The next software revolution: programming biological cells | Sara-Jane Dunn

169,774 views ・ 2019-11-26

TED


請雙擊下方英文字幕播放視頻。

譯者: Helen Chang 審譯者: Bruce Sung
00:12
The second half of the last century was completely defined
0
12750
4509
上個世紀的後半
全由一場科技革命所定義:
00:17
by a technological revolution:
1
17283
1999
00:19
the software revolution.
2
19306
1435
軟體革命。
00:21
The ability to program electrons on a material called silicon
3
21313
4808
能在矽材料上編寫電子程式的能力,
00:26
made possible technologies, companies and industries
4
26145
3073
讓許多我們過去難以想像的
00:29
that were at one point unimaginable to many of us,
5
29242
3977
技術、公司和行業變為可能,
00:33
but which have now fundamentally changed the way the world works.
6
33243
3915
如今已從根本改變世界運作的方式。
00:38
The first half of this century, though,
7
38158
1921
不過本世紀的前半段
00:40
is going to be transformed by a new software revolution:
8
40103
3978
將被一場新的軟體革命轉變:
00:44
the living software revolution.
9
44105
2435
生物軟體革命。
00:46
And this will be powered by the ability to program biochemistry
10
46921
4050
促成這場革命的
將是在生物材料上 編寫生物化學的能力。
00:50
on a material called biology.
11
50995
2295
00:53
And doing so will enable us to harness the properties of biology
12
53314
4141
這讓我們能利用生物的特性
00:57
to generate new kinds of therapies,
13
57479
2656
來產生新療法,
01:00
to repair damaged tissue,
14
60159
1868
以修復受損的組織;
01:02
to reprogram faulty cells
15
62051
2725
重新編寫有瑕疵的細胞;
01:04
or even build programmable operating systems out of biochemistry.
16
64800
4554
甚至創造可編寫的 生物化學作業系統。
01:10
If we can realize this -- and we do need to realize it --
17
70420
3573
若能了解這一點—— 我們的確需要了解這一點——
01:14
its impact will be so enormous
18
74017
2162
它的影響會大到
01:16
that it will make the first software revolution pale in comparison.
19
76203
3877
讓第一場軟體革命相形失色。
01:20
And that's because living software would transform the entirety of medicine,
20
80104
4234
那是因為生物軟體會轉變整個醫界、
01:24
agriculture and energy,
21
84362
1559
農業界,和能源界,
01:25
and these are sectors that dwarf those dominated by IT.
22
85945
3828
會讓那些 IT 主宰的部門 顯得無足輕重。
01:30
Imagine programmable plants that fix nitrogen more effectively
23
90812
4174
想像可編寫的植物能更效率地固氮,
01:35
or resist emerging fungal pathogens,
24
95010
2905
能抵抗新興的菌類病原體,
01:37
or even programming crops to be perennial rather than annual
25
97939
3537
甚至能把一年生的作物 編寫成多年生,
01:41
so you could double your crop yields each year.
26
101500
2268
使年產量加倍,
01:43
That would transform agriculture
27
103792
2098
那就會轉變農業,
01:45
and how we'll keep our growing and global population fed.
28
105914
4104
確保不斷成長的全球人口 都有食物可吃。
01:50
Or imagine programmable immunity,
29
110794
2262
或可想像編寫免疫力,
01:53
designing and harnessing molecular devices that guide your immune system
30
113080
4238
設計利用分子裝置來引導免疫系統
01:57
to detect, eradicate or even prevent disease.
31
117342
3830
去偵測、根除,甚至預防疾病。
02:01
This would transform medicine
32
121196
1571
這會轉變醫學,
02:02
and how we'll keep our growing and aging population healthy.
33
122791
3489
確保不斷成長和老化的人口 能夠維持健康。
02:07
We already have many of the tools that will make living software a reality.
34
127501
4203
目前已有許多工具 能讓生物軟體成真。
02:11
We can precisely edit genes with CRISPR.
35
131728
2347
我們能用 CRISPR 精確地編輯基因;
02:14
We can rewrite the genetic code one base at a time.
36
134099
3083
我們能夠重寫基因編碼, 一次重寫一個鹼基;
02:17
We can even build functioning synthetic circuits out of DNA.
37
137206
4436
我們甚至能用 DNA 做成能運作的合成電路。
02:22
But figuring out how and when to wield these tools
38
142428
2469
至於弄明白如何、何時使用這些工具
02:24
is still a process of trial and error.
