How we can teach computers to make sense of our emotions | Raphael Arar

65,689 views

2018-04-24 ใƒป TED


New videos

How we can teach computers to make sense of our emotions | Raphael Arar

65,689 views ใƒป 2018-04-24

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

00:00
Translator: Ivana Korom Reviewer: Joanna Pietrulewicz
0
0
7000
๋ฒˆ์—ญ: Sojeong KIM ๊ฒ€ํ† : JY Kang
00:13
I consider myself one part artist and one part designer.
1
13760
4680
์ €๋Š” ์ € ์ž์‹ ์„ ์˜ˆ์ˆ ๊ฐ€์ด์ž
๋””์ž์ด๋„ˆ๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
00:18
And I work at an artificial intelligence research lab.
2
18480
3160
์ „ ์ธ๊ณต์ง€๋Šฅ ์—ฐ๊ตฌ์†Œ์—์„œ ์ผํ•ฉ๋‹ˆ๋‹ค.
00:22
We're trying to create technology
3
22720
1696
์šฐ๋ฆฌ๊ฐ€ ๊ฐœ๋ฐœ ์ค‘์ธ ๊ธฐ์ˆ ์€
00:24
that you'll want to interact with in the far future.
4
24440
3296
๋จผ ๋ฏธ๋ž˜์— ์ธ๊ฐ„๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” AI์ž…๋‹ˆ๋‹ค.
00:27
Not just six months from now, but try years and decades from now.
5
27760
4640
ํ˜„์žฌ๋กœ๋ถ€ํ„ฐ 6๊ฐœ์›”์ด ์•„๋‹Œ
์ˆ˜๋…„, ์ˆ˜์‹ญ ๋…„ ํ›„๋ฅผ ์ค€๋น„ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:33
And we're taking a moonshot
6
33120
1616
์šฐ๋ฆฌ์˜ ํš๊ธฐ์ ์ด๊ณ  ์•ผ์‹ฌ ์ฐฌ ๋ชฉํ‘œ๋Š”
00:34
that we'll want to be interacting with computers
7
34760
2456
๊นŠ์ด ์žˆ๋Š” ๊ฐ์ •๊ต๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•œ
00:37
in deeply emotional ways.
8
37240
2120
์ธ๊ณต์ง€๋Šฅ ๊ฐœ๋ฐœ์— ์žˆ์Šต๋‹ˆ๋‹ค.
00:40
So in order to do that,
9
40280
1456
์ด๋ฅผ ์œ„ํ•ด์„œ
00:41
the technology has to be just as much human as it is artificial.
10
41760
4480
์ธ๊ณต์ง€๋Šฅ์— ์ธ๊ฐ„์„ฑ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
00:46
It has to get you.
11
46920
2256
์ธ๊ฐ„์˜ ๊ฐ์ •์„ ์ดํ•ดํ•ด์•ผ ํ•˜์ฃ .
00:49
You know, like that inside joke that'll have you and your best friend
12
49200
3336
์นœํ•œ ์นœ๊ตฌ์™€ ๋ฐฐ๊ผฝ์ด ๋น ์ง€๋„๋ก ์›ƒ์„ ์ˆ˜ ์žˆ๋Š”
00:52
on the floor, cracking up.
13
52560
1936
๋‘˜๋งŒ์˜ ์€๋ฐ€ํ•œ ๋†๋‹ด๋„ ์ดํ•ดํ•˜๊ณ 
00:54
Or that look of disappointment that you can just smell from miles away.
14
54520
4560
์ƒ๋Œ€๋ฐฉ์˜ ์‹ค๋ง๊ฐ์„
๋ฉ€๋ฆฌ์„œ ์ „ํ•ด์ง€๋Š” ๋ถ„์œ„๊ธฐ ๋งŒ์œผ๋กœ ๋ˆˆ์น˜์ฑŒ ์ˆ˜ ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
01:00
I view art as the gateway to help us bridge this gap between human and machine:
15
60560
6040
์ œ๊ฐ€ ๋ณด๊ธฐ์— ์˜ˆ์ˆ ์ด์•ผ๋ง๋กœ
์ธ๊ฐ„๊ณผ ๊ธฐ๊ณ„์˜ ๊ฐ„๊ทน์„ ์ขํ˜€์ฃผ๋Š” ๊ด€๋ฌธ์ž…๋‹ˆ๋‹ค.
01:07
to figure out what it means to get each other
16
67280
3136
์ด๋ฅผ ํ†ตํ•ด ์„œ๋กœ๋ฅผ ์ดํ•ดํ•˜๊ณ 
01:10
so that we can train AI to get us.
17
70440
2760
AI๊ฐ€ ์ธ๊ฐ„์„ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๋„๋ก ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:13
See, to me, art is a way to put tangible experiences
18
73920
3816
๋ฌดํ˜•์˜ ์ƒ๊ฐ๊ณผ ๋Š๋‚Œ, ๊ฐ์ •์—
01:17
to intangible ideas, feelings and emotions.
19
77760
3240
์œ ํ˜•์˜ ๊ฒฝํ—˜์„ ์„ ์‚ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์˜ˆ์ˆ ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:21
And I think it's one of the most human things about us.
20
81800
2600
๊ฐ์ •์€ ์‚ฌ๋žŒ์„ ๊ฐ€์žฅ ์ธ๊ฐ„์ ์ด๊ฒŒ ํ•˜์ฃ .
01:25
See, we're a complicated and complex bunch.
21
85480
2936
์ธ๊ฐ„์€ ๋ณตํ•ฉ์ ์ธ ์กด์žฌ์ž…๋‹ˆ๋‹ค.
01:28
We have what feels like an infinite range of emotions,
22
88440
3136
์ธ๊ฐ„์˜ ๊ฐ์ •์€ ๋ฌดํ•œํ•˜๊ณ 
01:31
and to top it off, we're all different.
23
91600
2496
๋ฌด์—‡๋ณด๋‹ค๋„ ๋ชจ๋“  ์‚ฌ๋žŒ์ด ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
01:34
We have different family backgrounds,
24
94120
2296
๊ฐœ๊ฐœ์ธ์˜ ๊ฐ€์ •ํ™˜๊ฒฝ์ด ๋‹ค๋ฅด๊ณ ,
01:36
different experiences and different psychologies.
25
96440
3080
๊ฒฝํ—˜๊ณผ ์‹ฌ๋ฆฌ์ƒํƒœ๋„ ๋‹ค๋ฆ…๋‹ˆ๋‹ค.
01:40
And this is what makes life really interesting.
