The next software revolution: programming biological cells | Sara-Jane Dunn

170,508 views ・ 2019-11-26

TED


請雙擊下方英文字幕播放視頻。

譯者: Helen Chang 審譯者: Bruce Sung
00:12
The second half of the last century was completely defined
0
12750
4509
上個世紀的後半
全由一場科技革命所定義:
00:17
by a technological revolution:
1
17283
1999
00:19
the software revolution.
2
19306
1435
軟體革命。
00:21
The ability to program electrons on a material called silicon
3
21313
4808
能在矽材料上編寫電子程式的能力,
00:26
made possible technologies, companies and industries
4
26145
3073
讓許多我們過去難以想像的
00:29
that were at one point unimaginable to many of us,
5
29242
3977
技術、公司和行業變為可能,
00:33
but which have now fundamentally changed the way the world works.
6
33243
3915
如今已從根本改變世界運作的方式。
00:38
The first half of this century, though,
7
38158
1921
不過本世紀的前半段
00:40
is going to be transformed by a new software revolution:
8
40103
3978
將被一場新的軟體革命轉變:
00:44
the living software revolution.
9
44105
2435
生物軟體革命。
00:46
And this will be powered by the ability to program biochemistry
10
46921
4050
促成這場革命的
將是在生物材料上 編寫生物化學的能力。
00:50
on a material called biology.
11
50995
2295
00:53
And doing so will enable us to harness the properties of biology
12
53314
4141
這讓我們能利用生物的特性
00:57
to generate new kinds of therapies,
13
57479
2656
來產生新療法,
01:00
to repair damaged tissue,
14
60159
1868
以修復受損的組織;
01:02
to reprogram faulty cells
15
62051
2725
重新編寫有瑕疵的細胞;
01:04
or even build programmable operating systems out of biochemistry.
16
64800
4554
甚至創造可編寫的 生物化學作業系統。
01:10
If we can realize this -- and we do need to realize it --
17
70420
3573
若能了解這一點—— 我們的確需要了解這一點——
01:14
its impact will be so enormous
18
74017
2162
它的影響會大到
01:16
that it will make the first software revolution pale in comparison.
19
76203
3877
讓第一場軟體革命相形失色。
01:20
And that's because living software would transform the entirety of medicine,
20
80104
4234
那是因為生物軟體會轉變整個醫界、
01:24
agriculture and energy,
21
84362
1559
農業界,和能源界,
01:25
and these are sectors that dwarf those dominated by IT.
22
85945
3828
會讓那些 IT 主宰的部門 顯得無足輕重。
01:30
Imagine programmable plants that fix nitrogen more effectively
23
90812
4174
想像可編寫的植物能更效率地固氮,
01:35
or resist emerging fungal pathogens,
24
95010
2905
能抵抗新興的菌類病原體,
01:37
or even programming crops to be perennial rather than annual
25
97939
3537
甚至能把一年生的作物 編寫成多年生,
01:41
so you could double your crop yields each year.
26
101500
2268
使年產量加倍,
01:43
That would transform agriculture
27
103792
2098
那就會轉變農業,
01:45
and how we'll keep our growing and global population fed.
28
105914
4104
確保不斷成長的全球人口 都有食物可吃。
01:50
Or imagine programmable immunity,
29
110794
2262
或可想像編寫免疫力,
01:53
designing and harnessing molecular devices that guide your immune system
30
113080
4238
設計利用分子裝置來引導免疫系統
01:57
to detect, eradicate or even prevent disease.
31
117342
3830
去偵測、根除,甚至預防疾病。
02:01
This would transform medicine
32
121196
1571
這會轉變醫學,
02:02
and how we'll keep our growing and aging population healthy.
33
122791
3489
確保不斷成長和老化的人口 能夠維持健康。
02:07
We already have many of the tools that will make living software a reality.
34
127501
4203
目前已有許多工具 能讓生物軟體成真。
02:11
We can precisely edit genes with CRISPR.
35
131728
2347
我們能用 CRISPR 精確地編輯基因;
02:14
We can rewrite the genetic code one base at a time.
36
134099
3083
我們能夠重寫基因編碼, 一次重寫一個鹼基;
02:17
We can even build functioning synthetic circuits out of DNA.
37
137206
4436
我們甚至能用 DNA 做成能運作的合成電路。
02:22
But figuring out how and when to wield these tools
38
142428
2469
至於弄明白如何、何時使用這些工具
02:24
is still a process of trial and error.