39
144921
2422
則仍處於試誤的過程中,
02:27
It needs deep expertise, years of specialization.
40
147367
3660
需要很深的知識技術 和多年的專門化,
02:31
And experimental protocols are difficult to discover
41
151051
3037
而實驗操作方法難以發現,
02:34
and all too often, difficult to reproduce.
42
154112
2582
通常也難以重現。
02:37
And, you know, we have a tendency in biology to focus a lot on the parts,
43
157256
4473
我們通常傾向於聚焦在 生物學的「組件」,
02:41
but we all know that something like flying wouldn't be understood
44
161753
3133
但我們都知道,
要了解飛行不能只研究羽毛。
02:44
by only studying feathers.
45
164910
1339
02:46
So programming biology is not yet as simple as programming your computer.
46
166846
4521
因此,編寫生物學程式 仍不如編寫計算機程式那樣簡單。
02:51
And then to make matters worse,
47
171391
1678
更糟糕的是,
02:53
living systems largely bear no resemblance to the engineered systems
48
173093
4010
生命系統在很大程度上 與你我每天編寫的工程系統
02:57
that you and I program every day.
49
177127
2096
毫無相似之處。
02:59
In contrast to engineered systems, living systems self-generate,
50
179691
4111
與工程系統相反,
生命系統自我生成、自我組織,
03:03
they self-organize,
51
183826
1471
03:05
they operate at molecular scales.
52
185321
1687
以「分子」的規模運作。
03:07
And these molecular-level interactions
53
187032
2136
這些分子層級的相互作用
03:09
lead generally to robust macro-scale output.
54
189192
3018
通常導致大規模宏觀的輸出,
03:12
They can even self-repair.
55
192234
2720
甚至能自我修復。
03:16
Consider, for example, the humble household plant,
56
196256
2994
例如,試想不起眼的室內植物,
03:19
like that one sat on your mantelpiece at home
57
199274
2187
就像那放在家裡壁爐上
03:21
that you keep forgetting to water.
58
201485
1787
卻一直忘記澆水的植物。
03:23
Every day, despite your neglect, that plant has to wake up
59
203749
3615
儘管被你忽略了,
它每天仍必須弄清楚如何分配資源:
03:27
and figure out how to allocate its resources.
60
207388
2747
03:30
Will it grow, photosynthesize, produce seeds, or flower?
61
210159
3571
要生長、行光合作用、 結子,還是開花?
03:33
And that's a decision that has to be made at the level of the whole organism.
62
213754
3939
這必須考量整個有機體來做決定。
03:37
But a plant doesn't have a brain to figure all of that out.
63
217717
3481
但植物沒大腦來解決這些問題,
03:41
It has to make do with the cells on its leaves.
64
221222
2717
必須依賴葉子上的細胞,
03:43
They have to respond to the environment
65
223963
1903
細胞必須對環境做出反應
03:45
and make the decisions that affect the whole plant.
66
225890
2649
和做出影響整株植物的決策。
03:48
So somehow there must be a program running inside these cells,
67
228563
3988
因此,這些細胞裡 必定跑著某種程式,
03:52
a program that responds to input signals and cues
68
232575
2727
該程式回應輸入的信號,
提示和調整該細胞即將執行的操作。
03:55
and shapes what that cell will do.
69
235326
1940
03:57
And then those programs must operate in a distributed way
70
237679
3247
而這些程式必須 分佈在各個細胞間執行,
04:00
across individual cells,
71
240950
1337
彼此協調,
04:02
so that they can coordinate and that plant can grow and flourish.
72
242311
4123
以便使植物生長繁衍。
04:07
If we could understand these biological programs,
73
247675
3316
若能理解這些生物的程式,
04:11
if we could understand biological computation,
74
251015
3122
若能理解生物的運算,
04:14
it would transform our ability to understand how and why
75
254161
3937
就會改變我們對細胞
如何、為何執行其工作的理解能力。
04:18
cells do what they do.
76
258122
1546
04:20
Because, if we understood these programs,
77
260152
1987
一旦了解這些程式,
我們就可以在出問題時偵錯;
04:22
we could debug them when things go wrong.
78
262163
2133
04:24
Or we could learn from them how to design the kind of synthetic circuits
79
264320
4193
可以向它們學習如何設計
真正利用生物化學 運算能力的合成電路。
04:28
that truly exploit the computational power of biochemistry.