26
100240
2720
์‚ถ์ด ํฅ๋ฏธ๋กœ์šด ์ด์œ ๋„ ์ด ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
01:43
But this is also what makes working on intelligent technology
27
103440
3496
๋ฐ˜๋ฉด, ๋ฐ”๋กœ ์ด ์ ์ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์„
01:46
extremely difficult.
28
106960
1600
๋งค์šฐ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
01:49
And right now, AI research, well,
29
109640
3456
ํ˜„์žฌ AI ์—ฐ๊ตฌ๋Š”
01:53
it's a bit lopsided on the tech side.
30
113120
2016
๊ธฐ์ˆ  ์ธก๋ฉด์œผ๋กœ ์น˜์šฐ์นœ ํŽธ์ž…๋‹ˆ๋‹ค.
01:55
And that makes a lot of sense.
31
115160
2136
๋ฌผ๋ก  ํƒ€๋‹นํ•œ ์ด์œ ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
01:57
See, for every qualitative thing about us --
32
117320
2456
๊ทธ๋Ÿฌ๋‹ˆ๊นŒ ์ธ๊ฐ„์˜ ์งˆ์ ์ธ ๋ฉด๋ชจ์ธ
01:59
you know, those parts of us that are emotional, dynamic and subjective --
33
119800
4456
๊ฐ์ •์ , ์—ญ๋™์ ์ด๋ฉฐ ์ฃผ๊ด€์ ์ธ ์ž์งˆ์„
02:04
we have to convert it to a quantitative metric:
34
124280
3136
์ธก์ • ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
02:07
something that can be represented with facts, figures and computer code.
35
127440
4360
์‹ค์ฒดํ™”, ์ˆ˜์น˜ํ™”ํ•˜๊ฑฐ๋‚˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด๋กœ ๊ตฌํ˜„ํ•ด์•ผ ํ•˜์ฃ .
02:13
The issue is, there are many qualitative things
36
133000
3376
๊ทธ๋Ÿฐ๋ฐ ๋ฌธ์ œ๋Š”
๋„๋ฌด์ง€ ์†๋Œˆ ์ˆ˜ ์—†๋Š” ์ •์„ฑ์  ์š”์†Œ๊ฐ€ ๋งŽ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
02:16
that we just can't put our finger on.
37
136400
1960
02:20
So, think about hearing your favorite song for the first time.
38
140400
3200
์ข‹์•„ํ•˜๋Š” ๋…ธ๋ž˜๋ฅผ ์ฒ˜์Œ ๋“ค์—ˆ๋˜ ์ˆœ๊ฐ„์„ ๋– ์˜ฌ๋ ค๋ด…์‹œ๋‹ค.
02:25
What were you doing?
39
145200
1200
๋ฌด์—‡์„ ํ•˜๊ณ  ์žˆ์—ˆ๋‚˜์š”?
02:28
How did you feel?
40
148000
1200
๊ธฐ๋ถ„์ด ์–ด๋• ๋‚˜์š”?
02:30
Did you get goosebumps?
41
150720
1360
๋‹ญ์‚ด์ด ๋‹์•˜๋‚˜์š”?
02:33
Or did you get fired up?
42
153240
1640
๊ฐ์ •์ด ๋ถ๋ฐ›์ณค๋‚˜์š”?
02:36
Hard to describe, right?
43
156400
1200
ํ˜•์–ธํ•˜๊ธฐ ์–ด๋ ต์ง€ ์•Š๋‚˜์š”?
02:38
See, parts of us feel so simple,
44
158800
2096
๋‹จ์ˆœํ•œ ๊ฐ์ •์ด๋ผ ํ• ์ง€๋ผ๋„
02:40
but under the surface, there's really a ton of complexity.
45
160920
3656
๊ทธ ์ด๋ฉด์—๋Š” ๊ต‰์žฅํžˆ ๋ณตํ•ฉ์ ์ธ ๊ฐ์ •์ด ๊น”๋ ค์Šต๋‹ˆ๋‹ค.
02:44
And translating that complexity to machines
46
164600
2936
๊ทธ ๋ณตํ•ฉ์„ฑ์„ ๊ธฐ๊ณ„๋กœ ์˜ฎ๊ธฐ๋Š” ์ž‘์—…์€
02:47
is what makes them modern-day moonshots.
47
167560
2856
ํ˜„๋Œ€์˜ ๊ฟˆ๊ฐ™์€ ๊ณ„ํš์ผ ์ˆ˜๋ฐ–์— ์—†์Šต๋‹ˆ๋‹ค.
02:50
And I'm not convinced that we can answer these deeper questions
48
170440
4176
์†”์งํžˆ ์ €๋Š” ์ด ์‹ฌ์˜คํ•œ ์งˆ๋ฌธ์— ๋Œ€ํ•ด
0๊ณผ 1๋กœ ๋Œ€๋‹ตํ•  ์ˆ˜ ์žˆ์„์ง€ ํ™•์‹ ์ด ๋“ค์ง€ ์•Š์•„์š”.
02:54
with just ones and zeros alone.
49
174640
1480
02:57
So, in the lab, I've been creating art
50
177120
1936
๊ทธ๋ž˜์„œ ์ €๋Š”
๋” ๋‚˜์€ ๊ฒฝํ—˜์„ ์„ ์‚ฌํ•˜๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ์ˆ ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด
02:59
as a way to help me design better experiences
51
179080
2456
03:01
for bleeding-edge technology.
52
181560
2096
์˜ˆ์ˆ  ์ฐฝ์ž‘์„ ์—ฐ๊ตฌํ•ด์™”์Šต๋‹ˆ๋‹ค.
03:03
And it's been serving as a catalyst
53
183680
1736
์˜ˆ์ˆ ์€ ๊ธฐ์ˆ ๊ณผ ์ธ๊ฐ„์„ ์ž‡๋Š” ์ด‰๋งค์ œ๋กœ์„œ
03:05
to beef up the more human ways that computers can relate to us.
54
185440
3840
์ปดํ“จํ„ฐ์˜ ์ธ๊ฐ„์  ๋ฉด๋ชจ๋ฅผ ์ฑ„์›Œ์ฃผ๋Š” ์—ญํ• ์„ ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:10
Through art, we're tacking some of the hardest questions,
55
190000
2696
์˜ˆ์ˆ ์„ ํ†ตํ•ด ๊ฐ€์žฅ ์–ด๋ ค์šด ์งˆ๋ฌธ์— ๋‹ค๊ฐ€๊ฐˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
03:12
like what does it really mean to feel?
56
192720
2360
๋Š๋‚Œ์ด๋ž€ ๋ฌด์—‡์„ ๋œปํ•˜๋Š”๊ฐ€?
03:16
Or how do we engage and know how to be present with each other?