39
144921
2422
則仍處於試誤的過程中,
02:27
It needs deep expertise, years of specialization.
40
147367
3660
需要很深的知識技術 和多年的專門化,
02:31
And experimental protocols are difficult to discover
41
151051
3037
而實驗操作方法難以發現,
02:34
and all too often, difficult to reproduce.
42
154112
2582
通常也難以重現。
02:37
And, you know, we have a tendency in biology to focus a lot on the parts,
43
157256
4473
我們通常傾向於聚焦在 生物學的「組件」,
02:41
but we all know that something like flying wouldn't be understood
44
161753
3133
但我們都知道,
要了解飛行不能只研究羽毛。
02:44
by only studying feathers.
45
164910
1339
02:46
So programming biology is not yet as simple as programming your computer.
46
166846
4521
因此,編寫生物學程式 仍不如編寫計算機程式那樣簡單。
02:51
And then to make matters worse,
47
171391
1678
更糟糕的是,
02:53
living systems largely bear no resemblance to the engineered systems
48
173093
4010
生命系統在很大程度上 與你我每天編寫的工程系統
02:57
that you and I program every day.
49
177127
2096
毫無相似之處。
02:59
In contrast to engineered systems, living systems self-generate,
50
179691
4111
與工程系統相反,
生命系統自我生成、自我組織,
03:03
they self-organize,
51
183826
1471
03:05
they operate at molecular scales.
52
185321
1687
以「分子」的規模運作。
03:07
And these molecular-level interactions
53
187032
2136
這些分子層級的相互作用
03:09
lead generally to robust macro-scale output.
54
189192
3018
通常導致大規模宏觀的輸出,
03:12
They can even self-repair.
55
192234
2720
甚至能自我修復。
03:16
Consider, for example, the humble household plant,
56
196256
2994
例如,試想不起眼的室內植物,
03:19
like that one sat on your mantelpiece at home
57
199274
2187
就像那放在家裡壁爐上
03:21
that you keep forgetting to water.
58
201485
1787
卻一直忘記澆水的植物。
03:23
Every day, despite your neglect, that plant has to wake up
59
203749
3615
儘管被你忽略了,
它每天仍必須弄清楚如何分配資源:
03:27
and figure out how to allocate its resources.
60
207388
2747
03:30
Will it grow, photosynthesize, produce seeds, or flower?
61
210159
3571
要生長、行光合作用、 結子,還是開花?
03:33
And that's a decision that has to be made at the level of the whole organism.
62
213754
3939
這必須考量整個有機體來做決定。
03:37
But a plant doesn't have a brain to figure all of that out.
63
217717
3481
但植物沒大腦來解決這些問題,
03:41
It has to make do with the cells on its leaves.
64
221222
2717
必須依賴葉子上的細胞,
03:43
They have to respond to the environment
65
223963
1903
細胞必須對環境做出反應
03:45
and make the decisions that affect the whole plant.
66
225890
2649
和做出影響整株植物的決策。
03:48
So somehow there must be a program running inside these cells,
67
228563
3988
因此,這些細胞裡 必定跑著某種程式,
03:52
a program that responds to input signals and cues
68
232575
2727
該程式回應輸入的信號,
提示和調整該細胞即將執行的操作。
03:55
and shapes what that cell will do.
69
235326
1940
03:57
And then those programs must operate in a distributed way
70
237679
3247
而這些程式必須 分佈在各個細胞間執行,
04:00
across individual cells,
71
240950
1337
彼此協調,
04:02
so that they can coordinate and that plant can grow and flourish.
72
242311
4123
以便使植物生長繁衍。
04:07
If we could understand these biological programs,
73
247675
3316
若能理解這些生物的程式,
04:11
if we could understand biological computation,
74
251015
3122
若能理解生物的運算,
04:14
it would transform our ability to understand how and why
75
254161
3937
就會改變我們對細胞
如何、為何執行其工作的理解能力。
04:18
cells do what they do.
76
258122
1546
04:20
Because, if we understood these programs,
77
260152
1987
一旦了解這些程式,
我們就可以在出問題時偵錯;
04:22
we could debug them when things go wrong.
78
262163
2133
04:24
Or we could learn from them how to design the kind of synthetic circuits
79
264320
4193
可以向它們學習如何設計
真正利用生物化學 運算能力的合成電路。
04:28
that truly exploit the computational power of biochemistry.