80
268537
4474
04:34
My passion about this idea led me to a career in research
81
274407
3018
對這想法的熱情引領我進入
04:37
at the interface of maths, computer science and biology.
82
277449
3631
與數學、計算機科學 和生物學介面的研究領域。
04:41
And in my work, I focus on the concept of biology as computation.
83
281104
4726
我的工作專注於以生物運算的概念。
04:46
And that means asking what do cells compute,
84
286334
3142
這意味著探詢細胞如何運算,
04:49
and how can we uncover these biological programs?
85
289500
3517
與如何揭露這些生物的程式?
04:53
And I started to ask these questions together with some brilliant collaborators
86
293760
3757
我開始與一些微軟研究所 和劍橋大學的傑出人士
04:57
at Microsoft Research and the University of Cambridge,
87
297541
2571
合作提出這些問題,
05:00
where together we wanted to understand
88
300136
2283
我們一起,想了解
05:02
the biological program running inside a unique type of cell:
89
302443
4177
在「胚胎幹細胞」 這種獨特類型的細胞中
05:06
an embryonic stem cell.
90
306644
1894
運行的生物程式。
05:09
These cells are unique because they're totally naïve.
91
309136
3160
這些細胞格非常獨特, 因為它們處於稚年。
05:12
They can become anything they want:
92
312320
2168
它們可以變成任何東西:
05:14
a brain cell, a heart cell, a bone cell, a lung cell,
93
314512
2565
腦細胞、心臟細胞、 骨細胞、肺細胞,
05:17
any adult cell type.
94
317101
1897
任何成年細胞類型。
05:19
This naïvety, it sets them apart,
95
319022
1677
稚年使它們與眾不同,
05:20
but it also ignited the imagination of the scientific community,
96
320723
3001
也激發了科學界的想像力,
05:23
who realized, if we could tap into that potential,
97
323748
3263
科學家意識到, 如果能挖掘這種潛力,
05:27
we would have a powerful tool for medicine.
98
327035
2351
我們將擁有強大的醫學工具。
05:29
If we could figure out how these cells make the decision
99
329917
2621
如果能弄清楚這些細胞
如何決定成為哪一類型的細胞,
05:32
to become one cell type or another,
100
332562
2131
05:34
we might be able to harness them
101
334717
1690
或許我們能控制、 利用它們生成新細胞
05:36
to generate cells that we need to repair diseased or damaged tissue.
102
336431
4553
來修復罹病或受損的組織。
05:41
But realizing that vision is not without its challenges,
103
341794
2930
但要實現此一願景面對著挑戰,
05:44
not least because these particular cells,
104
344748
2764
尤其是因為這些特殊的細胞
05:47
they emerge just six days after conception.
105
347536
2829
在受孕後僅六天就出現了。
05:50
And then within a day or so, they're gone.
106
350826
2055
然後一天左右就消失了,
05:52
They have set off down the different paths
107
352905
2057
踏上構成成年人人體的 各個結構和器官的不同途徑。
05:54
that form all the structures and organs of your adult body.
108
354986
3050
05:59
But it turns out that cell fates are a lot more plastic
109
359770
3079
但事實上細胞的命運 比我們想像的要可塑得多。
06:02
than we might have imagined.
110
362873
1413
06:04
About 13 years ago, some scientists showed something truly revolutionary.
111
364310
4321
大約 13 年前,有些科學家 展示真正具有革命意義的東西。
06:09
By inserting just a handful of genes into an adult cell,
112
369393
4346
通過將少量基因插入成年細胞,
06:13
like one of your skin cells,
113
373763
1764
例如皮膚的細胞,
06:15
you can transform that cell back to the naïve state.
114
375551
3959
可以將該細胞轉回稚年狀態。
06:19
And it's a process that's actually known as "reprogramming,"
115
379534
3175
這個實際上稱為「重新編寫」的過程
06:22
and it allows us to imagine a kind of stem cell utopia,
116
382733
3359
使我們能夠想像幹細胞的完美世界,
06:26
the ability to take a sample of a patient's own cells,
117
386116
3641
能採集患者自身細胞的樣本,
06:29
transform them back to the naïve state
118
389781
2360
將其轉回稚年狀態,
06:32
and use those cells to make whatever that patient might need,
119
392165
3130
利用它們製造新細胞,
無論患者需要的是腦細胞、 心臟細胞,還是其他細胞。
06:35
whether it's brain cells or heart cells.
120
395319
2075
06:38
But over the last decade or so,
121
398541
1765
但是過去的十年左右,
06:40
figuring out how to change cell fate,
122
400330
3044
弄清楚如何改變細胞的命運
06:43
it's still a process of trial and error.
123
403398
2152
仍然是個反複試驗的過程。
06:45
Even in cases where we've uncovered successful experimental protocols,
124
405911
4508
即使我們發現若干成功的實驗案例,
06:50
they're still inefficient,
125
410443
1467
其效率仍然低下,
06:51
and we lack a fundamental understanding of how and why they work.
126
411934
4238
我們對其如何、為何起作用 缺乏基本的了解。
06:56
If you figured out how to change a stem cell into a heart cell,
127
416650
3005
明白把幹細胞轉變為心臟細胞的方法
06:59
that hasn't got any way of telling you how to change a stem cell
128
419679
3089
是無法把幹細胞轉變為腦細胞的。
07:02
into a brain cell.
129
422792
1201
07:04
So we wanted to understand the biological program
130
424633
2931
因此我們想了解
在胚胎幹細胞中運行的生物程式。
07:07
running inside an embryonic stem cell,
131
427588
2447
07:10
and understanding the computation performed by a living system
132
430059
3506
了解生物系統執行的運算
07:13
starts with asking a devastatingly simple question:
133
433589
4253
首先要問個簡單的問題:
07:17
What is it that system actually has to do?
134
437866
3356
系統實際上必須做什麼?
07:21
Now, computer science actually has a set of strategies
135
441838
2850
如今計算機科學實際上有一套策略
07:24
for dealing with what it is the software and hardware are meant to do.
136
444712
3827
來處理軟體和硬體的功能。
07:28
When you write a program, you code a piece of software,
137
448563
2660
我們編寫軟體程式,
07:31
you want that software to run correctly.
138
451247
2000
希望該軟體能夠正確運行,
07:33
You want performance, functionality.
139
453271
1790
具備性能和功能,
07:35
You want to prevent bugs.
140
455085
1217
還要防錯。
07:36
They can cost you a lot.
141
456326
1308
錯誤會造成重大的損失。
07:38
So when a developer writes a program,
142
458168
1842
因此開發人員編寫程式時
07:40
they could write down a set of specifications.
143
460034
2270
會寫下一組規格,
07:42
These are what your program should do.
144
462328
1871
列出程式應該做些什麼。
07:44
Maybe it should compare the size of two numbers
145
464223
2268
也許該比較兩個數字的大小,
07:46
or order numbers by increasing size.
146
466515
1792
或依大小排列。
07:49
Technology exists that allows us automatically to check
147
469037
4695
現有的技術能夠自動檢查
07:53
whether our specifications are satisfied,
148
473756
2378
是否滿足了我們所列的規範,
07:56
whether that program does what it should do.
149
476158
2633
該程式是否執行了應做的工作。
07:59
And so our idea was that in the same way,
150
479266
2856
因此,我們的想法是以同樣的方式
08:02
experimental observations, things we measure in the lab,
151
482146
3068
將實驗室中量得的實驗觀察結果
08:05
they correspond to specifications of what the biological program should do.
152
485238
5033
對應規範生物程式應該做些什麼。
08:10
So we just needed to figure out a way
153
490769
1876
因此,我們只需想出
08:12
to encode this new type of specification.
154
492669
3183
這種新型規範的編碼方法即可。
08:16
So let's say you've been busy in the lab and you've been measuring your genes
155
496594
3654
假設你一直在實驗室裡 忙著測量基因,
發現如果基因 A 處於活動狀態,
08:20
and you've found that if Gene A is active,
156
500272
2436
08:22
then Gene B or Gene C seems to be active.
157
502732
3388
那麼基因 B 或基因 C 似乎處於活動狀態。
08:26
We can write that observation down as a mathematical expression
158
506678
3582
如果用邏輯語言,
則能將該觀察結果表達為數學式:
08:30
if we can use the language of logic:
159
510284
2373
08:33
If A, then B or C.
160
513125
2328
若 A,則 B 或 C。
08:36
Now, this is a very simple example, OK.
161
516242
2454
這是一個非常簡單的例子,
08:38
It's just to illustrate the point.
