How we can teach computers to make sense of our emotions | Raphael Arar

66,332 views ・ 2018-04-24

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Ivana Korom Reviewer: Joanna Pietrulewicz
0
0
7000
翻译人员: Zihao Wang 校对人员: Peipei Xiang
00:13
I consider myself one part artist and one part designer.
1
13760
4680
我自认为既是一位艺术家, 又是一位设计师。
00:18
And I work at an artificial intelligence research lab.
2
18480
3160
我在一个研究 人工智能的实验室工作。
00:22
We're trying to create technology
3
22720
1696
我们正在尝试创造一项
00:24
that you'll want to interact with in the far future.
4
24440
3296
在遥远的将来能和人类互动的科技。
00:27
Not just six months from now, but try years and decades from now.
5
27760
4640
不是在六个月之后, 而是几年甚至几十年之后。
00:33
And we're taking a moonshot
6
33120
1616
我们正在实施一个“登月计划”,
00:34
that we'll want to be interacting with computers
7
34760
2456
我们希望能与电脑
00:37
in deeply emotional ways.
8
37240
2120
进行深层次的情感方面的互动。
00:40
So in order to do that,
9
40280
1456
为了做到这些,
00:41
the technology has to be just as much human as it is artificial.
10
41760
4480
技术不仅要智能,还要人性。
00:46
It has to get you.
11
46920
2256
它必须懂你。
00:49
You know, like that inside joke that'll have you and your best friend
12
49200
3336
就像一个朋友间的笑话, 能让你和你的朋友
00:52
on the floor, cracking up.
13
52560
1936
在地板上笑得前仰后翻;
00:54
Or that look of disappointment that you can just smell from miles away.
14
54520
4560
或者是,你远远就能 嗅到的失望气息。
01:00
I view art as the gateway to help us bridge this gap between human and machine:
15
60560
6040
我把艺术看作是帮助我们填补 人类与机器之间空白的途径:
01:07
to figure out what it means to get each other
16
67280
3136
使每个人都能相互了解对方,
01:10
so that we can train AI to get us.
17
70440
2760
使我们能训练 人工智能来“懂我们”。
01:13
See, to me, art is a way to put tangible experiences
18
73920
3816
对我来说,艺术是把有形的经历,
01:17
to intangible ideas, feelings and emotions.
19
77760
3240
转化为无形的想法、 感受、情感的方式。
01:21
And I think it's one of the most human things about us.
20
81800
2600
我认为这是人性的一个重要特征。
01:25
See, we're a complicated and complex bunch.
21
85480
2936
我们是难懂的、复杂的群体。
01:28
We have what feels like an infinite range of emotions,
22
88440
3136
我们拥有无限的情感,
01:31
and to top it off, we're all different.
23
91600
2496
而且,我们都是不同的。
01:34
We have different family backgrounds,
24
94120
2296
我们拥有不同的家庭背景,
01:36
different experiences and different psychologies.
25
96440
3080
不同的经历,不同的心理活动。
01:40
And this is what makes life really interesting.
26
100240
2720
这是为什么生活那么有趣的原因,
01:43
But this is also what makes working on intelligent technology
27
103440
3496
但这同时也是研究智能技术
01:46
extremely difficult.
28
106960
1600
最难的地方。
01:49
And right now, AI research, well,
29
109640
3456
如今,对人工智能的研究
01:53
it's a bit lopsided on the tech side.
30
113120
2016
过于偏重技术,
01:55
And that makes a lot of sense.
31
115160
2136
这也很好理解。
01:57
See, for every qualitative thing about us --
32
117320
2456
关于我们的每一个定性的特征,
01:59
you know, those parts of us that are emotional, dynamic and subjective --
33
119800
4456
比如属于我们情感的、 动态的、主观的部分——
02:04
we have to convert it to a quantitative metric:
34
124280
3136
我们要把它转化为一个量化指标:
02:07
something that can be represented with facts, figures and computer code.