80
268537
4474
04:34
My passion about this idea led me to a career in research
81
274407
3018
對這想法的熱情引領我進入
04:37
at the interface of maths, computer science and biology.
82
277449
3631
與數學、計算機科學 和生物學介面的研究領域。
04:41
And in my work, I focus on the concept of biology as computation.
83
281104
4726
我的工作專注於以生物運算的概念。
04:46
And that means asking what do cells compute,
84
286334
3142
這意味著探詢細胞如何運算,
04:49
and how can we uncover these biological programs?
85
289500
3517
與如何揭露這些生物的程式?
04:53
And I started to ask these questions together with some brilliant collaborators
86
293760
3757
我開始與一些微軟研究所 和劍橋大學的傑出人士
04:57
at Microsoft Research and the University of Cambridge,
87
297541
2571
合作提出這些問題,
05:00
where together we wanted to understand
88
300136
2283
我們一起,想了解
05:02
the biological program running inside a unique type of cell:
89
302443
4177
在「胚胎幹細胞」 這種獨特類型的細胞中
05:06
an embryonic stem cell.
90
306644
1894
運行的生物程式。
05:09
These cells are unique because they're totally naïve.
91
309136
3160
這些細胞格非常獨特, 因為它們處於稚年。
05:12
They can become anything they want:
92
312320
2168
它們可以變成任何東西:
05:14
a brain cell, a heart cell, a bone cell, a lung cell,
93
314512
2565
腦細胞、心臟細胞、 骨細胞、肺細胞,
05:17
any adult cell type.
94
317101
1897
任何成年細胞類型。
05:19
This naïvety, it sets them apart,
95
319022
1677
稚年使它們與眾不同,
05:20
but it also ignited the imagination of the scientific community,
96
320723
3001
也激發了科學界的想像力,
05:23
who realized, if we could tap into that potential,
97
323748
3263
科學家意識到, 如果能挖掘這種潛力,
05:27
we would have a powerful tool for medicine.
98
327035
2351
我們將擁有強大的醫學工具。
05:29
If we could figure out how these cells make the decision
99
329917
2621
如果能弄清楚這些細胞
如何決定成為哪一類型的細胞,
05:32
to become one cell type or another,
100
332562
2131
05:34
we might be able to harness them
101
334717
1690
或許我們能控制、 利用它們生成新細胞
05:36
to generate cells that we need to repair diseased or damaged tissue.
102
336431
4553
來修復罹病或受損的組織。
05:41
But realizing that vision is not without its challenges,
103
341794
2930
但要實現此一願景面對著挑戰,
05:44
not least because these particular cells,
104
344748
2764
尤其是因為這些特殊的細胞
05:47
they emerge just six days after conception.
105
347536
2829
在受孕後僅六天就出現了。
05:50
And then within a day or so, they're gone.
106
350826
2055
然後一天左右就消失了,
05:52
They have set off down the different paths
107
352905
2057
踏上構成成年人人體的 各個結構和器官的不同途徑。
05:54
that form all the structures and organs of your adult body.
108
354986
3050
05:59
But it turns out that cell fates are a lot more plastic
109
359770
3079
但事實上細胞的命運 比我們想像的要可塑得多。
06:02
than we might have imagined.
110
362873
1413
06:04
About 13 years ago, some scientists showed something truly revolutionary.
111
364310
4321
大約 13 年前,有些科學家 展示真正具有革命意義的東西。
06:09
By inserting just a handful of genes into an adult cell,
112
369393
4346
通過將少量基因插入成年細胞,
06:13
like one of your skin cells,
113
373763
1764
例如皮膚的細胞,
06:15
you can transform that cell back to the naïve state.
114
375551
3959
可以將該細胞轉回稚年狀態。
06:19
And it's a process that's actually known as "reprogramming,"
115
379534
3175
這個實際上稱為「重新編寫」的過程
06:22
and it allows us to imagine a kind of stem cell utopia,
116
382733
3359
使我們能夠想像幹細胞的完美世界,
06:26
the ability to take a sample of a patient's own cells,
117
386116
3641
能採集患者自身細胞的樣本,
06:29
transform them back to the naïve state
118
389781
2360
將其轉回稚年狀態,
06:32
and use those cells to make whatever that patient might need,
119
392165
3130
利用它們製造新細胞,
無論患者需要的是腦細胞、 心臟細胞,還是其他細胞。
06:35
whether it's brain cells or heart cells.