57
196120
4080
๊ด€๊ณ„๋ฅผ ๋งบ๊ณ  ์„œ๋กœ๋ฅผ ์œ„ํ•ด ์–ด๋–ป๊ฒŒ ์กด์žฌํ•  ์ˆ˜ ์žˆ์„๊นŒ?
03:20
And how does intuition affect the way that we interact?
58
200800
4000
๊ทธ๋ฆฌ๊ณ ..
์ง๊ฐ์€ ์ƒํ˜ธ์ž‘์šฉ์— ์–ด๋–ค ์˜ํ–ฅ์„ ์ค„๊นŒ?
03:26
So, take for example human emotion.
59
206440
2056
์ธ๊ฐ„์˜ ๊ฐ์ •์„ ์˜ˆ๋ฅผ ๋“ค์–ด๋ด…์‹œ๋‹ค.
03:28
Right now, computers can make sense of our most basic ones,
60
208520
3256
ํ˜„์žฌ ์ธ๊ณต์ง€๋Šฅ์€ ์ธ๊ฐ„์˜ ๊ธฐ์ดˆ์  ๊ฐ์ •์ด๋ผ ํ•  ์ˆ˜ ์žˆ๋Š”
03:31
like joy, sadness, anger, fear and disgust,
61
211800
3696
๊ธฐ์จ, ์Šฌํ””, ํ™”, ๋‘๋ ค์›€, ํ˜์˜ค๋ฅผ
03:35
by converting those characteristics to math.
62
215520
3000
์ˆ˜ํ•™์ ์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ดํ•ดํ•ฉ๋‹ˆ๋‹ค.
03:39
But what about the more complex emotions?
63
219400
2536
๋” ๋ณต์žก๋ฏธ๋ฌ˜ํ•œ ๊ฐ์ •์€ ์–ด๋–จ๊นŒ์š”?
03:41
You know, those emotions
64
221960
1216
๋ง๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฐ์ •๋“ค ๋ง์ด์ง€์š”.
03:43
that we have a hard time describing to each other?
65
223200
2376
03:45
Like nostalgia.
66
225600
1440
์˜ˆ๋ฅผ ๋“ค์–ด, '๊ทธ๋ฆฌ์›€' ๊ฐ™์€ ๊ฑฐ์ฃ .
03:47
So, to explore this, I created a piece of art, an experience,
67
227640
3936
'๊ทธ๋ฆฌ์›€'์˜ ๊ฐ์ •์„ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด ์ €ํฌ๋Š” ์˜ˆ์ˆ  ์ž‘ํ’ˆ ํ•˜๋‚˜๋ฅผ ๋งŒ๋“ค๊ณ 
03:51
that asked people to share a memory,
68
231600
2096
์‚ฌ๋žŒ๋“ค์ด ์–ด๋–ค ๊ธฐ์–ต์„ ๋– ์˜ฌ๋ฆฌ๋Š”์ง€ ๋ฌผ์—ˆ์Šต๋‹ˆ๋‹ค.
03:53
and I teamed up with some data scientists
69
233720
2136
๋ช‡๋ช‡ ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๋“ค๊ณผ ํŒ€์„ ์ด๋ฃจ์–ด
03:55
to figure out how to take an emotion that's so highly subjective
70
235880
3576
๋งค์šฐ ์ฃผ๊ด€์ ์ธ ๊ทธ๋ฆฌ์›€์˜ ๊ฐ์ •์„
03:59
and convert it into something mathematically precise.
71
239480
3200
์ˆ˜ํ•™์ ์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ๋ณ€ํ™˜ํ•  ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ƒˆ์Šต๋‹ˆ๋‹ค.
04:03
So, we created what we call a nostalgia score
72
243840
2136
์šฐ๋ฆฌ๋Š” ์˜ˆ์ˆ ์žฅ์น˜์˜ ํ•ต์‹ฌ์ธ '๊ทธ๋ฆฌ์›€ ์ ์ˆ˜'๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
04:06
and it's the heart of this installation.
73
246000
2216
04:08
To do that, the installation asks you to share a story,
74
248240
3056
์˜ˆ์ˆ ์žฅ์น˜๊ฐ€ ๋‹น์‹ ์—๊ฒŒ ์ถ”์–ต ์ด์•ผ๊ธฐ๋ฅผ ๋“ค๋ ค๋‹ฌ๋ผ๊ณ  ์ฒญํ•ฉ๋‹ˆ๋‹ค.
04:11
the computer then analyzes it for its simpler emotions,
75
251320
3256
์ปดํ“จํ„ฐ๋Š” ์ด์•ผ๊ธฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๋” ๊ฐ„๋‹จํ•œ ๊ฐ์ •์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ 
04:14
it checks for your tendency to use past-tense wording
76
254600
2656
๋‹น์‹ ์ด ๊ณผ๊ฑฐ์‹œ์ œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝํ–ฅ์„ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.
04:17
and also looks for words that we tend to associate with nostalgia,
77
257280
3336
'๊ทธ๋ฆฌ์›€'์„ ๋– ์˜ฌ๋ฆด ๋•Œ ํ•จ๊ป˜ ์“ฐ๋Š”
04:20
like "home," "childhood" and "the past."
78
260640
3040
"์ง‘", "์–ด๋ฆฐ ์‹œ์ ˆ", "๊ณผ๊ฑฐ" ๋“ฑ์˜ ์—ฐ๊ด€ ๋‹จ์–ด๋„ ํ™•์ธํ•˜์ง€์š”.
04:24
It then creates a nostalgia score
79
264760
2056
๊ทธ ํ›„ ๊ทธ๋ฆฌ์›€ ์ ์ˆ˜๊ฐ€ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.
04:26
to indicate how nostalgic your story is.
80
266840
2736
์ด๋ ‡๊ฒŒ ๊ณผ๊ฑฐ๋ฅผ ๊ทธ๋ฆฌ์›Œํ•˜๋Š” ์ •๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์ฃ .
04:29
And that score is the driving force behind these light-based sculptures
81
269600
4136
๋น›์„ ์†Œ์žฌ๋กœ ํ•œ ์ด ์ž‘ํ’ˆ์€ ๊ทธ ์ ์ˆ˜์— ๋”ฐ๋ผ ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.
04:33
that serve as physical embodiments of your contribution.
82
273760
3896
์—ฌ๋Ÿฌ๋ถ„์˜ ์ฐธ์—ฌ๋กœ ๊ฐ์ •์ด ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ตฌํ˜„๋˜๋Š” ๊ฒƒ์ด์ฃ .
04:37
And the higher the score, the rosier the hue.