35
127440
4360
能通过一些事实、图形和 电脑代码表现出来。
02:13
The issue is, there are many qualitative things
36
133000
3376
问题是,有很多定性的东西
02:16
that we just can't put our finger on.
37
136400
1960
是很难量化的。
02:20
So, think about hearing your favorite song for the first time.
38
140400
3200
想一想你第一次听到 你最喜欢的歌的时候,
02:25
What were you doing?
39
145200
1200
你在做什么?
02:28
How did you feel?
40
148000
1200
你有什么感受?
02:30
Did you get goosebumps?
41
150720
1360
你起鸡皮疙瘩了吗?
02:33
Or did you get fired up?
42
153240
1640
你有没有感到热血沸腾?
02:36
Hard to describe, right?
43
156400
1200
很难描述,对吗?
02:38
See, parts of us feel so simple,
44
158800
2096
我们一些看似很简单的感受
02:40
but under the surface, there's really a ton of complexity.
45
160920
3656
背后其实是很复杂的。
02:44
And translating that complexity to machines
46
164600
2936
而将这些复杂的东西 翻译成机器语言,
02:47
is what makes them modern-day moonshots.
47
167560
2856
这就是我们需要实现的 现代“登月计划”。
02:50
And I'm not convinced that we can answer these deeper questions
48
170440
4176
我不相信我们可以仅仅 用0和1这两个数字
02:54
with just ones and zeros alone.
49
174640
1480
来解决这些难题。
02:57
So, in the lab, I've been creating art
50
177120
1936
所以,在实验室,我通过创造艺术
02:59
as a way to help me design better experiences
51
179080
2456
来帮助我设计更好的
03:01
for bleeding-edge technology.
52
181560
2096
对尖端科技的体验。
03:03
And it's been serving as a catalyst
53
183680
1736
艺术作为一种催化剂,
03:05
to beef up the more human ways that computers can relate to us.
54
185440
3840
让电脑更加人类化, 更理解我们。
03:10
Through art, we're tacking some of the hardest questions,
55
190000
2696
通过艺术,我们在解决一些 非常困难的问题,
03:12
like what does it really mean to feel?
56
192720
2360
就像,感受到底是什么意思?
03:16
Or how do we engage and know how to be present with each other?
57
196120
4080
我们如何真正参与或投入其中?
03:20
And how does intuition affect the way that we interact?
58
200800
4000
我们的直觉怎样影响 我们互动的方式?
03:26
So, take for example human emotion.
59
206440
2056
以人类的情感为例,
03:28
Right now, computers can make sense of our most basic ones,
60
208520
3256
如今,电脑能够明白 我们的基本情感,
03:31
like joy, sadness, anger, fear and disgust,
61
211800
3696
比如开心、伤心、 生气、恐惧、厌恶,
03:35
by converting those characteristics to math.
62
215520
3000
把这些特征转化为数学。
03:39
But what about the more complex emotions?
63
219400
2536
那较复杂的情感呢?
03:41
You know, those emotions
64
221960
1216
比如那些很难
03:43
that we have a hard time describing to each other?
65
223200
2376
用文字向对方描述的情感,
03:45
Like nostalgia.
66
225600
1440
比如,怀旧。
03:47
So, to explore this, I created a piece of art, an experience,
67
227640
3936
所以,为了探索这个问题, 我创造了一件艺术品,一种体验,
03:51
that asked people to share a memory,
68
231600
2096
要求人们分享他们的记忆,
03:53
and I teamed up with some data scientists
69
233720
2136
我和一些数据科学家组成一个团队,
03:55
to figure out how to take an emotion that's so highly subjective
70
235880
3576
去研究高度主观的情感是怎样的,
03:59
and convert it into something mathematically precise.
71
239480
3200
如何将它们精确地转化为数学。
04:03
So, we created what we call a nostalgia score
72
243840
2136
我们创造了一个叫怀旧分数的东西,
这是这个装置的核心。
04:06
and it's the heart of this installation.