120
395319
2075
06:38
But over the last decade or so,
121
398541
1765
但是過去的十年左右,
06:40
figuring out how to change cell fate,
122
400330
3044
弄清楚如何改變細胞的命運
06:43
it's still a process of trial and error.
123
403398
2152
仍然是個反複試驗的過程。
06:45
Even in cases where we've uncovered successful experimental protocols,
124
405911
4508
即使我們發現若干成功的實驗案例,
06:50
they're still inefficient,
125
410443
1467
其效率仍然低下,
06:51
and we lack a fundamental understanding of how and why they work.
126
411934
4238
我們對其如何、為何起作用 缺乏基本的了解。
06:56
If you figured out how to change a stem cell into a heart cell,
127
416650
3005
明白把幹細胞轉變為心臟細胞的方法
06:59
that hasn't got any way of telling you how to change a stem cell
128
419679
3089
是無法把幹細胞轉變為腦細胞的。
07:02
into a brain cell.
129
422792
1201
07:04
So we wanted to understand the biological program
130
424633
2931
因此我們想了解
在胚胎幹細胞中運行的生物程式。
07:07
running inside an embryonic stem cell,
131
427588
2447
07:10
and understanding the computation performed by a living system
132
430059
3506
了解生物系統執行的運算
07:13
starts with asking a devastatingly simple question:
133
433589
4253
首先要問個簡單的問題:
07:17
What is it that system actually has to do?
134
437866
3356
系統實際上必須做什麼?
07:21
Now, computer science actually has a set of strategies
135
441838
2850
如今計算機科學實際上有一套策略
07:24
for dealing with what it is the software and hardware are meant to do.
136
444712
3827
來處理軟體和硬體的功能。
07:28
When you write a program, you code a piece of software,
137
448563
2660
我們編寫軟體程式,
07:31
you want that software to run correctly.
138
451247
2000
希望該軟體能夠正確運行,
07:33
You want performance, functionality.
139
453271
1790
具備性能和功能,
07:35
You want to prevent bugs.
140
455085
1217
還要防錯。
07:36
They can cost you a lot.
141
456326
1308
錯誤會造成重大的損失。
07:38
So when a developer writes a program,
142
458168
1842
因此開發人員編寫程式時
07:40
they could write down a set of specifications.
143
460034
2270
會寫下一組規格,
07:42
These are what your program should do.
144
462328
1871
列出程式應該做些什麼。
07:44
Maybe it should compare the size of two numbers
145
464223
2268
也許該比較兩個數字的大小,
07:46
or order numbers by increasing size.
146
466515
1792
或依大小排列。
07:49
Technology exists that allows us automatically to check
147
469037
4695
現有的技術能夠自動檢查
07:53
whether our specifications are satisfied,
148
473756
2378
是否滿足了我們所列的規範,
07:56
whether that program does what it should do.
149
476158
2633
該程式是否執行了應做的工作。
07:59
And so our idea was that in the same way,
150
479266
2856
因此,我們的想法是以同樣的方式
08:02
experimental observations, things we measure in the lab,
151
482146
3068
將實驗室中量得的實驗觀察結果
08:05
they correspond to specifications of what the biological program should do.
152
485238
5033
對應規範生物程式應該做些什麼。
08:10
So we just needed to figure out a way
153
490769
1876
因此,我們只需想出
08:12
to encode this new type of specification.
154
492669
3183
這種新型規範的編碼方法即可。
08:16
So let's say you've been busy in the lab and you've been measuring your genes
155
496594
3654
假設你一直在實驗室裡 忙著測量基因,
發現如果基因 A 處於活動狀態,
08:20
and you've found that if Gene A is active,
156
500272
2436
08:22
then Gene B or Gene C seems to be active.
157
502732
3388
那麼基因 B 或基因 C 似乎處於活動狀態。
08:26
We can write that observation down as a mathematical expression
158
506678
3582
如果用邏輯語言,
則能將該觀察結果表達為數學式:
08:30
if we can use the language of logic:
159
510284
2373
08:33
If A, then B or C.
160
513125
2328
若 A,則 B 或 C。
08:36
Now, this is a very simple example, OK.
161
516242
2454
這是一個非常簡單的例子,
08:38
It's just to illustrate the point.