162
518720
1743
只為了說明這一點。
08:40
We can encode truly rich expressions
163
520487
2924
我們能編碼真正豐富的表達式,
08:43
that actually capture the behavior of multiple genes or proteins over time
164
523435
4153
實際用在多個不同的實驗中,
表達多個基因或蛋白質 隨時間進程展現的行為。
08:47
across multiple different experiments.
165
527612
2536
08:50
And so by translating our observations
166
530521
2626
因此,通過以這種方式
將我們的觀察結果 轉化為數學表達式,
08:53
into mathematical expression in this way,
167
533171
1993
08:55
it becomes possible to test whether or not those observations can emerge
168
535188
5098
就有可能測試這些觀察結果
是否能經由基因的相互作用而產生。
09:00
from a program of genetic interactions.
169
540310
3054
09:04
And we developed a tool to do just this.
170
544063
2556
我們開發一種工具來做。
09:06
We were able to use this tool to encode observations
171
546643
2882
我們能用此工具
將觀察結果編碼為數學表達式,
09:09
as mathematical expressions,
172
549549
1407
09:10
and then that tool would allow us to uncover the genetic program
173
550980
3610
該工具將使我們能發現
可以解釋所有現象的基因程式。
09:14
that could explain them all.
174
554614
1538
09:17
And we then apply this approach
175
557481
2280
然後用這種方法來揭示
09:19
to uncover the genetic program running inside embryonic stem cells
176
559785
4083
在胚胎幹細胞內部運行的基因程式,
09:23
to see if we could understand how to induce that naïve state.
177
563892
4189
試圖理解如何誘導出稚年的狀態。
09:28
And this tool was actually built
178
568105
1952
該工具實際上是基於
09:30
on a solver that's deployed routinely around the world
179
570081
2652
部署於全球的通用常規 軟體驗證的求解器構建的。
09:32
for conventional software verification.
180
572757
2269
09:35
So we started with a set of nearly 50 different specifications
181
575630
3691
我們從對胚胎幹細胞的實驗觀察中
09:39
that we generated from experimental observations of embryonic stem cells.
182
579345
4506
生成的近 50 種不同規格開始。
09:43
And by encoding these observations in this tool,
183
583875
2636
通過在此工具中 對這些觀察結果進行編碼,
09:46
we were able to uncover the first molecular program
184
586535
3185
我們得以發現第一個
能解釋所有觀察結果的分子程式。
09:49
that could explain all of them.
185
589744
1961
09:52
Now, that's kind of a feat in and of itself, right?
186
592309
2513
這本身就是一種壯舉,對吧?
09:54
Being able to reconcile all of these different observations
187
594846
2902
能夠協調所有這些不同的觀察結果,
09:57
is not the kind of thing you can do on the back of an envelope,
188
597772
3067
那是再怎麼大的信封背面 都算不出來的。
10:00
even if you have a really big envelope.
189
600863
2648
10:04
Because we've got this kind of understanding,
190
604190
2158
因為已經有了這理解,
10:06
we could go one step further.
191
606372
1462
我們能再前進一步。
10:07
We could use this program to predict what this cell might do
192
607858
3371
我們能用該程式來預測
在尚未測試的條件下 該細胞可能會做什麼。
10:11
in conditions we hadn't yet tested.
193
611253
2176
10:13
We could probe the program in silico.
194
613453
2401
我們可以在計算機上探索該程式。
10:16
And so we did just that:
195
616735
1247
那正是我們做的:
10:18
we generated predictions that we tested in the lab,
196
618006
3180
生成在實驗室中測試過的預測,
10:21
and we found that this program was highly predictive.
197
621210
3032
發現該程式具有很高的預測性。
10:24
It told us how we could accelerate progress
198
624266
2625
它告訴我們如何加速進程
10:26
back to the naïve state quickly and efficiently.
199
626915
3060
才能快速有效地回到稚年狀態。
10:29
It told us which genes to target to do that,
200
629999
2570
它告訴應該操作哪些基因;
10:32
which genes might even hinder that process.
201
632593
2624
哪些基因可能阻礙過程。
10:35
We even found the program predicted the order in which genes would switch on.
202
635241
4990
程式甚至預測了基因開啟的順序。
10:40
So this approach really allowed us to uncover the dynamics
203
640980
3140
這方法確實使我們能夠揭示
細胞的動態進行過程。
10:44
of what the cells are doing.