83
277680
3216
๊ทธ๋ฆฌ์›€ ์ ์ˆ˜๊ฐ€ ๋†’์„์ˆ˜๋ก ๋”์šฑ ์žฅ๋ฐ‹๋น› ์ƒ‰์กฐ๋ฅผ ๋„๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
04:40
You know, like looking at the world through rose-colored glasses.
84
280920
3936
์žฅ๋ฐ‹๋น› ์•ˆ๊ฒฝ์œผ๋กœ ์„ธ์ƒ์„ ๋ฐ”๋ผ๋ณด๋“ฏ ๋ง์ด์ฃ .
04:44
So, when you see your score
85
284880
2616
๊ทธ๋ฆฌ์›€ ์ ์ˆ˜์™€ ํ•จ๊ป˜
04:47
and the physical representation of it,
86
287520
2656
๋ฌผ๋ฆฌ์ ์œผ๋กœ ํ‘œํ˜„๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๋ฉฐ
04:50
sometimes you'd agree and sometimes you wouldn't.
87
290200
2936
์šฐ๋ฆฌ๋Š” ๋•Œ๋กœ๋Š” ๋™์˜ํ•˜๊ณ  ๋•Œ๋กœ๋Š” ๋™์˜ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
04:53
It's as if it really understood how that experience made you feel.
88
293160
3480
์šฐ๋ฆฌ์˜ ๊ฐ์ •์„ ์ •๋ง ์ดํ•ดํ•œ ๋“ฏ ๋ณด์ผ ๋•Œ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
04:57
But other times it gets tripped up
89
297400
2216
๊ทธ๋Ÿฌ๋‚˜ ํ—›๋‹ค๋ฆฌ๋ฅผ ์งš๊ณ 
04:59
and has you thinking it doesn't understand you at all.
90
299640
2560
๋‹น์‹ ์„ ์ „ํ˜€ ์ดํ•ดํ•˜์ง€ ๋ชปํ•  ๋•Œ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
05:02
But the piece really serves to show
91
302680
1896
์ด ์ž‘ํ’ˆ์ด ์šฐ๋ฆฌ์—๊ฒŒ ๋งํ•˜๋Š” ๊ฒƒ์€
05:04
that if we have a hard time explaining the emotions that we have to each other,
92
304600
4056
์šฐ๋ฆฌ๋„ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฐ์ •๋“ค์„
05:08
how can we teach a computer to make sense of them?
93
308680
2360
์–ด๋–ป๊ฒŒ ์ปดํ“จํ„ฐ๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ฐ€๋ฅด์น˜๋ƒ์˜ ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค.
05:12
So, even the more objective parts about being human are hard to describe.
94
312360
3576
๊ฐ๊ด€์ ์ธ ์˜์—ญ๋„ ์„ค๋ช…ํ•˜๊ธฐ ์–ด๋ ต๊ธด ๋งˆ์ฐฌ๊ฐ€์ง€์ž…๋‹ˆ๋‹ค.
05:15
Like, conversation.
95
315960
1240
์˜ˆ๋ฅผ ๋“ค์–ด, ๋Œ€ํ™”๋ฅผ ๋ด…์‹œ๋‹ค.
05:17
Have you ever really tried to break down the steps?
96
317880
2736
๋Œ€ํ™”๋ฒ•์„ ๋ถ„์„ํ•ด๋ณด์‹  ์  ์žˆ๋‚˜์š”?
05:20
So think about sitting with your friend at a coffee shop
97
320640
2656
์นดํŽ˜์—์„œ ์นœ๊ตฌ์™€ ์ˆ˜๋‹ค๋ฅผ ๋– ๋Š” ์ƒํ™ฉ์„ ์ƒ๊ฐํ•ด๋ณด์„ธ์š”.
05:23
and just having small talk.
98
323320
1320
05:25
How do you know when to take a turn?
99
325160
1720
์ž์‹ ์ด ๋งํ•  ์ฐจ๋ก€๋ฅผ ์–ด๋–ป๊ฒŒ ์•„์‹œ๋‚˜์š”?
05:27
How do you know when to shift topics?
100
327440
1840
์ฃผ์ œ๋ฅผ ๋ฐ”๊ฟ”์•ผ ํ•  ํƒ€์ด๋ฐ์€์š”?
05:29
And how do you even know what topics to discuss?
101
329960
2720
์–ด๋–ค ์ฃผ์ œ๋กœ ์ด์•ผ๊ธฐํ• ์ง€๋Š” ์–ด๋–ป๊ฒŒ ์•Œ์ฃ ?
05:33
See, most of us don't really think about it,
102
333560
2096
๋Œ€๋‹ค์ˆ˜ ์‚ฌ๋žŒ๋“ค์€ ์ด๋Ÿฐ ๊ฑธ ์ƒ๊ฐํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
05:35
because it's almost second nature.
103
335680
1656
์ œ2์˜ ์ฒœ์„ฑ์— ๊ฐ€๊น๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
05:37
And when we get to know someone, we learn more about what makes them tick,
104
337360
3496
์šฐ๋ฆฌ๋Š” ๋ˆ„๊ตฐ๊ฐ€๋ฅผ ๋งŒ๋‚˜๋ฉด ์ƒ๋Œ€๋ฐฉ์˜ ํ–‰๋™์„ ์‚ดํ•๋‹ˆ๋‹ค.
05:40
and then we learn what topics we can discuss.
105
340880
2376
๊ทธ๋ฆฌ๊ณ  ํ† ๋ก ํ• ๋งŒํ•œ ์ฃผ์ œ๊ฐ€ ๋ฌด์—‡์ธ์ง€ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
05:43
But when it comes to teaching AI systems how to interact with people,
106
343280
3656
๊ทธ๋Ÿฌ๋‚˜ ์ธ๊ณต์ง€๋Šฅ์„ ์ƒ๋Œ€๋กœ ์ธ๊ฐ„๊ณผ ๊ต๊ฐํ•˜๋Š” ๋ฒ•์„ ๊ฐ€๋ฅด์น  ๋•Œ๋Š”
05:46
we have to teach them step by step what to do.
107
346960
2856
ํ•ด์•ผ ํ•  ์ผ์„ ๋‹จ๊ณ„์ ์œผ๋กœ ๊ฐ€๋ฅด์ณ์•ผ ํ•ด์š”.
05:49
And right now, it feels clunky.
108
349840
3496
ํ˜„์žฌ AI๋Š” ํˆฌ๋ฐ•ํ•œ ๊ฐ์ด ์žˆ์–ด์š”.
05:53
If you've ever tried to talk with Alexa, Siri or Google Assistant,
109
353360
4136
์•Œ๋ ‰์‚ฌ, ์‹œ๋ฆฌ, ๊ตฌ๊ธ€ ์–ด์‹œ์Šคํ„ดํŠธ์™€ ๋Œ€ํ™”ํ•ด๋ณธ ์  ์žˆ์œผ์‹œ๋‹ค๋ฉด
05:57
you can tell that it or they can still sound cold.