162
518720
1743
只為了說明這一點。
08:40
We can encode truly rich expressions
163
520487
2924
我們能編碼真正豐富的表達式,
08:43
that actually capture the behavior of multiple genes or proteins over time
164
523435
4153
實際用在多個不同的實驗中,
表達多個基因或蛋白質 隨時間進程展現的行為。
08:47
across multiple different experiments.
165
527612
2536
08:50
And so by translating our observations
166
530521
2626
因此,通過以這種方式
將我們的觀察結果 轉化為數學表達式,
08:53
into mathematical expression in this way,
167
533171
1993
08:55
it becomes possible to test whether or not those observations can emerge
168
535188
5098
就有可能測試這些觀察結果
是否能經由基因的相互作用而產生。
09:00
from a program of genetic interactions.
169
540310
3054
09:04
And we developed a tool to do just this.
170
544063
2556
我們開發一種工具來做。
09:06
We were able to use this tool to encode observations
171
546643
2882
我們能用此工具
將觀察結果編碼為數學表達式,
09:09
as mathematical expressions,
172
549549
1407
09:10
and then that tool would allow us to uncover the genetic program
173
550980
3610
該工具將使我們能發現
可以解釋所有現象的基因程式。
09:14
that could explain them all.
174
554614
1538
09:17
And we then apply this approach
175
557481
2280
然後用這種方法來揭示
09:19
to uncover the genetic program running inside embryonic stem cells
176
559785
4083
在胚胎幹細胞內部運行的基因程式,
09:23
to see if we could understand how to induce that naïve state.
177
563892
4189
試圖理解如何誘導出稚年的狀態。
09:28
And this tool was actually built
178
568105
1952
該工具實際上是基於
09:30
on a solver that's deployed routinely around the world
179
570081
2652
部署於全球的通用常規 軟體驗證的求解器構建的。
09:32
for conventional software verification.
180
572757
2269
09:35
So we started with a set of nearly 50 different specifications
181
575630
3691
我們從對胚胎幹細胞的實驗觀察中
09:39
that we generated from experimental observations of embryonic stem cells.
182
579345
4506
生成的近 50 種不同規格開始。
09:43
And by encoding these observations in this tool,
183
583875
2636
通過在此工具中 對這些觀察結果進行編碼,
09:46
we were able to uncover the first molecular program
184
586535
3185
我們得以發現第一個
能解釋所有觀察結果的分子程式。
09:49
that could explain all of them.
185
589744
1961
09:52
Now, that's kind of a feat in and of itself, right?
186
592309
2513
這本身就是一種壯舉,對吧?
09:54
Being able to reconcile all of these different observations
187
594846
2902
能夠協調所有這些不同的觀察結果,
09:57
is not the kind of thing you can do on the back of an envelope,
188
597772
3067
那是再怎麼大的信封背面 都算不出來的。
10:00
even if you have a really big envelope.
189
600863
2648
10:04
Because we've got this kind of understanding,
190
604190
2158
因為已經有了這理解,
10:06
we could go one step further.
191
606372
1462
我們能再前進一步。
10:07
We could use this program to predict what this cell might do
192
607858
3371
我們能用該程式來預測
在尚未測試的條件下 該細胞可能會做什麼。
10:11
in conditions we hadn't yet tested.
193
611253
2176
10:13
We could probe the program in silico.
194
613453
2401
我們可以在計算機上探索該程式。
10:16
And so we did just that:
195
616735
1247
那正是我們做的:
10:18
we generated predictions that we tested in the lab,
196
618006
3180
生成在實驗室中測試過的預測,
10:21
and we found that this program was highly predictive.
197
621210
3032
發現該程式具有很高的預測性。
10:24
It told us how we could accelerate progress
198
624266
2625
它告訴我們如何加速進程
10:26
back to the naïve state quickly and efficiently.
199
626915
3060
才能快速有效地回到稚年狀態。
10:29
It told us which genes to target to do that,
200
629999
2570
它告訴應該操作哪些基因;
10:32
which genes might even hinder that process.
201
632593
2624
哪些基因可能阻礙過程。
10:35
We even found the program predicted the order in which genes would switch on.
202
635241
4990
程式甚至預測了基因開啟的順序。
10:40
So this approach really allowed us to uncover the dynamics
203
640980
3140
這方法確實使我們能夠揭示
細胞的動態進行過程。
10:44
of what the cells are doing.