73
246000
2216
04:08
To do that, the installation asks you to share a story,
74
248240
3056
这个装置会要求你分享一则故事,
04:11
the computer then analyzes it for its simpler emotions,
75
251320
3256
电脑会分析它的一些简单的情感,
04:14
it checks for your tendency to use past-tense wording
76
254600
2656
它会检测你使用 过去时态的词语的偏好,
04:17
and also looks for words that we tend to associate with nostalgia,
77
257280
3336
还会寻找与怀旧有关的词语,
04:20
like "home," "childhood" and "the past."
78
260640
3040
比如“家”、“童年”和“过去”。
04:24
It then creates a nostalgia score
79
264760
2056
它最后会给出一个怀旧分数,
04:26
to indicate how nostalgic your story is.
80
266840
2736
代表着你的故事的怀旧程度,
04:29
And that score is the driving force behind these light-based sculptures
81
269600
4136
这个分数会 让这个灯箱的颜色发生变化,
04:33
that serve as physical embodiments of your contribution.
82
273760
3896
代表着你的贡献。
04:37
And the higher the score, the rosier the hue.
83
277680
3216
分数越高,色调越偏向玫瑰红色,
04:40
You know, like looking at the world through rose-colored glasses.
84
280920
3936
就像是通过玫红色的眼镜看世界。
04:44
So, when you see your score
85
284880
2616
当你看到你的分数,
04:47
and the physical representation of it,
86
287520
2656
以及它的外部反映时,
04:50
sometimes you'd agree and sometimes you wouldn't.
87
290200
2936
有时你会赞同,有时不赞同。
04:53
It's as if it really understood how that experience made you feel.
88
293160
3480
有的时候就好像它真的明白 故事里的你当时的感受,
04:57
But other times it gets tripped up
89
297400
2216
但有的时候它也会出错,
04:59
and has you thinking it doesn't understand you at all.
90
299640
2560
会让你觉得它一点也不懂你。
05:02
But the piece really serves to show
91
302680
1896
但这个装置能够说明,
05:04
that if we have a hard time explaining the emotions that we have to each other,
92
304600
4056
如果连我们都很难表述清楚的情感,
05:08
how can we teach a computer to make sense of them?
93
308680
2360
我们该如何教电脑明白呢?
05:12
So, even the more objective parts about being human are hard to describe.
94
312360
3576
甚至很多关于 人性的客观方面也很难描述。
05:15
Like, conversation.
95
315960
1240
比如,对话。
05:17
Have you ever really tried to break down the steps?
96
317880
2736
你曾经尝试过分解谈话的步骤吗?
05:20
So think about sitting with your friend at a coffee shop
97
320640
2656
试着想象一下, 你和你的朋友坐在咖啡馆,
05:23
and just having small talk.
98
323320
1320
进行简单的交谈,
05:25
How do you know when to take a turn?
99
325160
1720
你怎么知道轮到你说话了?
05:27
How do you know when to shift topics?
100
327440
1840
你怎么知道什么时候该转换话题?
05:29
And how do you even know what topics to discuss?
101
329960
2720
你怎么知道要讨论些什么?
05:33
See, most of us don't really think about it,
102
333560
2096
大多数人都不会想这些问题,
05:35
because it's almost second nature.
103
335680
1656
因为这对我们来说是很自然的。
05:37
And when we get to know someone, we learn more about what makes them tick,
104
337360
3496
当我们认识一个人的时候, 我们会对他们越来越了解,
05:40
and then we learn what topics we can discuss.
105
340880
2376
然后我们会知道能聊些什么话题。
05:43
But when it comes to teaching AI systems how to interact with people,
106
343280
3656
但是,当你教人工智能 怎样与人类互动时,
05:46
we have to teach them step by step what to do.
107
346960
2856
我们需要一步一步教它们该如何做。
05:49
And right now, it feels clunky.
108
349840
3496
而现在,这个过程还感觉很笨拙。
05:53
If you've ever tried to talk with Alexa, Siri or Google Assistant,
109
353360
4136
如果你曾尝试和 Alexa, Siri 或谷歌助手聊天,
05:57
you can tell that it or they can still sound cold.