204
644144
2402
10:47
What we've developed, it's not a method that's specific to stem cell biology.
205
647728
3642
我們開發的並不是
針對幹細胞生物學的特定方法,
10:51
Rather, it allows us to make sense of the computation
206
651394
2684
而是使我們能夠 在基因相互作用的背景下
10:54
being carried out by the cell
207
654102
1685
10:55
in the context of genetic interactions.
208
655811
2831
理解細胞正在執行的運算。
10:58
So really, it's just one building block.
209
658666
2288
因此,實際上這只是個構建模塊。
11:00
The field urgently needs to develop new approaches
210
660978
2685
這領域迫切需要開發新的方法,
11:03
to understand biological computation more broadly
211
663687
2695
更廣泛、不同層次地理解生物運算,
11:06
and at different levels,
212
666406
1367
11:07
from DNA right through to the flow of information between cells.
213
667797
4129
從 DNA 到細胞之間的信息流。
11:11
Only this kind of transformative understanding
214
671950
2797
只有這種變革性的理解
11:14
will enable us to harness biology in ways that are predictable and reliable.
215
674771
4986
才能使我們以可預測 和可靠的方式利用生物學。
11:21
But to program biology, we will also need to develop
216
681029
3042
但是為要編寫生物學,
我們還需要開發各種工具和語言,
11:24
the kinds of tools and languages
217
684095
1995
11:26
that allow both experimentalists and computational scientists
218
686114
3408
使實驗人員和計算科學家
11:29
to design biological function
219
689546
2497
都可以設計生物學功能,
11:32
and have those designs compile down to the machine code of the cell,
220
692067
3505
並將這些設計編譯為 細胞的機器代碼和生物化學,
11:35
its biochemistry,
221
695596
1181
11:36
so that we could then build those structures.
222
696801
2484
就可以建造那些結構。
11:39
Now, that's something akin to a living software compiler,
223
699309
3673
這類似於生物軟體編譯器,
我很自豪能成為
11:43
and I'm proud to be part of a team at Microsoft
224
703006
2216
微軟致力於開發 生物軟體團隊的一員。
11:45
that's working to develop one.
225
705246
1652
11:47
Though to say it's a grand challenge is kind of an understatement,
226
707366
3226
雖然說這是個巨大的挑戰 有點輕描淡寫,
11:50
but if it's realized,
227
710616
1173
但是如果實現了,
11:51
it would be the final bridge between software and wetware.
228
711813
3709
那將是軟體和濕體之間的最終橋樑。
11:57
More broadly, though, programming biology is only going to be possible
229
717006
3415
從更廣泛的意義上講,
只有轉變為真正的跨學科領域, 才有可能編寫生物程式。
12:00
if we can transform the field into being truly interdisciplinary.
230
720445
4279
12:04
It needs us to bridge the physical and the life sciences,
231
724748
2952
這需要我們在物理科學 和生命科學之間架起橋樑,
12:07
and scientists from each of these disciplines
232
727724
2267
而其中每個學科的科學家
12:10
need to be able to work together with common languages
233
730015
2731
得要能以共通的語言一起工作
12:12
and to have shared scientific questions.
234
732770
2719
和共享科學問題。
12:16
In the long term, it's worth remembering that many of the giant software companies
235
736757
3993
從長遠來看,值得記住的是
當初我們首次編寫矽微晶片時,
12:20
and the technology that you and I work with every day
236
740774
2492
幾乎無法想像
許多現今你我天天用到的
12:23
could hardly have been imagined
237
743290
1503
12:24
at the time we first started programming on silicon microchips.
238
744817
3605
巨型軟體公司和技術。
12:28
And if we start now to think about the potential for technology
239
748446
3031
如果現在開始考慮
由計算生物學實現的技術的潛力,
12:31
enabled by computational biology,
240
751501
2426
12:33
we'll see some of the steps that we need to take along the way
241
753951
2935
我們將看到為實現這一目標 所需要採取的一些步驟。
12:36
to make that a reality.
242
756910
1433
12:39
Now, there is the sobering thought that this kind of technology
243
759231
3082
有個警醒的想法
認為這種技術可能會被濫用。
12:42
could be open to misuse.