110
357520
4200
์ฐจ๊ฐ‘๋‹ค๋Š” ์ธ์ƒ์„ ๋ฐ›์œผ์…จ์„ ๊ฒ๋‹ˆ๋‹ค.
06:02
And have you ever gotten annoyed
111
362440
1656
AI์— ์Œ์•… ์žฌ์ƒ์„ ๋ช…๋ นํ–ˆ๋Š”๋ฐ
06:04
when they didn't understand what you were saying
112
364120
2256
๋ง์„ ๋ชป ์•Œ์•„๋“ฃ๋Š” ํƒ“์—
06:06
and you had to rephrase what you wanted 20 times just to play a song?
113
366400
3840
20๋ฒˆ์ด๋‚˜ ๋‹ค์‹œ ๋งํ•˜์—ฌ ์งœ์ฆ ๋‚ฌ๋˜ ๊ธฐ์–ต์ด ์žˆ์œผ์‹ ๊ฐ€์š”?
06:11
Alright, to the credit of the designers, realistic communication is really hard.
114
371440
4896
๋””์ž์ด๋„ˆ๋ฅผ ๋Œ€๋ณ€ํ•˜์ž๋ฉด, ํ˜„์‹ค์ ์ธ ์˜์‚ฌ์†Œํ†ต ๊ตฌํ˜„์€ ์ •๋ง ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
06:16
And there's a whole branch of sociology,
115
376360
2136
์‹ค์ œ๋กœ ์‚ฌํšŒํ•™ ๋ถ„์•ผ์˜ ํ•˜๋‚˜์ธ ๋Œ€ํ™” ๋ถ„์„ ๋ถ„์•ผ์—์„œ๋Š”
06:18
called conversation analysis,
116
378520
1936
06:20
that tries to make blueprints for different types of conversation.
117
380480
3136
๋‹ค์–‘ํ•œ ๋Œ€ํ™” ์œ ํ˜•์˜ ๊ตฌ์กฐ๋ฅผ ์ฒญ์‚ฌ์ง„์œผ๋กœ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
06:23
Types like customer service or counseling, teaching and others.
118
383640
4080
๊ณ ๊ฐ ์„œ๋น„์Šค, ์ƒ๋‹ด, ๊ต์œก ๋“ฑ์˜ ๋Œ€ํ™” ์œ ํ˜•์„ ๋ถ„์„ํ•˜์ฃ .
06:28
I've been collaborating with a conversation analyst at the lab
119
388880
2936
์ €๋Š” ์ €ํฌ ์—ฐ๊ตฌ์‹ค์˜ ๋Œ€ํ™” ๋ถ„์„๊ฐ€์™€ ํ˜‘์—…ํ•˜๋ฉฐ
06:31
to try to help our AI systems hold more human-sounding conversations.
120
391840
4696
์ธ๊ฐ„์— ๊ฐ€๊น๊ฒŒ ๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” AI๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:36
This way, when you have an interaction with a chatbot on your phone
121
396560
3176
์Šค๋งˆํŠธํฐ์˜ ์ฑ—๋ด‡์„ ์ด์šฉํ•˜๊ฑฐ๋‚˜
06:39
or a voice-based system in the car,
122
399760
1856
์ฐจ๋Ÿ‰์˜ ์Œ์„ฑ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ๊ณผ ๋Œ€ํ™”ํ•  ๋•Œ
06:41
it sounds a little more human and less cold and disjointed.
123
401640
3320
์ข€ ๋” ์ธ๊ฐ„์— ๊ฐ€๊น๊ฒŒ ์ผ๊ด€์„ฑ ์žˆ๊ณ , ๋œ ์ฐจ๊ฐ‘๊ฒŒ ๋งํ•˜๋„๋ก ํ•˜๋ ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:46
So I created a piece of art
124
406360
1336
๋”ฐ๋ผ์„œ ์ €๋Š” AI์˜ ๊ธฐ๊ณ„์ ์ด๊ณ  ํˆฌ๋ฐ•ํ•œ ๋ฉด์„ ๋ถ€๊ฐ์‹œํ‚จ ์ž‘ํ’ˆ์„ ๋งŒ๋“ค์–ด์„œ
06:47
that tries to highlight the robotic, clunky interaction
125
407720
2816
06:50
to help us understand, as designers,
126
410560
1976
AI์˜ ๋ง์ด ๋ถ€์ž์—ฐ์Šค๋Ÿฌ์šด ์ด์œ ๋ฅผ ๋””์ž์ด๋„ˆ์˜ ๊ด€์ ์—์„œ ์ดํ•ดํ•˜๊ณ 
06:52
why it doesn't sound human yet and, well, what we can do about it.
127
412560
4576
๊ฐœ์„  ๋ฐฉ์•ˆ์„ ์ƒ๊ฐํ•ด๋ณด๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
06:57
The piece is called Bot to Bot
128
417160
1456
์ด ์ž‘ํ’ˆ์€ ๋ด‡ํˆฌ๋ด‡(Bot to Bot)์ž…๋‹ˆ๋‹ค.
06:58
and it puts one conversational system against another
129
418640
2936
๋‘ ๊ฐœ์˜ ๋Œ€ํ™” ์‹œ์Šคํ…œ์ด ์„œ๋กœ ๋Œ€ํ™”ํ•˜๋„๋ก ํ•˜๊ณ 
07:01
and then exposes it to the general public.
130
421600
2536
์ด ๊ณผ์ •์„ ์ผ๋ฐ˜ ๋Œ€์ค‘์—๊ฒŒ ๊ณต๊ฐœํ•ฉ๋‹ˆ๋‹ค.
07:04
And what ends up happening is that you get something
131
424160
2496
๊ฒฐ๊ตญ, ์—ฌ๊ธฐ์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€
07:06
that tries to mimic human conversation,
132
426680
1896
์ธ๊ฐ„์˜ ๋Œ€ํ™”๋ฅผ ๋ชจ๋ฐฉํ•˜๊ณ  ์žˆ์ง€๋งŒ
07:08
but falls short.
133
428600
1896
์–ด๋””์ธ์ง€ ๋ฏธํกํ•œ ๋Œ€ํ™”์ž…๋‹ˆ๋‹ค.
07:10
Sometimes it works and sometimes it gets into these, well,
134
430520
2736
๋•Œ์— ๋”ฐ๋ผ ์ž์—ฐ์Šค๋Ÿฌ์šธ ๋•Œ๋„ ์žˆ์ง€๋งŒ
07:13
loops of misunderstanding.