110
357520
4200
你可以感觉得到, 它们仍听上去冷冰冰的。
06:02
And have you ever gotten annoyed
111
362440
1656
你是否曾经因为它们
06:04
when they didn't understand what you were saying
112
364120
2256
不明白你说什么而变得恼怒,
06:06
and you had to rephrase what you wanted 20 times just to play a song?
113
366400
3840
比如为了让它们放一首歌, 你得说上20次?
06:11
Alright, to the credit of the designers, realistic communication is really hard.
114
371440
4896
不过我们也要理解设计师,毕竟 让机器学会真实的沟通是非常难的。
06:16
And there's a whole branch of sociology,
115
376360
2136
有一个社会学的分支,
06:18
called conversation analysis,
116
378520
1936
叫做会话分析,
06:20
that tries to make blueprints for different types of conversation.
117
380480
3136
它尝试做不同对话类型的蓝图,
06:23
Types like customer service or counseling, teaching and others.
118
383640
4080
例如像客户服务、心理咨询、 教授课程等等的会话类型。
06:28
I've been collaborating with a conversation analyst at the lab
119
388880
2936
我已经在和会话分析学家 在实验室展开合作,
06:31
to try to help our AI systems hold more human-sounding conversations.
120
391840
4696
尝试帮助我们的人工智能系统 进行更多的人性化的对话。
06:36
This way, when you have an interaction with a chatbot on your phone
121
396560
3176
这样,当你和手机 聊天机器人进行互动时,
06:39
or a voice-based system in the car,
122
399760
1856
或者和车载语音系统互动时,
06:41
it sounds a little more human and less cold and disjointed.
123
401640
3320
这种声音就听上去更人性, 不那么冷淡和缺乏逻辑。
06:46
So I created a piece of art
124
406360
1336
我创造的这个艺术品,
06:47
that tries to highlight the robotic, clunky interaction
125
407720
2816
重点突显了机械化的、 笨拙的互动方式,
06:50
to help us understand, as designers,
126
410560
1976
以帮助我们这些设计师明白,
06:52
why it doesn't sound human yet and, well, what we can do about it.
127
412560
4576
为什么它听上去不像人类, 我们该如何解决这个问题。
06:57
The piece is called Bot to Bot
128
417160
1456
这个艺术品叫 Bot to Bot,
06:58
and it puts one conversational system against another
129
418640
2936
它将一个会话系统 搭建在另一个会话系统之上,
07:01
and then exposes it to the general public.
130
421600
2536
然后展示给公众。
07:04
And what ends up happening is that you get something
131
424160
2496
最终会发生的就是,
07:06
that tries to mimic human conversation,
132
426680
1896
它尝试模仿人类的对话,
07:08
but falls short.
133
428600
1896
但是却明显有不足之处。
07:10
Sometimes it works and sometimes it gets into these, well,
134
430520
2736
有的时候它还可以,而有的时候
会陷入误解的循环。
07:13
loops of misunderstanding.
135
433280
1536
07:14
So even though the machine-to-machine conversation can make sense,
136
434840
3096
虽然机器与机器的对话 从语法、用意上
07:17
grammatically and colloquially,
137
437960
2016
能让人明白,
但是你还是能感觉到 这个对话的冰冷和机械化。
07:20
it can still end up feeling cold and robotic.
138
440000
3216
07:23
And despite checking all the boxes, the dialogue lacks soul
139
443240
4016
尽管对话的其他要素都具备, 但却缺少了灵魂,
07:27
and those one-off quirks that make each of us who we are.
140
447280
3136
缺少了那些使我们 之所以为人类的特质。
07:30
So while it might be grammatically correct
141
450440
2056
尽管它的语法也许正确,
07:32
and uses all the right hashtags and emojis,
142
452520
2656
用对了所有的话题标签和符号表情,
07:35
it can end up sounding mechanical and, well, a little creepy.
143
455200
4136
但最终听起来还是有些呆板, 还有点儿吓人。
07:39
And we call this the uncanny valley.
144
459360
2336
我们把这称为恐怖谷,
07:41
You know, that creepiness factor of tech
145
461720
1936
这种科技的恐怖之处在于,
07:43
where it's close to human but just slightly off.
146
463680
2856
它无比接近人类,却又缺了点什么。
07:46
And the piece will start being
147
466560
1456
这件艺术品能开始用于
07:48
one way that we test for the humanness of a conversation
148
468040
3216
测试交流的人性化,
07:51
and the parts that get lost in translation.
149
471280
2160
以及被误解的部分。
07:54
So there are other things that get lost in translation, too,
150
474560
2856
还有其他一些事情 也容易被电脑误解,
07:57
like human intuition.
151
477440
1616
比如,人类的直觉。
07:59
Right now, computers are gaining more autonomy.
152
479080
2776
如今,电脑拥有更多的自主权,
08:01
They can take care of things for us,
153
481880
1736
能为我们管理一些东西,
08:03
like change the temperature of our houses based on our preferences
154
483640
3176
比如根据我们的偏好 调整房子的温度,
08:06
and even help us drive on the freeway.
155
486840
2160
甚至帮助我们在高速公路驾驶。
08:09
But there are things that you and I do in person
156
489560
2496
但是一些我和你会做的事,
08:12
that are really difficult to translate to AI.
157
492080
2760
是非常难翻译给人工智能的。
08:15
So think about the last time that you saw an old classmate or coworker.
158
495440
4360
想一想你上一次 见到一位老同学或老同事时,
08:21
Did you give them a hug or go in for a handshake?
159
501080
2480
你跟他们拥抱还是握手了呢?
08:24
You probably didn't think twice
160
504800
1496
你可能想都没想,
08:26
because you've had so many built up experiences
161
506320
2336
因为你有过许多这样的经历,
08:28
that had you do one or the other.
162
508680
2000
要么拥抱要么握手。
08:31
And as an artist, I feel that access to one's intuition,
163
511440
3456
作为一名艺术家,我认为 了解一个人的直觉,
08:34
your unconscious knowing,
164
514920
1416
你的潜意识的知觉,
08:36
is what helps us create amazing things.
165
516360
3056
能够帮助我们创造 令人惊叹的东西。
08:39
Big ideas, from that abstract, nonlinear place in our consciousness
166
519440
4056
大的点子,我们潜意识中 抽象的,非线性的东西
08:43
that is the culmination of all of our experiences.
167
523520
2960
是我们所有经历的总和。
08:47
And if we want computers to relate to us and help amplify our creative abilities,
168
527840
4656
如果我们想让电脑 帮我们提升创造力,
08:52
I feel that we'll need to start thinking about how to make computers be intuitive.
169
532520
3896
我认为我们需要思考 如何才能让电脑有直觉,
08:56
So I wanted to explore how something like human intuition
170
536440
3096
所以,我想探究 如何将像人类直觉的东西
08:59
could be directly translated to artificial intelligence.
171
539560
3456
直接地翻译给人工智能。
于是我创造了一台通过现实空间
09:03
And I created a piece that explores computer-based intuition
172
543040
3216
09:06
in a physical space.
173
546280
1320
探究电脑直觉的机器。
09:08
The piece is called Wayfinding,
174
548480
1696
它叫 Wayfinding,
09:10
and it's set up as a symbolic compass that has four kinetic sculptures.
175
550200
3936
它有4个动态装置,像一个指南针。
09:14
Each one represents a direction,
176
554160
2056
每一个装置代表着一个方向,
09:16
north, east, south and west.
177
556240
2120
北、东、南、西。
09:19
And there are sensors set up on the top of each sculpture
178
559080
2696
装在每个装置顶端的传感器,
09:21
that capture how far away you are from them.