244
762337
1777
12:44
If we're willing to talk about the potential
245
764138
2163
如果要談編寫免疫細胞的潛力,
12:46
for programming immune cells,
246
766325
1436
12:47
we should also be thinking about the potential of bacteria
247
767785
3188
我們還應該考慮
設計細菌逃避免疫的潛力。
12:50
engineered to evade them.
248
770997
1661
12:52
There might be people willing to do that.
249
772682
2087
可能有人願意這樣做。
12:55
Now, one reassuring thought in this
250
775506
1722
一個令人放心的想法是——
12:57
is that -- well, less so for the scientists --
251
777252
2289
科學家不那麼容易放心——
12:59
is that biology is a fragile thing to work with.
252
779565
3269
生物研究很脆弱,不好弄。
13:02
So programming biology is not going to be something
253
782858
2412
生物程式不是能躲在後院 工具間裡編寫得出的。
13:05
you'll be doing in your garden shed.
254
785294
1848
13:07
But because we're at the outset of this,
255
787642
2080
由於才剛起步,
13:09
we can move forward with our eyes wide open.
256
789746
2583
我們能睜大眼睛向前邁進。
13:12
We can ask the difficult questions up front,
257
792353
2324
我們能預先提出困難的問題,
13:14
we can put in place the necessary safeguards
258
794701
3040
能採取必要的保障措施。
13:17
and, as part of that, we'll have to think about our ethics.
259
797765
2797
得要考慮道德規範,
13:20
We'll have to think about putting bounds on the implementation
260
800586
3172
得要考慮限制實現生物功能的範圍。
13:23
of biological function.
261
803782
1498
13:25
So as part of this, research in bioethics will have to be a priority.
262
805604
3715
因此其中一部分
必須將生物倫理學 研究作為優先事項,
13:29
It can't be relegated to second place
263
809343
2407
不能在科學創新的激情中 將其降為第二。
13:31
in the excitement of scientific innovation.
264
811774
2514
13:35
But the ultimate prize, the ultimate destination on this journey,
265
815154
3474
但是最終的獎賞,
也是此旅程的最終目的地,
13:38
would be breakthrough applications and breakthrough industries
266
818652
3444
將是應用和產業的大突破,
13:42
in areas from agriculture and medicine to energy and materials
267
822120
3444
在農業、醫藥、能源、材料,
13:45
and even computing itself.
268
825588
2261
乃至計算本身領域的大突破。
13:48
Imagine, one day we could be powering the planet sustainably
269
828490
3148
想像有一天我們能夠在地球上
利用植物終極永續的綠色能源,
13:51
on the ultimate green energy
270
831662
1859
13:53
if we could mimic something that plants figured out millennia ago:
271
833545
3943
如果能夠模仿植物 在幾千年前已經會了的方法——
13:57
how to harness the sun's energy with an efficiency that is unparalleled
272
837512
3771
如何有效地利用太陽能,
目前的太陽能電池無法有效辦到——
14:01
by our current solar cells.
273
841307
1856
14:03
If we understood that program of quantum interactions
274
843695
2601
如果理解植物高效吸收陽光的 量子相互作用程式,
14:06
that allow plants to absorb sunlight so efficiently,
275
846320
3264
14:09
we might be able to translate that into building synthetic DNA circuits
276
849608
3944
我們也許可以將其轉化為 構建合成的 DNA 電路,
14:13
that offer the material for better solar cells.
277
853576
2913
從而為更好的太陽能電池提供材料。
14:17
There are teams and scientists working on the fundamentals of this right now,
278
857349
3693
現有團隊和科學家致力於此一基礎,
倘若得到正確的關注和投資,
14:21
so perhaps if it got the right attention and the right investment,
279
861066
3243
或許能在十或十五年內實現。
14:24
it could be realized in 10 or 15 years.
280
864333
2280
14:27
So we are at the beginning of a technological revolution.
281
867457
3197
因此我們正處於技術革命的起點。
14:31
Understanding this ancient type of biological computation
282
871067
3221
了解這古老的生物運算類型 是關鍵的第一步。
14:34
is the critical first step.
283
874312
2132
14:36
And if we can realize this,
284
876468
1317
若能意識到這一點,
14:37
we would enter in the era of an operating system
285
877809
2842
我們即將進入運行 實時生物軟體作業系統的時代。
14:40
that runs living software.
286
880675
1905
14:42
Thank you very much.
287
882604
1166
非常感謝。
14:43
(Applause)
288
883794
2690
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7