135
433280
1536
์˜คํ•ด์˜ ๋Šช์— ๋น ์ง€๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
07:14
So even though the machine-to-machine conversation can make sense,
136
434840
3096
๊ธฐ๊ณ„ ๋Œ€ ๊ธฐ๊ณ„์˜ ๋Œ€ํ™”๋Š”
07:17
grammatically and colloquially,
137
437960
2016
๋ฌธ๋ฒ•, ํšŒํ™”์ ์ธ ์ธก๋ฉด์—์„œ ์ž์—ฐ์Šค๋Ÿฌ์›Œ๋„
07:20
it can still end up feeling cold and robotic.
138
440000
3216
์—ฌ์ „ํžˆ ๊ธฐ๊ณ„์ ์ด๊ณ  ์ฐจ๊ฐ€์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:23
And despite checking all the boxes, the dialogue lacks soul
139
443240
4016
์ด๋ก ์ ์œผ๋กœ ์„ฑ๋ฆฝ๋˜์–ด๋„
๋Œ€ํ™”์—๋Š” ์—ฌ์ „ํžˆ ์˜ํ˜ผ์ด ์—†๊ณ 
07:27
and those one-off quirks that make each of us who we are.
140
447280
3136
์ธ๊ฐ„๋งŒ์ด ๊ฐ€์ง€๋Š” ์œ ์ผํ•œ ํŠน์ง•์ด ๋น ์ ธ ์žˆ์ฃ .
07:30
So while it might be grammatically correct
141
450440
2056
๋”ฐ๋ผ์„œ ๋ฌธ๋ฒ•์ ์œผ๋กœ ์ •ํ™•ํ•˜๊ณ 
07:32
and uses all the right hashtags and emojis,
142
452520
2656
์ •ํ™•ํ•œ ํ•ด์‹œ ํƒœ๊ทธ์™€ ์ด๋ชจํ‹ฐ์ฝ˜์„ ์‚ฌ์šฉํ•ด๋„
07:35
it can end up sounding mechanical and, well, a little creepy.
143
455200
4136
์—ฌ์ „ํžˆ ๊ธฐ๊ณ„์ ์ด๊ณ , ์‹ฌ์ง€์–ด ์˜ค์‹นํ•˜๊ฒŒ ๋“ค๋ฆฌ๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
07:39
And we call this the uncanny valley.
144
459360
2336
์ด๋ฅผ '๋ถˆ์พŒํ•œ ๊ณจ์งœ๊ธฐ'๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
07:41
You know, that creepiness factor of tech
145
461720
1936
์ธ๊ฐ„๊ณผ ๋งค์šฐ ์œ ์‚ฌํ•˜์ง€๋งŒ ์•ฝ๊ฐ„์˜ ์ฐจ์ด๋กœ ์ธํ•ด์„œ ๋Š๊ปด์ง€๋Š”
07:43
where it's close to human but just slightly off.
146
463680
2856
์˜ค์‹นํ•œ ๊ฑฐ๋ถ€๊ฐ์„ ์˜๋ฏธํ•˜์ฃ .
07:46
And the piece will start being
147
466560
1456
์ด ์ž‘ํ’ˆ์„ ํ†ตํ•ด์„œ ๋Œ€ํ™” ์†์˜ ์ธ๊ฐ„์„ฑ์„ ์ฒดํ—˜ํ•˜๊ณ 
07:48
one way that we test for the humanness of a conversation
148
468040
3216
07:51
and the parts that get lost in translation.
149
471280
2160
ํ†ต์—ญํ•  ์ˆ˜ ์—†๋Š” ๋น„์–ธ์–ด์  ์š”์†Œ๋ฅผ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:54
So there are other things that get lost in translation, too,
150
474560
2856
ํ†ต์—ญํ•  ์ˆ˜ ์—†๋Š” ๋ถ€๋ถ„์ด ๋˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:57
like human intuition.
151
477440
1616
์ธ๊ฐ„์˜ ์ง๊ด€๋ ฅ์ด์ฃ .
07:59
Right now, computers are gaining more autonomy.
152
479080
2776
ํ˜„์žฌ ์ปดํ“จํ„ฐ๋Š” ๋” ํฐ ์ž์œจ๊ถŒ์„ ๊ฐ–์Šต๋‹ˆ๋‹ค.
08:01
They can take care of things for us,
153
481880
1736
์ธ๊ฐ„์„ ์œ„ํ•ด ์ž์ฒด์ ์œผ๋กœ ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๊ธฐ๋„ ํ•ด์š”.
08:03
like change the temperature of our houses based on our preferences
154
483640
3176
ํ‰์†Œ ์„ ํ˜ธ๋„๋ฅผ ํŒŒ์•…ํ•˜์—ฌ ์ง‘ ์•ˆ ์˜จ๋„๋ฅผ ๋ฐ”๊พธ๊ฑฐ๋‚˜
08:06
and even help us drive on the freeway.
155
486840
2160
๊ณ ์†๋„๋กœ ์ฃผํ–‰์„ ๋•๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
08:09
But there are things that you and I do in person
156
489560
2496
๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ๋žŒ ์‚ฌ์ด์— ์ผ๋Œ€์ผ๋กœ ์ด๋ฃจ์–ด์ง€๋Š” ํ–‰์œ„๋Š”
08:12
that are really difficult to translate to AI.
157
492080
2760
AI์—๊ฒŒ ๊ฐ€๋ฅด์น˜๊ธฐ๊ฐ€ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
08:15
So think about the last time that you saw an old classmate or coworker.
158
495440
4360
๋™์ฐฝ๊ณผ ์˜› ๋™๋ฃŒ๋ฅผ ๋งˆ์ง€๋ง‰์œผ๋กœ ๋งŒ๋‚ฌ์„ ๋•Œ๋ฅผ ๋– ์˜ฌ๋ ค๋ณด์„ธ์š”.
08:21
Did you give them a hug or go in for a handshake?
159
501080
2480
๊ทธ๋“ค๊ณผ ํฌ์˜น์„ ํ–ˆ๋‚˜์š”? ์•„๋‹ˆ๋ฉด ์•…์ˆ˜๋ฅผ ํ–ˆ๋‚˜์š”?
08:24
You probably didn't think twice
160
504800
1496
๋‘ ๋ฒˆ ์ƒ๊ฐํ•˜์ง€ ์•Š์œผ์…จ์„ ๊ฒ๋‹ˆ๋‹ค.
08:26
because you've had so many built up experiences
161
506320
2336
์ด๋ฏธ ์ถ•์ ๋œ ๊ฒฝํ—˜์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—
08:28
that had you do one or the other.
162
508680
2000
์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋‘˜ ์ค‘ ํ•˜๋‚˜๋ฅผ ์„ ํƒํ–ˆ์„ ํ…Œ๋‹ˆ๊นŒ์š”.
08:31
And as an artist, I feel that access to one's intuition,
163
511440
3456
์˜ˆ์ˆ ๊ฐ€์˜ ์ž…์žฅ์—์„œ ๋ณผ ๋•Œ
์ธ๊ฐ„์˜ ์ง๊ฐ์„ ์ด์šฉํ•˜๊ณ  ๋ฌด์˜์‹์  ์ž๊ฐ์˜ ์˜์—ญ์— ์ ‘๊ทผํ•˜๋Š” ๊ฒƒ์ด
08:34
your unconscious knowing,
164
514920
1416
08:36
is what helps us create amazing things.
165
516360
3056
๋†€๋ผ์šด ์ฐฝ์กฐ๋ฅผ ์ด๋ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
08:39
Big ideas, from that abstract, nonlinear place in our consciousness
166
519440
4056
๋ชจ๋“  ๊ฒฝํ—˜์˜ ์ด์ง‘ํ•ฉ์ธ ๋น„์„ ํ˜• ์„ธ๊ณ„์˜ ์ถ”์ƒ์„ฑ์—์„œ
08:43
that is the culmination of all of our experiences.
167
523520
2960
์œ„๋Œ€ํ•œ ๋ฐœ์ƒ๋“ค์ด ์ถœ๋ฐœํ•ฉ๋‹ˆ๋‹ค.
08:47
And if we want computers to relate to us and help amplify our creative abilities,
168
527840
4656
์ปดํ“จํ„ฐ์™€ ์ธ๊ฐ„์„ ์—ฐ๊ณ„ํ•˜์—ฌ ์ฐฝ์˜๋ ฅ์„ ํ™•์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด
08:52
I feel that we'll need to start thinking about how to make computers be intuitive.
169
532520
3896
์ง๊ด€์ ์ธ ์ปดํ“จํ„ฐ๋ฅผ ๊ฐœ๋ฐœํ•  ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
08:56
So I wanted to explore how something like human intuition
170
536440
3096
์ €๋Š” ์ง๊ฐ๊ณผ ๊ฐ™์€ ์ธ๊ฐ„์˜ ํŠน์ง•์ด
08:59
could be directly translated to artificial intelligence.
171
539560
3456
์–ด๋–ป๊ฒŒ ์ง์ ‘ ์ธ๊ณต์ง€๋Šฅ์— ๋ฐ˜์˜๋˜๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค.
09:03
And I created a piece that explores computer-based intuition
172
543040
3216
๊ทธ๋ž˜์„œ ์‹ค์ œ ๊ณต๊ฐ„์—์„œ ์ปดํ“จํ„ฐ ์ง๊ด€์„ ํƒ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š”
09:06
in a physical space.
173
546280
1320
์ž‘ํ’ˆ์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
09:08
The piece is called Wayfinding,
174
548480
1696
์›จ์ดํŒŒ์ธ๋”ฉ(Wayfinding)์ž…๋‹ˆ๋‹ค.
09:10
and it's set up as a symbolic compass that has four kinetic sculptures.
175
550200
3936
์›€์ง์ด๋Š” 4๊ฐœ์˜ ์กฐ๊ฐ์ƒ์œผ๋กœ ๋œ ์ƒ์ง•์  ๋‚˜์นจ๋ฐ˜์ธ๋ฐ์š”.
09:14
Each one represents a direction,
176
554160
2056
๊ฐ๊ฐ์˜ ์กฐ๊ฐ์€ ๋™์„œ๋‚จ๋ถ์˜ ์ผ์ •ํ•œ ๋ฐฉํ–ฅ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
09:16
north, east, south and west.
177
556240
2120
09:19
And there are sensors set up on the top of each sculpture
178
559080
2696
์กฐ๊ฐ ์ƒ๋‹จ์—๋Š” ๊ฐ์ง€ ์„ผ์„œ๊ฐ€ ํƒ‘์žฌ๋˜์–ด ์žˆ์–ด
09:21
that capture how far away you are from them.
179
561800
2256
์‚ฌ๋žŒ์ด ๋–จ์–ด์ ธ ์žˆ๋Š” ๊ฑฐ๋ฆฌ๋ฅผ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
09:24
And the data that gets collected
180
564080
1816
์ž๋ฃŒ๊ฐ€ ์ˆ˜์ง‘๋˜๋ฉด
09:25
ends up changing the way that sculptures move
181
565920
2136
์กฐ๊ฐ์ด ์›€์ง์ด๋Š” ๋ฐฉํ–ฅ์ด ๋ฐ”๋€Œ๊ณ 
09:28
and the direction of the compass.
182
568080
2040
๊ฒฐ๊ตญ ๋‚˜์นจ๋ฐ˜์˜ ๋ฐฉํ–ฅ๋„ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค.
09:31
The thing is, the piece doesn't work like the automatic door sensor
183
571360
3656
์ด ์„ค์น˜๋ฌผ์˜ ๊ฐ๊ฐ์˜ ์กฐ๊ฐ์€ ์‚ฌ๋žŒ์ด ๊ฑธ์–ด๋“ค์–ด์˜ฌ ๋•Œ ์—ด๋ฆฌ๋Š”
09:35
that just opens when you walk in front of it.
184
575040
2656
์ž๋™๋ฌธ ์„ผ์„œ์ฒ˜๋Ÿผ ์ž‘๋™ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
09:37
See, your contribution is only a part of its collection of lived experiences.
185
577720
5056
์—ฌ๋Ÿฌ๋ถ„์˜ ์ฐธ์—ฌ๋Š” ์ด์ฒด์  ์ฒดํ—˜์˜ ์ผ๋ถ€์ž…๋‹ˆ๋‹ค.
09:42
And all of those experiences affect the way that it moves.
186
582800
4056
์ถ•์ ๋œ ๋ชจ๋“  ๊ฒฝํ—˜์ด ๋ฐฉํ–ฅ ๊ฒฐ์ •์— ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค.
09:46
So when you walk in front of it,
187
586880
1736
๊ทธ๋ž˜์„œ ๋ˆ„๊ตฐ๊ฐ€ ๊ทธ ์•ž์„ ์ง€๋‚˜๊ฐ€๋ฉด
09:48
it starts to use all of the data
188
588640
1976
์ „์‹œ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ถ•์ ๋œ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜๊ฑฐ๋‚˜
09:50
that it's captured throughout its exhibition history --
189
590640
2616
09:53
or its intuition --
190
593280
1816
์ง๊ฐ์„ ๋ฐœํœ˜ํ•˜์—ฌ
09:55
to mechanically respond to you based on what it's learned from others.
191
595120
3560
๊ทธ๋™์•ˆ ์Šต๋“ํ•œ ์ฒดํ—˜์— ๋ฐ”ํƒ•์„ ๋‘” ๊ธฐ๊ณ„์  ๋ฐ˜์‘์„ ๋ณด์ด๊ฒŒ ๋˜์ฃ .
09:59
And what ends up happening is that as participants
192
599480
2536
์ด ์ฒดํ—˜์— ์ฐธ์—ฌํ•œ ์‚ฌ๋žŒ๋“ค์€
10:02
we start to learn the level of detail that we need
193
602040
2816
์˜ˆ์ธก์„ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด
์ •๋ฐ€ํ•œ ๊ณผ์ •์ด ํ•„์š”ํ•˜๋‹ค๋Š” ์ ์„ ์ดํ•ดํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
10:04
in order to manage expectations
194
604880
2016
10:06
from both humans and machines.
195
606920
2776
์ธ๊ฐ„๊ณผ ๊ธฐ๊ณ„ ๋ชจ๋‘์— ํ•ด๋‹นํ•˜์ฃ .
10:09
We can almost see our intuition being played out on the computer,
196
609720
3616
์ปดํ“จํ„ฐ๊ฐ€ ์ธ๊ฐ„์˜ ์ง๊ด€์„ ์‹คํ–‰ํ•˜๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•˜๊ณ 
10:13
picturing all of that data being processed in our mind's eye.
197
613360
3600
๋งˆ์Œ์†์—์„œ ๋ชจ๋“  ๋ฐ์ดํ„ฐ๊ฐ€ ์ฒ˜๋ฆฌ๋˜๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:17
My hope is that this type of art
198
617560
1656
์ €๋Š” ์ด๋Ÿฐ ์œ ํ˜•์˜ ์˜ˆ์ˆ ์„ ์ ‘ํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๊ฐ€ ์ง๊ด€์— ๋Œ€ํ•ด ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฐํ•˜๊ณ 
10:19
will help us think differently about intuition
199
619240
2416
10:21
and how to apply that to AI in the future.
200
621680
2280
์ด๋ฅผ ๋ฏธ๋ž˜์˜ AI์— ์ ์šฉํ•˜๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
10:24
So these are just a few examples of how I'm using art to feed into my work
201
624480
3936
์ธ๊ณต์ง€๋Šฅ ๋””์ž์ด๋„ˆ์ด์ž ์—ฐ๊ตฌ์›์œผ๋กœ
์˜ˆ์ˆ ์„ ํ™œ์šฉํ•œ ์—ฐ๊ตฌ ์‚ฌ๋ก€ ๋ช‡ ๊ฐ€์ง€๋ฅผ ๋ง์”€๋“œ๋ ธ์Šต๋‹ˆ๋‹ค.
10:28
as a designer and researcher of artificial intelligence.
202
628440
3096
10:31
And I see it as a crucial way to move innovation forward.
203
631560
3496
์ €๋Š” ์ด ๋ฐฉ๋ฒ•์ด ํ˜์‹ ์œผ๋กœ ๋‚˜์•„๊ฐ€๋Š” ์ค‘์š”ํ•œ ๊ธธ์ด๋ผ ๋ฏฟ์Šต๋‹ˆ๋‹ค.
ํ˜„์žฌ AI์— ๋Œ€ํ•œ ๊ทน๋‹จ์ ์ธ ์ƒ๊ฐ๋“ค์ด ๋งŽ์ด ์ž๋ฆฌ ์žก๊ณ  ์žˆ์ฃ .
10:35
Because right now, there are a lot of extremes when it comes to AI.
204
635080
4376
10:39
Popular movies show it as this destructive force
205
639480
2816
์ธ๊ธฐ ์˜ํ™”๋Š” AI์˜ ํŒŒ๊ดด๋ ฅ์„ ๊ฐ•์กฐํ•˜๊ณ 
10:42
while commercials are showing it as a savior
206
642320
3056
๊ด‘๊ณ ๋Š” AI๊ฐ€ ๋งˆ์น˜ ๊ตฌ์„ธ์ฃผ๋ผ๋„ ๋œ ๋“ฏ
10:45
to solve some of the world's most complex problems.
207
645400
2936
์„ธ๊ณ„์˜ ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๊ฒƒ์ด๋ผ ๋งํ•ฉ๋‹ˆ๋‹ค.
10:48
But regardless of where you stand,
208
648360
2536
ํ•˜์ง€๋งŒ ์šฐ๋ฆฌ๊ฐ€ ์–ด๋””์— ์žˆ๋“ 
10:50
it's hard to deny that we're living in a world
209
650920
2176
๋งค ์ˆœ๊ฐ„ ๋”์šฑ ๋””์ง€ํ„ธํ™”ํ•˜๋Š”
์„ธ์ƒ ์†์— ์‚ด๊ณ  ์žˆ์Œ์„ ๋ถ€์ •ํ•˜๊ธฐ๋Š” ์–ด๋ ต์Šต๋‹ˆ๋‹ค.
10:53
that's becoming more and more digital by the second.
210
653120
2576
10:55
Our lives revolve around our devices, smart appliances and more.
211
655720
4600
๊ธฐ๊ณ„, ์Šค๋งˆํŠธ ๊ธฐ๊ธฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์‚ถ์ด ๋Œ์•„๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:01
And I don't think this will let up any time soon.
212
661400
2320
๋‹น๋ถ„๊ฐ„ ์ด ์ถ”์„ธ๊ฐ€ ๋ˆ„๊ทธ๋Ÿฌ์งˆ ๊ฒƒ ๊ฐ™์ง€ ์•Š๊ณ ์š”.
11:04
So, I'm trying to embed more humanness from the start.
213
664400
3736
์ €๋Š” ์‹œ์ž‘ ๋‹จ๊ณ„์—์„œ๋ถ€ํ„ฐ ๋” ๋งŽ์€ ์ธ๊ฐ„์„ฑ์„ ๋ถ€์—ฌํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.
11:08
And I have a hunch that bringing art into an AI research process
214
668160
5136
๊ทธ๋ฆฌ๊ณ  ์˜ˆ์ˆ ์„ ํ†ตํ•œ AI ์—ฐ๊ตฌ๊ฐ€
์ด ๋ชฉํ‘œ๋ฅผ ์‹คํ˜„ํ•  ๋ฐฉ๋ฒ•์ด๋ผ๋Š” ์˜ˆ๊ฐ์ด ๋“ญ๋‹ˆ๋‹ค.
11:13
is a way to do just that.
215
673320
1896
11:15
Thank you.
216
675240
1216
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
11:16
(Applause)
217
676480
2280
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7