204
644144
2402
10:47
What we've developed, it's not a method that's specific to stem cell biology.
205
647728
3642
我們開發的並不是
針對幹細胞生物學的特定方法,
10:51
Rather, it allows us to make sense of the computation
206
651394
2684
而是使我們能夠 在基因相互作用的背景下
10:54
being carried out by the cell
207
654102
1685
10:55
in the context of genetic interactions.
208
655811
2831
理解細胞正在執行的運算。
10:58
So really, it's just one building block.
209
658666
2288
因此,實際上這只是個構建模塊。
11:00
The field urgently needs to develop new approaches
210
660978
2685
這領域迫切需要開發新的方法,
11:03
to understand biological computation more broadly
211
663687
2695
更廣泛、不同層次地理解生物運算,
11:06
and at different levels,
212
666406
1367
11:07
from DNA right through to the flow of information between cells.
213
667797
4129
從 DNA 到細胞之間的信息流。
11:11
Only this kind of transformative understanding
214
671950
2797
只有這種變革性的理解
11:14
will enable us to harness biology in ways that are predictable and reliable.
215
674771
4986
才能使我們以可預測 和可靠的方式利用生物學。
11:21
But to program biology, we will also need to develop
216
681029
3042
但是為要編寫生物學,
我們還需要開發各種工具和語言,
11:24
the kinds of tools and languages
217
684095
1995
11:26
that allow both experimentalists and computational scientists
218
686114
3408
使實驗人員和計算科學家
11:29
to design biological function
219
689546
2497
都可以設計生物學功能,
11:32
and have those designs compile down to the machine code of the cell,
220
692067
3505
並將這些設計編譯為 細胞的機器代碼和生物化學,
11:35
its biochemistry,
221
695596
1181
11:36
so that we could then build those structures.
222
696801
2484
就可以建造那些結構。
11:39
Now, that's something akin to a living software compiler,
223
699309
3673
這類似於生物軟體編譯器,
我很自豪能成為
11:43
and I'm proud to be part of a team at Microsoft
224
703006
2216
微軟致力於開發 生物軟體團隊的一員。
11:45
that's working to develop one.
225
705246
1652
11:47
Though to say it's a grand challenge is kind of an understatement,
226
707366
3226
雖然說這是個巨大的挑戰 有點輕描淡寫,
11:50
but if it's realized,
227
710616
1173
但是如果實現了,
11:51
it would be the final bridge between software and wetware.
228
711813
3709
那將是軟體和濕體之間的最終橋樑。
11:57
More broadly, though, programming biology is only going to be possible
229
717006
3415
從更廣泛的意義上講,
只有轉變為真正的跨學科領域, 才有可能編寫生物程式。
12:00
if we can transform the field into being truly interdisciplinary.
230
720445
4279
12:04
It needs us to bridge the physical and the life sciences,
231
724748
2952
這需要我們在物理科學 和生命科學之間架起橋樑,
12:07
and scientists from each of these disciplines
232
727724
2267
而其中每個學科的科學家
12:10
need to be able to work together with common languages
233
730015
2731
得要能以共通的語言一起工作
12:12
and to have shared scientific questions.
234
732770
2719
和共享科學問題。
12:16
In the long term, it's worth remembering that many of the giant software companies
235
736757
3993
從長遠來看,值得記住的是
當初我們首次編寫矽微晶片時,
12:20
and the technology that you and I work with every day
236
740774
2492
幾乎無法想像
許多現今你我天天用到的
12:23
could hardly have been imagined
237
743290
1503
12:24
at the time we first started programming on silicon microchips.
238
744817
3605
巨型軟體公司和技術。
12:28
And if we start now to think about the potential for technology
239
748446
3031
如果現在開始考慮
由計算生物學實現的技術的潛力,
12:31
enabled by computational biology,
240
751501
2426
12:33
we'll see some of the steps that we need to take along the way
241
753951
2935
我們將看到為實現這一目標 所需要採取的一些步驟。
12:36
to make that a reality.
242
756910
1433
12:39
Now, there is the sobering thought that this kind of technology
243
759231
3082
有個警醒的想法
認為這種技術可能會被濫用。
12:42
could be open to misuse.