179
561800
2256
能够捕获你离它们的距离有多远。
09:24
And the data that gets collected
180
564080
1816
接着数据会被采集,
09:25
ends up changing the way that sculptures move
181
565920
2136
最终装置就会移动,
09:28
and the direction of the compass.
182
568080
2040
从而改变指南针的方向。
09:31
The thing is, the piece doesn't work like the automatic door sensor
183
571360
3656
不过不像自动门的传感器那样——
09:35
that just opens when you walk in front of it.
184
575040
2656
你走到它前面的时候,门就会打开,
09:37
See, your contribution is only a part of its collection of lived experiences.
185
577720
5056
你的行为只是它 搜集的体验的一部分,
09:42
And all of those experiences affect the way that it moves.
186
582800
4056
所有的体验都会影响它的移动。
09:46
So when you walk in front of it,
187
586880
1736
所以当你在它前面走动时,
09:48
it starts to use all of the data
188
588640
1976
它开始用所有之前
09:50
that it's captured throughout its exhibition history --
189
590640
2616
捕获的数据——
09:53
or its intuition --
190
593280
1816
或它的直觉——
09:55
to mechanically respond to you based on what it's learned from others.
191
595120
3560
基于它从其他人那里学习到的, 对你做出机械的响应。
09:59
And what ends up happening is that as participants
192
599480
2536
最终,作为参与者,
10:02
we start to learn the level of detail that we need
193
602040
2816
我们意识到我们需要怎样的细节
10:04
in order to manage expectations
194
604880
2016
才能同时管理
10:06
from both humans and machines.
195
606920
2776
人类和机器的预期。
10:09
We can almost see our intuition being played out on the computer,
196
609720
3616
我们几乎可以看到我们的直觉 在电脑中被展示出来,
10:13
picturing all of that data being processed in our mind's eye.
197
613360
3600
想象所有的数据 被我们的心灵之眼所处理。
10:17
My hope is that this type of art
198
617560
1656
我希望这种艺术方式,
10:19
will help us think differently about intuition
199
619240
2416
能帮助我们从不同角度思考直觉,
10:21
and how to apply that to AI in the future.
200
621680
2280
以及将来如何 将它运用到人工智能中去。
10:24
So these are just a few examples of how I'm using art to feed into my work
201
624480
3936
这些都是我在自己的 人工智能设计和研究的工作中
10:28
as a designer and researcher of artificial intelligence.
202
628440
3096
如何利用艺术的例子。
10:31
And I see it as a crucial way to move innovation forward.
203
631560
3496
我觉得这是一个 推动创新的重要方式。
10:35
Because right now, there are a lot of extremes when it comes to AI.
204
635080
4376
因为现在说到人工智能, 两极分化的态度很严重。
10:39
Popular movies show it as this destructive force
205
639480
2816
比如一些流行电影 将其描绘成毁灭性的力量,
10:42
while commercials are showing it as a savior
206
642320
3056
而一些广告则 把它们描绘为救世主——
10:45
to solve some of the world's most complex problems.
207
645400
2936
能解决一些世界上 极端复杂的问题。
10:48
But regardless of where you stand,
208
648360
2536
但是不管你站在哪一边,
10:50
it's hard to deny that we're living in a world
209
650920
2176
我们都无法否认,我们正生活在一个
越来越数字化的世界中。
10:53
that's becoming more and more digital by the second.
210
653120
2576
10:55
Our lives revolve around our devices, smart appliances and more.
211
655720
4600
我们的生活被设备、智能家居等充斥,
11:01
And I don't think this will let up any time soon.
212
661400
2320
而我不觉得这种状况会停止。
11:04
So, I'm trying to embed more humanness from the start.
213
664400
3736
我想在一开始就植入更多的人性,
11:08
And I have a hunch that bringing art into an AI research process
214
668160
5136
而我有预感,将艺术 带入人工智能研究
11:13
is a way to do just that.
215
673320
1896
就是其中一个方法。
11:15
Thank you.
216
675240
1216
谢谢。
11:16
(Applause)
217
676480
2280
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog