about the potential of bacteria
247
767785
3188
๋™์‹œ์— ๋ฉด์—ญ ์ฒด๊ณ„๋ฅผ ํšŒํ”ผํ•˜๋„๋ก ์„ค๊ณ„๋œ ์„ธ๊ท ์˜
12:50
engineered to evade them.
248
770997
1661
๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด์„œ๋„ ๊ณ ๋ คํ•ด๋ณด์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.
12:52
There might be people willing to do that.
249
772682
2087
๊ทธ๋Ÿฐ ์„ธ๊ท ์„ ๋งŒ๋“œ๋ ค๋Š” ์‚ฌ๋žŒ์ด ์žˆ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
12:55
Now, one reassuring thought in this
250
775506
1722
๊ทธ๋‚˜๋งˆ ์œ„์•ˆ์ด ๋˜๋Š” ๊ฒƒ์€,
12:57
is that -- well, less so for the scientists --
251
777252
2289
๊ณผํ•™์ž๋“ค์—๊ฒŒ๋Š” ๋ณ„๋กœ ํ•ด๋‹นํ•˜์ง€ ์•Š๋Š” ์ด์•ผ๊ธฐ์ง€๋งŒ,
12:59
is that biology is a fragile thing to work with.
252
779565
3269
์ƒ๋ฌผ์ด ๋‹ค๋ฃจ๊ธฐ ๊นŒ๋‹ค๋กœ์šด ๋Œ€์ƒ์ด๋ผ๋Š” ์ ์ž…๋‹ˆ๋‹ค.
13:02
So programming biology is not going to be something
253
782858
2412
๊ทธ๋ž˜์„œ ์ƒ์ฒด ํ”„๋กœ๊ทธ๋ž˜๋ฐ์ด
์—ฌ๋Ÿฌ๋ถ„ ๋’ท๋งˆ๋‹น์—์„œ ์‰ฝ๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์€ ์•„๋‹™๋‹ˆ๋‹ค.
13:05
you'll be doing in your garden shed.
254
785294
1848
13:07
But because we're at the outset of this,
255
787642
2080
ํ•˜์ง€๋งŒ ์ด ๋ถ„์•ผ๊ฐ€ ์•„์ง ์‹œ์ž‘ ๋‹จ๊ณ„์— ์žˆ๊ธฐ ๋•Œ๋ฌธ์—,
13:09
we can move forward with our eyes wide open.
256
789746
2583
์šฐ๋ฆฌ๋Š” ๊ฒฝ๊ฐ์‹ฌ์„ ๊ฐ–๊ณ  ๋‚˜์•„๊ฐ€์•ผ ํ•ฉ๋‹ˆ๋‹ค.
13:12
We can ask the difficult questions up front,
257
792353
2324
์ •๋ฉด์œผ๋กœ ํž˜๋“  ์งˆ๋ฌธ์„ ๋˜์ง€๊ณ ,
13:14
we can put in place the necessary safeguards
258
794701
3040
ํ•„์š”ํ•œ ์•ˆ์ „์žฅ์น˜๋ฅผ ๋งˆ๋ จํ•˜๋ฉฐ,
13:17
and, as part of that, we'll have to think about our ethics.
259
797765
2797
๊ทธ ์ผํ™˜์œผ๋กœ ์—ฐ๊ตฌ ์œค๋ฆฌ์— ๋Œ€ํ•ด ๊ณ ๋ฏผํ•ด๋ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
13:20
We'll have to think about putting bounds on the implementation
260
800586
3172
์–ด๋–ค ์ƒ๋ช… ๊ธฐ๋Šฅ๊นŒ์ง€ ์„ค๊ณ„ํ•ด๋„ ๋˜๋Š”์ง€
13:23
of biological function.
261
803782
1498
๊ทœ์ œ๊ฐ€ ํ•„์š”ํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
13:25
So as part of this, research in bioethics will have to be a priority.
262
805604
3715
์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ƒ๋ช…์œค๋ฆฌ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์šฐ์„ ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
13:29
It can't be relegated to second place
263
809343
2407
๊ณผํ•™์˜ ๋ˆˆ๋ถ€์‹  ๋ฐœ์ „ ๊ฐ€๋Šฅ์„ฑ์— ๋งˆ์Œ์„ ๋บ๊ฒจ
13:31
in the excitement of scientific innovation.
264
811774
2514
์œค๋ฆฌ๊ฐ€ ๋’ท์„ ์œผ๋กœ ๋ฐ€๋ ค์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค.
13:35
But the ultimate prize, the ultimate destination on this journey,
265
815154
3474
์ด ์—ฌ์ •์˜ ์ข…์ , ๊ถ๊ทน์ ์ธ ๋ณด์ƒ์€
13:38
would be breakthrough applications and breakthrough industries
266
818652
3444
๋†์—…์—์„œ ์˜ํ•™, ์—๋„ˆ์ง€ ์‚ฐ์—…, ์žฌ๋ฃŒ๊ณตํ•™, ์‹ฌ์ง€์–ด ์ปดํ“จํ„ฐ ๊ณผํ•™์— ์ด๋ฅด๋Š”
13:42
in areas from agriculture and medicine to energy and materials
267
822120
3444
๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ํ˜์‹ ์ ์ธ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ๊ณผ
13:45
and even computing itself.
268
825588
2261
ํ˜์‹ ์  ์‘์šฉ ๊ธฐ์ˆ ๋“ค์ด ๋  ๊ฒ๋‹ˆ๋‹ค.
13:48
Imagine, one day we could be powering the planet sustainably
269
828490
3148
์–ธ์  ๊ฐ€๋Š” ์ง€๊ตฌ ์ „์ฒด๊ฐ€
์ง€์† ๊ฐ€๋Šฅํ•œ ์นœํ™˜๊ฒฝ ์—๋„ˆ์ง€๋งŒ์œผ๋กœ ์ƒํ™œํ• ์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
13:51
on the ultimate green energy
270
831662
1859
13:53
if we could mimic something that plants figured out millennia ago:
271
833545
3943
์‹๋ฌผ๋“ค์ด ์ˆ˜๋ฐฑ๋งŒ๋…„ ์ „๋ถ€ํ„ฐ ํ•˜๋˜ ๊ฒƒ์ฒ˜๋Ÿผ
13:57
how to harness the sun's energy with an efficiency that is unparalleled
272
837512
3771
๊ธฐ์กด์˜ ํƒœ์–‘๊ด‘ ํŒจ๋„๊ณผ๋Š” ๋น„๊ตํ•  ์ˆ˜ ์—†๋Š” ํšจ์œจ๋กœ
ํƒœ์–‘์—๋„ˆ์ง€๋ฅผ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด์š”.
14:01
by our current solar cells.
273
841307
1856
14:03
If we understood that program of quantum interactions
274
843695
2601
์‹๋ฌผ์ด ํƒœ์–‘๊ด‘์„ ๊ทธ๋ ‡๊ฒŒ ํšจ๊ณผ์ ์œผ๋กœ ํก์ˆ˜ํ•˜๋Š”
14:06
that allow plants to absorb sunlight so efficiently,
275
846320
3264
์–‘์ž ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ธฐ์ˆ ํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์„ ์ฐพ์•„๋‚ด๋ฉด
14:09
we might be able to translate that into building synthetic DNA circuits
276
849608
3944
๊ทธ ํ”„๋กœ๊ทธ๋žจ์„ ๋ฐ”๊ฟ” ์จ, ์ฐจ์„ธ๋Œ€ ํƒœ์–‘๊ด‘ ์ „์ง€์˜ ์žฌ๋ฃŒ๊ฐ€ ๋˜๋Š” ๋ฌผ์งˆ์˜
14:13
that offer the material for better solar cells.
277
853576
2913
DNA ํ•ฉ์„ฑ ํšŒ๋กœ๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.
14:17
There are teams and scientists working on the fundamentals of this right now,
278
857349
3693
์ง€๊ธˆ๋„ ์ด ์ฃผ์ œ์˜ ๊ธฐ์ดˆ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ ์ค‘์ธ ๊ณผํ•™์ž๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14:21
so perhaps if it got the right attention and the right investment,
279
861066
3243
์ ์ ˆํ•œ ์ง€์›๊ณผ ํˆฌ์ž๊ฐ€ ๋’ท๋ฐ›์นจ๋œ๋‹ค๋ฉด
14:24
it could be realized in 10 or 15 years.
280
864333
2280
10๋…„์—์„œ 15๋…„ ๋‚ด์— ์‹คํ˜„๋  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
14:27
So we are at the beginning of a technological revolution.
281
867457
3197
์ง€๊ธˆ ์šฐ๋ฆฌ๋Š” ํ•œ ๊ธฐ์ˆ  ํ˜๋ช…์˜ ์‹œ์ž‘์ ์— ์žˆ์Šต๋‹ˆ๋‹ค.
14:31
Understanding this ancient type of biological computation
282
871067
3221
์‹๋ฌผ์ด ์˜ค๋ž˜ ์ „๋ถ€ํ„ฐ ์ˆ˜ํ–‰ํ•ด ์˜จ ์ƒ๋ฌผํ•™์  ์—ฐ์‚ฐ์— ๋Œ€ํ•œ ์ดํ•ด๋Š”
14:34
is the critical first step.
283
874312
2132
์ด ํ˜๋ช…์˜ ์•„์ฃผ ์ค‘์š”ํ•œ ์ฒซ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
14:36
And if we can realize this,
284
876468
1317
์ด๊ฒƒ์ด ์‹คํ˜„๋œ๋‹ค๋ฉด,
14:37
we would enter in the era of an operating system
285
877809
2842
์šฐ๋ฆฌ๋Š” ์ƒ์ฒด ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ตฌ๋™ํ•˜๋Š”
14:40
that runs living software.
286
880675
1905
์šด์˜์ฒด์ œ์˜ ์‹œ๋Œ€๋กœ ์ง„์ž…ํ•  ๊ฒ๋‹ˆ๋‹ค.
14:42
Thank you very much.
287
882604
1166
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
14:43
(Applause)
288
883794
2690
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7