244
762337
1777
12:44
If we're willing to talk about the potential
245
764138
2163
如果要談編寫免疫細胞的潛力,
12:46
for programming immune cells,
246
766325
1436
12:47
we should also be thinking about the potential of bacteria
247
767785
3188
我們還應該考慮
設計細菌逃避免疫的潛力。
12:50
engineered to evade them.
248
770997
1661
12:52
There might be people willing to do that.
249
772682
2087
可能有人願意這樣做。
12:55
Now, one reassuring thought in this
250
775506
1722
一個令人放心的想法是——
12:57
is that -- well, less so for the scientists --
251
777252
2289
科學家不那麼容易放心——
12:59
is that biology is a fragile thing to work with.
252
779565
3269
生物研究很脆弱,不好弄。
13:02
So programming biology is not going to be something
253
782858
2412
生物程式不是能躲在後院 工具間裡編寫得出的。
13:05
you'll be doing in your garden shed.
254
785294
1848
13:07
But because we're at the outset of this,
255
787642
2080
由於才剛起步,
13:09
we can move forward with our eyes wide open.
256
789746
2583
我們能睜大眼睛向前邁進。
13:12
We can ask the difficult questions up front,
257
792353
2324
我們能預先提出困難的問題,
13:14
we can put in place the necessary safeguards
258
794701
3040
能採取必要的保障措施。
13:17
and, as part of that, we'll have to think about our ethics.
259
797765
2797
得要考慮道德規範,
13:20
We'll have to think about putting bounds on the implementation
260
800586
3172
得要考慮限制實現生物功能的範圍。
13:23
of biological function.
261
803782
1498
13:25
So as part of this, research in bioethics will have to be a priority.
262
805604
3715
因此其中一部分
必須將生物倫理學 研究作為優先事項,
13:29
It can't be relegated to second place
263
809343
2407
不能在科學創新的激情中 將其降為第二。
13:31
in the excitement of scientific innovation.
264
811774
2514
13:35
But the ultimate prize, the ultimate destination on this journey,
265
815154
3474
但是最終的獎賞,
也是此旅程的最終目的地,
13:38
would be breakthrough applications and breakthrough industries
266
818652
3444
將是應用和產業的大突破,
13:42
in areas from agriculture and medicine to energy and materials
267
822120
3444
在農業、醫藥、能源、材料,
13:45
and even computing itself.
268
825588
2261
乃至計算本身領域的大突破。
13:48
Imagine, one day we could be powering the planet sustainably
269
828490
3148
想像有一天我們能夠在地球上
利用植物終極永續的綠色能源,
13:51
on the ultimate green energy
270
831662
1859
13:53
if we could mimic something that plants figured out millennia ago:
271
833545
3943
如果能夠模仿植物 在幾千年前已經會了的方法——
13:57
how to harness the sun's energy with an efficiency that is unparalleled
272
837512
3771
如何有效地利用太陽能,
目前的太陽能電池無法有效辦到——
14:01
by our current solar cells.
273
841307
1856
14:03
If we understood that program of quantum interactions
274
843695
2601
如果理解植物高效吸收陽光的 量子相互作用程式,
14:06
that allow plants to absorb sunlight so efficiently,
275
846320
3264
14:09
we might be able to translate that into building synthetic DNA circuits
276
849608
3944
我們也許可以將其轉化為 構建合成的 DNA 電路,
14:13
that offer the material for better solar cells.
277
853576
2913
從而為更好的太陽能電池提供材料。
14:17
There are teams and scientists working on the fundamentals of this right now,
278
857349
3693
現有團隊和科學家致力於此一基礎,
倘若得到正確的關注和投資,
14:21
so perhaps if it got the right attention and the right investment,
279
861066
3243
或許能在十或十五年內實現。
14:24
it could be realized in 10 or 15 years.
280
864333
2280
14:27
So we are at the beginning of a technological revolution.
281
867457
3197
因此我們正處於技術革命的起點。
14:31
Understanding this ancient type of biological computation
282
871067
3221
了解這古老的生物運算類型 是關鍵的第一步。
14:34
is the critical first step.
283
874312
2132
14:36
And if we can realize this,
284
876468
1317
若能意識到這一點,
14:37
we would enter in the era of an operating system
285
877809
2842
我們即將進入運行 實時生物軟體作業系統的時代。
14:40
that runs living software.
286
880675
1905
14:42
Thank you very much.
287
882604
1166
非常感謝。
14:43
(Applause)
288
883794
2690
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog