The era of blind faith in big data must end | Cathy O'Neil

241,832 views ・ 2017-09-07

TED


请双击下面的英文字幕来播放视频。

翻译人员: Lin Zhang 校对人员: Yolanda Zhang
00:12
Algorithms are everywhere.
0
12795
1596
算法无处不在。
00:15
They sort and separate the winners from the losers.
1
15931
3125
他们把成功者和失败者区分开来。
00:19
The winners get the job
2
19839
2264
成功者得到工作
00:22
or a good credit card offer.
3
22127
1743
或是一个很好的信用卡优惠计划。
00:23
The losers don't even get an interview
4
23894
2651
失败者甚至连面试机会都没有,
00:27
or they pay more for insurance.
5
27410
1777
或者要为保险付更多的钱。
00:30
We're being scored with secret formulas that we don't understand
6
30017
3549
我们被不理解的秘密公式打分,
00:34
that often don't have systems of appeal.
7
34495
3217
却并没有上诉的渠道。
00:39
That begs the question:
8
39060
1296
这引出了一个问题:
00:40
What if the algorithms are wrong?
9
40380
2913
如果算法是错误的怎么办?
00:44
To build an algorithm you need two things:
10
44920
2040
构建一个算法需要两个要素:
00:46
you need data, what happened in the past,
11
46984
1981
需要数据,如过去发生的事情,
00:48
and a definition of success,
12
48989
1561
和成功的定义,
00:50
the thing you're looking for and often hoping for.
13
50574
2457
你正在寻找的,通常希望得到的东西。
00:53
You train an algorithm by looking, figuring out.
14
53055
5037
你可以通过观察,理解来训练算法。
00:58
The algorithm figures out what is associated with success.
15
58116
3419
这种算法能找出与成功相关的因素。
01:01
What situation leads to success?
16
61559
2463
什么情况意味着成功?
01:04
Actually, everyone uses algorithms.
17
64701
1762
其实,每个人都使用算法。
01:06
They just don't formalize them in written code.
18
66487
2718
他们只是没有把它们写成书面代码。
01:09
Let me give you an example.
19
69229
1348
举个例子。
01:10
I use an algorithm every day to make a meal for my family.
20
70601
3316
我每天都用一种算法来 为我的家人做饭。
01:13
The data I use
21
73941
1476
我使用的数据
01:16
is the ingredients in my kitchen,
22
76214
1659
就是我厨房里的原料,
01:17
the time I have,
23
77897
1527
我拥有的时间,
01:19
the ambition I have,
24
79448
1233
我的热情,
01:20
and I curate that data.
25
80705
1709
然后我整理了这些数据。
01:22
I don't count those little packages of ramen noodles as food.
26
82438
4251
我不把那种小包拉面算作食物。
01:26
(Laughter)
27
86713
1869
(笑声)
01:28
My definition of success is:
28
88606
1845
我对成功的定义是:
01:30
a meal is successful if my kids eat vegetables.
29
90475
2659
如果我的孩子们肯吃蔬菜, 这顿饭就是成功的。
01:34
It's very different from if my youngest son were in charge.
30
94001
2854
这和我最小的儿子 负责做饭时的情况有所不同。
01:36
He'd say success is if he gets to eat lots of Nutella.
31
96879
2788
他说,如果他能吃很多 Nutella巧克力榛子酱就是成功。
01:40
But I get to choose success.
32
100999
2226
但我可以选择成功。
01:43
I am in charge. My opinion matters.
33
103249
2707
我负责。我的意见就很重要。
01:45
That's the first rule of algorithms.
34
105980
2675
这就是算法的第一个规则。
01:48
Algorithms are opinions embedded in code.
35
108679
3180
算法是嵌入在代码中的观点。
01:53
It's really different from what you think most people think of algorithms.
36
113382
3663
这和你认为大多数人对 算法的看法是不同的。
01:57
They think algorithms are objective and true and scientific.
37
117069
4504
他们认为算法是客观、真实和科学的。
02:02
That's a marketing trick.
38
122207
1699
那是一种营销技巧。
02:05
It's also a marketing trick
39
125089
2125
这也是一种用算法来
02:07
to intimidate you with algorithms,
40
127238
3154
恐吓你的营销手段,
02:10
to make you trust and fear algorithms
41
130416
3661
为了让你信任和恐惧算法
02:14
because you trust and fear mathematics.
42
134101
2018
因为你信任并害怕数学。
02:17
A lot can go wrong when we put blind faith in big data.
43
137387
4830
当我们盲目信任大数据时, 很多人都可能犯错。
02:23
This is Kiri Soares. She's a high school principal in Brooklyn.
44
143504
3373
这是凯丽·索尔斯。 她是布鲁克林的一名高中校长。
02:26
In 2011, she told me her teachers were being scored
45
146901
2586
2011年,她告诉我, 她学校的老师们正在被一个复杂
02:29
with a complex, secret algorithm
46
149511
2727
并且隐秘的算法进行打分,
02:32
called the "value-added model."
47
152262
1489
这个算法被称为“增值模型"。
02:34
I told her, "Well, figure out what the formula is, show it to me.
48
154325
3092
我告诉她,“先弄清楚这个 公式是什么,然后给我看看。
我来给你解释一下。”
02:37
I'm going to explain it to you."
49
157441
1541
她说,“我寻求过这个公式,
02:39
She said, "Well, I tried to get the formula,
50
159006
2141
但是教育部的负责人告诉我这是数学,
02:41
but my Department of Education contact told me it was math
51
161171
2772
02:43
and I wouldn't understand it."
52
163967
1546
给我我也看不懂。”
02:47
It gets worse.
53
167086
1338
更糟的还在后面。
02:48
The New York Post filed a Freedom of Information Act request,
54
168448
3530
纽约邮报提出了“信息自由法”的要求,
来得到所有老师的名字与他们的分数,
02:52
got all the teachers' names and all their scores
55
172002
2959
02:54
and they published them as an act of teacher-shaming.
56
174985
2782
并且他们以羞辱教师的方式 发表了这些数据。
02:58
When I tried to get the formulas, the source code, through the same means,
57
178904
3860
当我试图用同样的方法来获取公式, 源代码的时候,
03:02
I was told I couldn't.
58
182788
2149
我被告知我没有权力这么做。
03:04
I was denied.
59
184961
1236
我被拒绝了。
03:06
I later found out
60
186221
1174
后来我发现,
03:07
that nobody in New York City had access to that formula.
61
187419
2866
纽约市压根儿没有人能接触到这个公式。
03:10
No one understood it.
62
190309
1305
没有人能看懂。
03:13
Then someone really smart got involved, Gary Rubinstein.
63
193749
3224
然后,一个非常聪明的人参与了, 加里·鲁宾斯坦。
03:16
He found 665 teachers from that New York Post data
64
196997
3621
他从纽约邮报的数据中 找到了665名教师,
03:20
that actually had two scores.
65
200642
1866
实际上他们有两个分数。
03:22
That could happen if they were teaching
66
202532
1881
如果他们同时教七年级与八年级的数学,
03:24
seventh grade math and eighth grade math.
67
204437
2439
就会得到两个评分。
03:26
He decided to plot them.
68
206900
1538
他决定把这些数据绘成图表。
03:28
Each dot represents a teacher.
69
208462
1993
每个点代表一个教师。
03:30
(Laughter)
70
210924
2379
(笑声)
03:33
What is that?
71
213327
1521
那是什么?
03:34
(Laughter)
72
214872
1277
(笑声)
03:36
That should never have been used for individual assessment.
73
216173
3446
它永远不应该被用于个人评估。
03:39
It's almost a random number generator.
74
219643
1926
它几乎是一个随机数生成器。
03:41
(Applause)
75
221593
2946
(掌声)
03:44
But it was.
76
224563
1162
但它确实被使用了。
03:45
This is Sarah Wysocki.
77
225749
1176
这是莎拉·维索斯基。
03:46
She got fired, along with 205 other teachers,
78
226949
2175
她连同另外205名教师被解雇了,
03:49
from the Washington, DC school district,
79
229148
2662
都是来自华盛顿特区的学区,
03:51
even though she had great recommendations from her principal
80
231834
2909
尽管她的校长还有学生的
03:54
and the parents of her kids.
81
234767
1428
父母都非常推荐她。
03:57
I know what a lot of you guys are thinking,
82
237210
2032
我知道你们很多人在想什么,
尤其是这里的数据科学家, 人工智能专家。
03:59
especially the data scientists, the AI experts here.
83
239266
2487
04:01
You're thinking, "Well, I would never make an algorithm that inconsistent."
84
241777
4226
你在想,“我可永远不会做出 这样前后矛盾的算法。”
04:06
But algorithms can go wrong,
85
246673
1683
但是算法可能会出错,
04:08
even have deeply destructive effects with good intentions.
86
248380
4598
即使有良好的意图, 也会产生毁灭性的影响。
04:14
And whereas an airplane that's designed badly
87
254351
2379
每个人都能看到一架设计的
04:16
crashes to the earth and everyone sees it,
88
256754
2001
很糟糕的飞机会坠毁在地,
04:18
an algorithm designed badly
89
258779
1850
而一个设计糟糕的算法
04:22
can go on for a long time, silently wreaking havoc.
90
262065
3865
可以持续很长一段时间, 并无声地造成破坏。
04:27
This is Roger Ailes.
91
267568
1570
这是罗杰·艾尔斯。
04:29
(Laughter)
92
269162
2000
(笑声)
04:32
He founded Fox News in 1996.
93
272344
2388
他在1996年创办了福克斯新闻。
04:35
More than 20 women complained about sexual harassment.
94
275256
2581
公司有超过20多名女性曾抱怨过性骚扰。
04:37
They said they weren't allowed to succeed at Fox News.
95
277861
3235
她们说她们不被允许在 福克斯新闻有所成就。
04:41
He was ousted last year, but we've seen recently
96
281120
2520
他去年被赶下台,但我们最近看到
04:43
that the problems have persisted.
97
283664
2670
问题依然存在。
04:47
That begs the question:
98
287474
1400
这引出了一个问题:
04:48
What should Fox News do to turn over another leaf?
99
288898
2884
福克斯新闻应该做些什么改变?
04:53
Well, what if they replaced their hiring process
100
293065
3041
如果他们用机器学习算法
04:56
with a machine-learning algorithm?
101
296130
1654
取代传统的招聘流程呢?
04:57
That sounds good, right?
102
297808
1595
听起来不错,对吧?
04:59
Think about it.
103
299427
1300
想想看。
05:00
The data, what would the data be?
104
300751
2105
数据,这些数据到底是什么?
05:02
A reasonable choice would be the last 21 years of applications to Fox News.
105
302880
4947
福克斯新闻在过去21年的申请函 是一个合理的选择。
05:07
Reasonable.
106
307851
1502
很合理。
05:09
What about the definition of success?
107
309377
1938
那么成功的定义呢?
05:11
Reasonable choice would be,
108
311741
1324
合理的选择将是,
05:13
well, who is successful at Fox News?
109
313089
1778
谁在福克斯新闻取得了成功?
05:14
I guess someone who, say, stayed there for four years
110
314891
3580
我猜的是,比如在那里呆了四年,
05:18
and was promoted at least once.
111
318495
1654
至少得到过一次晋升的人。
05:20
Sounds reasonable.
112
320636
1561
听起来很合理。
05:22
And then the algorithm would be trained.
113
322221
2354
然后这个算法将会被训练。
05:24
It would be trained to look for people to learn what led to success,
114
324599
3877
它会被训练去向人们 学习是什么造就了成功,
05:29
what kind of applications historically led to success
115
329039
4318
什么样的申请函在过去拥有
05:33
by that definition.
116
333381
1294
这种成功的定义。
05:36
Now think about what would happen
117
336020
1775
现在想想如果我们把它
05:37
if we applied that to a current pool of applicants.
118
337819
2555
应用到目前的申请者中会发生什么。
05:40
It would filter out women
119
340939
1629
它会过滤掉女性,
05:43
because they do not look like people who were successful in the past.
120
343483
3930
因为她们看起来不像 在过去取得成功的人。
05:51
Algorithms don't make things fair
121
351572
2537
算法不会让事情变得公平,
如果你只是轻率地, 盲目地应用算法。
05:54
if you just blithely, blindly apply algorithms.
122
354133
2694
05:56
They don't make things fair.
123
356851
1482
它们不会让事情变得公平。
05:58
They repeat our past practices,
124
358357
2128
它们只是重复我们过去的做法,
06:00
our patterns.
125
360509
1183
我们的规律。
06:01
They automate the status quo.
126
361716
1939
它们使现状自动化。
06:04
That would be great if we had a perfect world,
127
364538
2389
如果我们有一个 完美的世界那就太好了,
06:07
but we don't.
128
367725
1312
但是我们没有。
我还要补充一点, 大多数公司都没有令人尴尬的诉讼,
06:09
And I'll add that most companies don't have embarrassing lawsuits,
129
369061
4102
06:14
but the data scientists in those companies
130
374266
2588
但是这些公司的数据科学家
06:16
are told to follow the data,
131
376878
2189
被告知要跟随数据,
06:19
to focus on accuracy.
132
379091
2143
关注它的准确性。
06:22
Think about what that means.
133
382093
1381
想想这意味着什么。
06:23
Because we all have bias, it means they could be codifying sexism
134
383498
4027
因为我们都有偏见, 这意味着他们可以编纂性别歧视
06:27
or any other kind of bigotry.
135
387549
1836
或者任何其他的偏见。
06:31
Thought experiment,
136
391308
1421
思维实验,
06:32
because I like them:
137
392753
1509
因为我喜欢它们:
06:35
an entirely segregated society --
138
395394
2975
一个完全隔离的社会——
06:40
racially segregated, all towns, all neighborhoods
139
400067
3328
种族隔离存在于所有的城镇, 所有的社区,
06:43
and where we send the police only to the minority neighborhoods
140
403419
3037
我们把警察只送到少数族裔的社区
06:46
to look for crime.
141
406480
1193
去寻找犯罪。
06:48
The arrest data would be very biased.
142
408271
2219
逮捕数据将会是十分有偏见的。
06:51
What if, on top of that, we found the data scientists
143
411671
2575
除此之外,我们还会寻找数据科学家
06:54
and paid the data scientists to predict where the next crime would occur?
144
414270
4161
并付钱给他们来预测 下一起犯罪会发生在哪里?
06:59
Minority neighborhood.
145
419095
1487
少数族裔的社区。
07:01
Or to predict who the next criminal would be?
146
421105
3125
或者预测下一个罪犯会是谁?
07:04
A minority.
147
424708
1395
少数族裔。
07:07
The data scientists would brag about how great and how accurate
148
427769
3541
这些数据科学家们 会吹嘘他们的模型有多好,
07:11
their model would be,
149
431334
1297
多精确,
07:12
and they'd be right.
150
432655
1299
当然他们是对的。
07:15
Now, reality isn't that drastic, but we do have severe segregations
151
435771
4615
不过现实并没有那么极端, 但我们确实在许多城市里
07:20
in many cities and towns,
152
440410
1287
有严重的种族隔离,
07:21
and we have plenty of evidence
153
441721
1893
并且我们有大量的证据表明
07:23
of biased policing and justice system data.
154
443638
2688
警察和司法系统的数据存有偏见。
07:27
And we actually do predict hotspots,
155
447452
2815
而且我们确实预测过热点,
07:30
places where crimes will occur.
156
450291
1530
那些犯罪会发生的地方。
07:32
And we do predict, in fact, the individual criminality,
157
452221
3866
我们确实会预测个人犯罪,
07:36
the criminality of individuals.
158
456111
1770
个人的犯罪行为。
07:38
The news organization ProPublica recently looked into
159
458792
3963
新闻机构“人民 (ProPublica)”最近调查了,
07:42
one of those "recidivism risk" algorithms,
160
462779
2024
其中一个称为
07:44
as they're called,
161
464827
1163
“累犯风险”的算法。
并在佛罗里达州的 宣判期间被法官采用。
07:46
being used in Florida during sentencing by judges.
162
466014
3194
07:50
Bernard, on the left, the black man, was scored a 10 out of 10.
163
470231
3585
伯纳德,左边的那个黑人, 10分中得了满分。
07:54
Dylan, on the right, 3 out of 10.
164
474999
2007
在右边的迪伦, 10分中得了3分。
10分代表高风险。 3分代表低风险。
07:57
10 out of 10, high risk. 3 out of 10, low risk.
165
477030
2501
08:00
They were both brought in for drug possession.
166
480418
2385
他们都因为持有毒品 而被带进了监狱。
08:02
They both had records,
167
482827
1154
他们都有犯罪记录,
08:04
but Dylan had a felony
168
484005
2806
但是迪伦有一个重罪
08:06
but Bernard didn't.
169
486835
1176
但伯纳德没有。
08:09
This matters, because the higher score you are,
170
489638
3066
这很重要,因为你的分数越高,
08:12
the more likely you're being given a longer sentence.
171
492728
3473
你被判长期服刑的可能性就越大。
08:18
What's going on?
172
498114
1294
到底发生了什么?
08:20
Data laundering.
173
500346
1332
数据洗钱。
08:22
It's a process by which technologists hide ugly truths
174
502750
4427
这是一个技术人员 把丑陋真相隐藏在
08:27
inside black box algorithms
175
507201
1821
算法黑盒子中的过程,
并称之为客观;
08:29
and call them objective;
176
509046
1290
08:31
call them meritocratic.
177
511140
1568
称之为精英模式。
08:34
When they're secret, important and destructive,
178
514938
2385
当它们是秘密的, 重要的并具有破坏性的,
08:37
I've coined a term for these algorithms:
179
517347
2487
我为这些算法创造了一个术语:
08:39
"weapons of math destruction."
180
519858
1999
“杀伤性数学武器”。
08:41
(Laughter)
181
521881
1564
(笑声)
08:43
(Applause)
182
523469
3054
(鼓掌)
08:46
They're everywhere, and it's not a mistake.
183
526547
2354
它们无处不在,也不是一个错误。
08:49
These are private companies building private algorithms
184
529515
3723
这些是私有公司为了私人目的
08:53
for private ends.
185
533262
1392
建立的私有算法。
08:55
Even the ones I talked about for teachers and the public police,
186
535034
3214
甚至是我谈到的老师 与公共警察使用的(算法),
08:58
those were built by private companies
187
538272
1869
也都是由私人公司所打造的,
09:00
and sold to the government institutions.
188
540165
2231
然后卖给政府机构。
09:02
They call it their "secret sauce" --
189
542420
1873
他们称之为“秘密配方(来源)”——
09:04
that's why they can't tell us about it.
190
544317
2128
这就是他们不能告诉我们的原因。
09:06
It's also private power.
191
546469
2220
这也是私人权力。
09:09
They are profiting for wielding the authority of the inscrutable.
192
549744
4695
他们利用神秘莫测的权威来获利。
09:16
Now you might think, since all this stuff is private
193
556934
2934
你可能会想,既然所有这些都是私有的
09:19
and there's competition,
194
559892
1158
而且会有竞争,
也许自由市场会解决这个问题。
09:21
maybe the free market will solve this problem.
195
561074
2306
09:23
It won't.
196
563404
1249
然而并不会。
09:24
There's a lot of money to be made in unfairness.
197
564677
3120
在不公平的情况下, 有很多钱可以赚。
09:28
Also, we're not economic rational agents.
198
568947
3369
而且,我们不是经济理性的代理人。
09:32
We all are biased.
199
572851
1292
我们都是有偏见的。
09:34
We're all racist and bigoted in ways that we wish we weren't,
200
574780
3377
我们都是固执的种族主义者, 虽然我们希望我们不是,
09:38
in ways that we don't even know.
201
578181
2019
虽然我们甚至没有意识到。
09:41
We know this, though, in aggregate,
202
581172
3081
总的来说,我们知道这一点,
09:44
because sociologists have consistently demonstrated this
203
584277
3220
因为社会学家会一直通过这些实验
09:47
with these experiments they build,
204
587521
1665
来证明这一点,
他们发送了大量的工作申请,
09:49
where they send a bunch of applications to jobs out,
205
589210
2568
09:51
equally qualified but some have white-sounding names
206
591802
2501
都是有同样资格的候选人, 有些用白人人名,
09:54
and some have black-sounding names,
207
594327
1706
有些用黑人人名,
09:56
and it's always disappointing, the results -- always.
208
596057
2694
然而结果总是令人失望的。
09:59
So we are the ones that are biased,
209
599330
1771
所以我们是有偏见的,
我们还通过选择收集到的数据
10:01
and we are injecting those biases into the algorithms
210
601125
3429
10:04
by choosing what data to collect,
211
604578
1812
来把偏见注入到算法中,
10:06
like I chose not to think about ramen noodles --
212
606414
2743
就像我不选择去想拉面一样——
10:09
I decided it was irrelevant.
213
609181
1625
我自认为这无关紧要。
10:10
But by trusting the data that's actually picking up on past practices
214
610830
5684
但是,通过信任那些 在过去的实践中获得的数据
10:16
and by choosing the definition of success,
215
616538
2014
以及通过选择成功的定义,
10:18
how can we expect the algorithms to emerge unscathed?
216
618576
3983
我们怎么能指望算法 会是毫无瑕疵的呢?
10:22
We can't. We have to check them.
217
622583
2356
我们不能。我们必须检查。
10:25
We have to check them for fairness.
218
625985
1709
我们必须检查它们是否公平。
10:27
The good news is, we can check them for fairness.
219
627718
2711
好消息是,我们可以做到这一点。
10:30
Algorithms can be interrogated,
220
630453
3352
算法是可以被审问的,
10:33
and they will tell us the truth every time.
221
633829
2034
而且每次都能告诉我们真相。
10:35
And we can fix them. We can make them better.
222
635887
2493
然后我们可以修复它们。 我们可以让他们变得更好。
10:38
I call this an algorithmic audit,
223
638404
2375
我把它叫做算法审计,
10:40
and I'll walk you through it.
224
640803
1679
接下来我会为你们解释。
10:42
First, data integrity check.
225
642506
2196
首先,数据的完整性检查。
10:45
For the recidivism risk algorithm I talked about,
226
645952
2657
对于刚才提到过的累犯风险算法,
10:49
a data integrity check would mean we'd have to come to terms with the fact
227
649402
3573
数据的完整性检查将意味着 我们不得不接受这个事实,
10:52
that in the US, whites and blacks smoke pot at the same rate
228
652999
3526
在美国,白人和黑人 吸毒的比例是一样的,
10:56
but blacks are far more likely to be arrested --
229
656549
2485
但是黑人更有可能被逮捕——
10:59
four or five times more likely, depending on the area.
230
659058
3184
取决于区域,可能性是白人的4到5倍。
11:03
What is that bias looking like in other crime categories,
231
663137
2826
这种偏见在其他犯罪类别中 是什么样子的,
11:05
and how do we account for it?
232
665987
1451
我们又该如何解释呢?
11:07
Second, we should think about the definition of success,
233
667982
3039
其次,我们应该考虑成功的定义,
11:11
audit that.
234
671045
1381
审计它。
11:12
Remember -- with the hiring algorithm? We talked about it.
235
672450
2752
还记得我们谈论的雇佣算法吗?
11:15
Someone who stays for four years and is promoted once?
236
675226
3165
那个呆了四年的人, 然后被提升了一次?
11:18
Well, that is a successful employee,
237
678415
1769
这的确是一个成功的员工,
但这也是一名受到公司文化支持的员工。
11:20
but it's also an employee that is supported by their culture.
238
680208
3079
11:23
That said, also it can be quite biased.
239
683909
1926
也就是说, 这可能会有很大的偏差。
11:25
We need to separate those two things.
240
685859
2065
我们需要把这两件事分开。
11:27
We should look to the blind orchestra audition
241
687948
2426
我们应该去看一下乐团盲选试奏,
11:30
as an example.
242
690398
1196
举个例子。
11:31
That's where the people auditioning are behind a sheet.
243
691618
2756
这就是人们在幕后选拔乐手的地方。
11:34
What I want to think about there
244
694766
1931
我想要考虑的是
11:36
is the people who are listening have decided what's important
245
696721
3417
倾听的人已经 决定了什么是重要的,
11:40
and they've decided what's not important,
246
700162
2029
同时他们已经决定了 什么是不重要的,
他们也不会因此而分心。
11:42
and they're not getting distracted by that.
247
702215
2059
11:44
When the blind orchestra auditions started,
248
704781
2749
当乐团盲选开始时,
11:47
the number of women in orchestras went up by a factor of five.
249
707554
3444
在管弦乐队中, 女性的数量上升了5倍。
11:52
Next, we have to consider accuracy.
250
712073
2015
其次,我们必须考虑准确性。
11:55
This is where the value-added model for teachers would fail immediately.
251
715053
3734
这就是针对教师的增值模型 立刻失效的地方。
11:59
No algorithm is perfect, of course,
252
719398
2162
当然,没有一个算法是完美的,
12:02
so we have to consider the errors of every algorithm.
253
722440
3605
所以我们要考虑每一个算法的误差。
12:06
How often are there errors, and for whom does this model fail?
254
726656
4359
出现错误的频率有多高, 让这个模型失败的对象是谁?
12:11
What is the cost of that failure?
255
731670
1718
失败的代价是什么?
12:14
And finally, we have to consider
256
734254
2207
最后,我们必须考虑
12:17
the long-term effects of algorithms,
257
737793
2186
这个算法的长期效果,
12:20
the feedback loops that are engendering.
258
740686
2207
与正在产生的反馈循环。
12:23
That sounds abstract,
259
743406
1236
这听起来很抽象,
12:24
but imagine if Facebook engineers had considered that
260
744666
2664
但是想象一下 如果脸书的工程师们之前考虑过,
12:28
before they decided to show us only things that our friends had posted.
261
748090
4855
并决定只向我们展示 我们朋友所发布的东西。
12:33
I have two more messages, one for the data scientists out there.
262
753581
3234
我还有两条建议, 一条是给数据科学家的。
12:37
Data scientists: we should not be the arbiters of truth.
263
757270
3409
数据科学家们:我们不应该 成为真相的仲裁者。
12:41
We should be translators of ethical discussions that happen
264
761340
3783
我们应该成为大社会中 所发生的道德讨论的
12:45
in larger society.
265
765147
1294
翻译者。
12:47
(Applause)
266
767399
2133
(掌声)
12:49
And the rest of you,
267
769556
1556
然后剩下的人,
12:51
the non-data scientists:
268
771831
1396
非数据科学家们:
12:53
this is not a math test.
269
773251
1498
这不是一个数学测试。
12:55
This is a political fight.
270
775452
1348
这是一场政治斗争。
12:58
We need to demand accountability for our algorithmic overlords.
271
778407
3907
我们应该要求我们的 算法霸主承担问责。
13:03
(Applause)
272
783938
1499
(掌声)
13:05
The era of blind faith in big data must end.
273
785461
4225
盲目信仰大数据的时代必须结束。
13:09
Thank you very much.
274
789710
1167
非常感谢。
13:10
(Applause)
275
790901
5303
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7