The era of blind faith in big data must end | Cathy O'Neil

251,236 views ・ 2017-09-07

TED


请双击下面的英文字幕来播放视频。

翻译人员: Lin Zhang 校对人员: Yolanda Zhang
00:12
Algorithms are everywhere.
0
12795
1596
算法无处不在。
00:15
They sort and separate the winners from the losers.
1
15931
3125
他们把成功者和失败者区分开来。
00:19
The winners get the job
2
19839
2264
成功者得到工作
00:22
or a good credit card offer.
3
22127
1743
或是一个很好的信用卡优惠计划。
00:23
The losers don't even get an interview
4
23894
2651
失败者甚至连面试机会都没有,
00:27
or they pay more for insurance.
5
27410
1777
或者要为保险付更多的钱。
00:30
We're being scored with secret formulas that we don't understand
6
30017
3549
我们被不理解的秘密公式打分,
00:34
that often don't have systems of appeal.
7
34495
3217
却并没有上诉的渠道。
00:39
That begs the question:
8
39060
1296
这引出了一个问题:
00:40
What if the algorithms are wrong?
9
40380
2913
如果算法是错误的怎么办?
00:44
To build an algorithm you need two things:
10
44920
2040
构建一个算法需要两个要素:
00:46
you need data, what happened in the past,
11
46984
1981
需要数据,如过去发生的事情,
00:48
and a definition of success,
12
48989
1561
和成功的定义,
00:50
the thing you're looking for and often hoping for.
13
50574
2457
你正在寻找的,通常希望得到的东西。
00:53
You train an algorithm by looking, figuring out.
14
53055
5037
你可以通过观察,理解来训练算法。
00:58
The algorithm figures out what is associated with success.
15
58116
3419
这种算法能找出与成功相关的因素。
01:01
What situation leads to success?
16
61559
2463
什么情况意味着成功?
01:04
Actually, everyone uses algorithms.
17
64701
1762
其实,每个人都使用算法。
01:06
They just don't formalize them in written code.
18
66487
2718
他们只是没有把它们写成书面代码。
01:09
Let me give you an example.
19
69229
1348
举个例子。
01:10
I use an algorithm every day to make a meal for my family.
20
70601
3316
我每天都用一种算法来 为我的家人做饭。
01:13
The data I use
21
73941
1476
我使用的数据
01:16
is the ingredients in my kitchen,
22
76214
1659
就是我厨房里的原料,
01:17
the time I have,
23
77897
1527
我拥有的时间,
01:19
the ambition I have,
24
79448
1233
我的热情,
01:20
and I curate that data.
25
80705
1709
然后我整理了这些数据。
01:22
I don't count those little packages of ramen noodles as food.
26
82438
4251
我不把那种小包拉面算作食物。
01:26
(Laughter)
27
86713
1869
(笑声)
01:28
My definition of success is:
28
88606
1845
我对成功的定义是:
01:30
a meal is successful if my kids eat vegetables.
29
90475
2659
如果我的孩子们肯吃蔬菜, 这顿饭就是成功的。
01:34
It's very different from if my youngest son were in charge.
30
94001
2854
这和我最小的儿子 负责做饭时的情况有所不同。
01:36
He'd say success is if he gets to eat lots of Nutella.
31
96879
2788
他说,如果他能吃很多 Nutella巧克力榛子酱就是成功。
01:40
But I get to choose success.
32
100999
2226
但我可以选择成功。
01:43
I am in charge. My opinion matters.
33
103249
2707
我负责。我的意见就很重要。
01:45
That's the first rule of algorithms.
34
105980
2675
这就是算法的第一个规则。
01:48
Algorithms are opinions embedded in code.
35
108679
3180
算法是嵌入在代码中的观点。
01:53
It's really different from what you think most people think of algorithms.
36
113382
3663
这和你认为大多数人对 算法的看法是不同的。
01:57
They think algorithms are objective and true and scientific.
37
117069
4504
他们认为算法是客观、真实和科学的。
02:02
That's a marketing trick.
38
122207
1699
那是一种营销技巧。
02:05
It's also a marketing trick
39
125089
2125
这也是一种用算法来
02:07
to intimidate you with algorithms,
40
127238
3154
恐吓你的营销手段,
02:10
to make you trust and fear algorithms
41
130416
3661
为了让你信任和恐惧算法
02:14
because you trust and fear mathematics.
42
134101
2018
因为你信任并害怕数学。
02:17
A lot can go wrong when we put blind faith in big data.
43
137387
4830
当我们盲目信任大数据时, 很多人都可能犯错。
02:23
This is Kiri Soares. She's a high school principal in Brooklyn.
44
143504
3373
这是凯丽·索尔斯。 她是布鲁克林的一名高中校长。
02:26
In 2011, she told me her teachers were being scored
45
146901
2586
2011年,她告诉我, 她学校的老师们正在被一个复杂
02:29
with a complex, secret algorithm
46
149511
2727
并且隐秘的算法进行打分,
02:32
called the "value-added model."
47
152262
1489
这个算法被称为“增值模型"。
02:34
I told her, "Well, figure out what the formula is, show it to me.
48
154325
3092
我告诉她,“先弄清楚这个 公式是什么,然后给我看看。
我来给你解释一下。”
02:37
I'm going to explain it to you."
49
157441
1541
她说,“我寻求过这个公式,
02:39
She said, "Well, I tried to get the formula,
50
159006
2141
但是教育部的负责人告诉我这是数学,
02:41
but my Department of Education contact told me it was math
51
161171
2772
02:43
and I wouldn't understand it."
52
163967
1546
给我我也看不懂。”
02:47
It gets worse.
53
167086
1338
更糟的还在后面。
02:48
The New York Post filed a Freedom of Information Act request,
54
168448
3530
纽约邮报提出了“信息自由法”的要求,
来得到所有老师的名字与他们的分数,
02:52
got all the teachers' names and all their scores
55
172002
2959
02:54
and they published them as an act of teacher-shaming.
56
174985
2782
并且他们以羞辱教师的方式 发表了这些数据。
02:58
When I tried to get the formulas, the source code, through the same means,
57
178904
3860
当我试图用同样的方法来获取公式, 源代码的时候,
03:02
I was told I couldn't.
58
182788
2149
我被告知我没有权力这么做。
03:04
I was denied.
59
184961
1236
我被拒绝了。
03:06
I later found out
60
186221
1174
后来我发现,
03:07
that nobody in New York City had access to that formula.
61
187419
2866
纽约市压根儿没有人能接触到这个公式。
03:10
No one understood it.
62
190309
1305
没有人能看懂。
03:13
Then someone really smart got involved, Gary Rubinstein.
63
193749
3224
然后,一个非常聪明的人参与了, 加里·鲁宾斯坦。
03:16
He found 665 teachers from that New York Post data
64
196997
3621
他从纽约邮报的数据中 找到了665名教师,
03:20
that actually had two scores.
65
200642
1866
实际上他们有两个分数。
03:22
That could happen if they were teaching
66
202532
1881
如果他们同时教七年级与八年级的数学,
03:24
seventh grade math and eighth grade math.
67
204437
2439
就会得到两个评分。
03:26
He decided to plot them.
68
206900
1538
他决定把这些数据绘成图表。
03:28
Each dot represents a teacher.
69
208462
1993
每个点代表一个教师。
03:30
(Laughter)
70
210924
2379
(笑声)
03:33
What is that?
71
213327
1521
那是什么?
03:34
(Laughter)
72
214872
1277
(笑声)
03:36
That should never have been used for individual assessment.
73
216173
3446
它永远不应该被用于个人评估。
03:39
It's almost a random number generator.
74
219643
1926
它几乎是一个随机数生成器。
03:41
(Applause)
75
221593
2946
(掌声)
03:44
But it was.
76
224563
1162
但它确实被使用了。
03:45
This is Sarah Wysocki.
77
225749
1176
这是莎拉·维索斯基。
03:46
She got fired, along with 205 other teachers,
78
226949
2175
她连同另外205名教师被解雇了,
03:49
from the Washington, DC school district,
79
229148
2662
都是来自华盛顿特区的学区,
03:51
even though she had great recommendations from her principal
80
231834
2909
尽管她的校长还有学生的
03:54
and the parents of her kids.
81
234767
1428
父母都非常推荐她。
03:57
I know what a lot of you guys are thinking,
82
237210
2032
我知道你们很多人在想什么,
尤其是这里的数据科学家, 人工智能专家。
03:59
especially the data scientists, the AI experts here.
83
239266
2487
04:01
You're thinking, "Well, I would never make an algorithm that inconsistent."
84
241777
4226
你在想,“我可永远不会做出 这样前后矛盾的算法。”
04:06
But algorithms can go wrong,
85
246673
1683
但是算法可能会出错,
04:08
even have deeply destructive effects with good intentions.
86
248380
4598
即使有良好的意图, 也会产生毁灭性的影响。
04:14
And whereas an airplane that's designed badly
87
254351
2379
每个人都能看到一架设计的
04:16
crashes to the earth and everyone sees it,
88
256754
2001
很糟糕的飞机会坠毁在地,
04:18
an algorithm designed badly
89
258779
1850
而一个设计糟糕的算法
04:22
can go on for a long time, silently wreaking havoc.
90
262065
3865
可以持续很长一段时间, 并无声地造成破坏。
04:27
This is Roger Ailes.
91
267568
1570
这是罗杰·艾尔斯。
04:29
(Laughter)
92
269162
2000
(笑声)
04:32
He founded Fox News in 1996.
93
272344
2388
他在1996年创办了福克斯新闻。
04:35
More than 20 women complained about sexual harassment.
94
275256
2581
公司有超过20多名女性曾抱怨过性骚扰。
04:37
They said they weren't allowed to succeed at Fox News.
95
277861
3235
她们说她们不被允许在 福克斯新闻有所成就。
04:41
He was ousted last year, but we've seen recently
96
281120
2520
他去年被赶下台,但我们最近看到
04:43
that the problems have persisted.
97
283664
2670
问题依然存在。
04:47
That begs the question:
98
287474
1400
这引出了一个问题:
04:48
What should Fox News do to turn over another leaf?
99
288898
2884
福克斯新闻应该做些什么改变?
04:53
Well, what if they replaced their hiring process
100
293065
3041
如果他们用机器学习算法
04:56
with a machine-learning algorithm?
101
296130
1654
取代传统的招聘流程呢?
04:57
That sounds good, right?
102
297808
1595
听起来不错,对吧?
04:59
Think about it.
103
299427
1300
想想看。
05:00
The data, what would the data be?
104
300751
2105
数据,这些数据到底是什么?
05:02
A reasonable choice would be the last 21 years of applications to Fox News.
105
302880
4947
福克斯新闻在过去21年的申请函 是一个合理的选择。
05:07
Reasonable.
106
307851
1502
很合理。
05:09
What about the definition of success?
107
309377
1938
那么成功的定义呢?
05:11
Reasonable choice would be,
108
311741
1324
合理的选择将是,
05:13
well, who is successful at Fox News?
109
313089
1778
谁在福克斯新闻取得了成功?
05:14
I guess someone who, say, stayed there for four years
110
314891
3580
我猜的是,比如在那里呆了四年,
05:18
and was promoted at least once.
111
318495
1654
至少得到过一次晋升的人。
05:20
Sounds reasonable.
112
320636
1561
听起来很合理。
05:22
And then the algorithm would be trained.
113
322221
2354
然后这个算法将会被训练。
05:24
It would be trained to look for people to learn what led to success,
114
324599
3877
它会被训练去向人们 学习是什么造就了成功,
05:29
what kind of applications historically led to success
115
329039
4318
什么样的申请函在过去拥有
05:33
by that definition.
116
333381
1294
这种成功的定义。
05:36
Now think about what would happen
117
336020
1775
现在想想如果我们把它
05:37
if we applied that to a current pool of applicants.
118
337819
2555
应用到目前的申请者中会发生什么。
05:40
It would filter out women
119
340939
1629
它会过滤掉女性,
05:43
because they do not look like people who were successful in the past.
120
343483
3930
因为她们看起来不像 在过去取得成功的人。
05:51
Algorithms don't make things fair
121
351572
2537
算法不会让事情变得公平,
如果你只是轻率地, 盲目地应用算法。
05:54
if you just blithely, blindly apply algorithms.
122
354133
2694
05:56
They don't make things fair.
123
356851
1482
它们不会让事情变得公平。
05:58
They repeat our past practices,
124
358357
2128
它们只是重复我们过去的做法,
06:00
our patterns.
125
360509
1183
我们的规律。
06:01
They automate the status quo.
126
361716
1939
它们使现状自动化。
06:04
That would be great if we had a perfect world,
127
364538
2389
如果我们有一个 完美的世界那就太好了,
06:07
but we don't.
128
367725
1312
但是我们没有。
我还要补充一点, 大多数公司都没有令人尴尬的诉讼,
06:09
And I'll add that most companies don't have embarrassing lawsuits,
129
369061
4102
06:14
but the data scientists in those companies
130
374266
2588
但是这些公司的数据科学家
06:16
are told to follow the data,
131
376878
2189
被告知要跟随数据,
06:19
to focus on accuracy.
132
379091
2143
关注它的准确性。
06:22
Think about what that means.
133
382093
1381
想想这意味着什么。
06:23
Because we all have bias, it means they could be codifying sexism
134
383498
4027
因为我们都有偏见, 这意味着他们可以编纂性别歧视
06:27
or any other kind of bigotry.
135
387549
1836
或者任何其他的偏见。
06:31
Thought experiment,
136
391308
1421
思维实验,
06:32
because I like them:
137
392753
1509
因为我喜欢它们:
06:35
an entirely segregated society --
138
395394
2975
一个完全隔离的社会——
06:40
racially segregated, all towns, all neighborhoods
139
400067
3328
种族隔离存在于所有的城镇, 所有的社区,
06:43
and where we send the police only to the minority neighborhoods
140
403419
3037
我们把警察只送到少数族裔的社区
06:46
to look for crime.
141
406480
1193
去寻找犯罪。
06:48
The arrest data would be very biased.
142
408271
2219
逮捕数据将会是十分有偏见的。
06:51
What if, on top of that, we found the data scientists
143
411671
2575
除此之外,我们还会寻找数据科学家
06:54
and paid the data scientists to predict where the next crime would occur?
144
414270
4161
并付钱给他们来预测 下一起犯罪会发生在哪里?
06:59
Minority neighborhood.
145
419095
1487
少数族裔的社区。
07:01
Or to predict who the next criminal would be?
146
421105
3125
或者预测下一个罪犯会是谁?
07:04
A minority.
147
424708
1395
少数族裔。
07:07
The data scientists would brag about how great and how accurate
148
427769
3541
这些数据科学家们 会吹嘘他们的模型有多好,
07:11
their model would be,
149
431334
1297
多精确,
07:12
and they'd be right.
150
432655
1299
当然他们是对的。
07:15
Now, reality isn't that drastic, but we do have severe segregations
151
435771
4615
不过现实并没有那么极端, 但我们确实在许多城市里
07:20
in many cities and towns,
152
440410
1287
有严重的种族隔离,
07:21
and we have plenty of evidence
153
441721
1893
并且我们有大量的证据表明
07:23
of biased policing and justice system data.
154
443638
2688
警察和司法系统的数据存有偏见。
07:27
And we actually do predict hotspots,
155
447452
2815
而且我们确实预测过热点,
07:30
places where crimes will occur.
156
450291
1530
那些犯罪会发生的地方。
07:32
And we do predict, in fact, the individual criminality,
157
452221
3866
我们确实会预测个人犯罪,
07:36
the criminality of individuals.
158
456111
1770
个人的犯罪行为。
07:38
The news organization ProPublica recently looked into
159
458792
3963
新闻机构“人民 (ProPublica)”最近调查了,
07:42
one of those "recidivism risk" algorithms,
160
462779
2024
其中一个称为
07:44
as they're called,
161
464827
1163
“累犯风险”的算法。
并在佛罗里达州的 宣判期间被法官采用。
07:46
being used in Florida during sentencing by judges.
162
466014
3194
07:50
Bernard, on the left, the black man, was scored a 10 out of 10.
163
470231
3585
伯纳德,左边的那个黑人, 10分中得了满分。
07:54
Dylan, on the right, 3 out of 10.
164
474999
2007
在右边的迪伦, 10分中得了3分。
10分代表高风险。 3分代表低风险。
07:57
10 out of 10, high risk. 3 out of 10, low risk.
165
477030
2501
08:00
They were both brought in for drug possession.
166
480418
2385
他们都因为持有毒品 而被带进了监狱。
08:02
They both had records,
167
482827
1154
他们都有犯罪记录,
08:04
but Dylan had a felony
168
484005
2806
但是迪伦有一个重罪
08:06
but Bernard didn't.
169
486835
1176
但伯纳德没有。
08:09
This matters, because the higher score you are,
170
489638
3066
这很重要,因为你的分数越高,
08:12
the more likely you're being given a longer sentence.
171
492728
3473
你被判长期服刑的可能性就越大。
08:18
What's going on?
172
498114
1294
到底发生了什么?
08:20
Data laundering.
173
500346
1332
数据洗钱。
08:22
It's a process by which technologists hide ugly truths
174
502750
4427
这是一个技术人员 把丑陋真相隐藏在
08:27
inside black box algorithms
175
507201
1821
算法黑盒子中的过程,
并称之为客观;
08:29
and call them objective;
176
509046
1290
08:31
call them meritocratic.
177
511140
1568
称之为精英模式。
08:34
When they're secret, important and destructive,
178
514938
2385
当它们是秘密的, 重要的并具有破坏性的,
08:37
I've coined a term for these algorithms:
179
517347
2487
我为这些算法创造了一个术语:
08:39
"weapons of math destruction."
180
519858
1999
“杀伤性数学武器”。
08:41
(Laughter)
181
521881
1564
(笑声)
08:43
(Applause)
182
523469
3054
(鼓掌)
08:46
They're everywhere, and it's not a mistake.
183
526547
2354
它们无处不在,也不是一个错误。
08:49
These are private companies building private algorithms
184
529515
3723
这些是私有公司为了私人目的
08:53
for private ends.
185
533262
1392
建立的私有算法。
08:55
Even the ones I talked about for teachers and the public police,
186
535034
3214
甚至是我谈到的老师 与公共警察使用的(算法),
08:58
those were built by private companies
187
538272
1869
也都是由私人公司所打造的,
09:00
and sold to the government institutions.
188
540165
2231
然后卖给政府机构。
09:02
They call it their "secret sauce" --
189
542420
1873
他们称之为“秘密配方(来源)”——
09:04
that's why they can't tell us about it.
190
544317
2128
这就是他们不能告诉我们的原因。
09:06
It's also private power.
191
546469
2220
这也是私人权力。
09:09
They are profiting for wielding the authority of the inscrutable.
192
549744
4695
他们利用神秘莫测的权威来获利。
09:16
Now you might think, since all this stuff is private
193
556934
2934
你可能会想,既然所有这些都是私有的
09:19
and there's competition,
194
559892
1158
而且会有竞争,
也许自由市场会解决这个问题。
09:21
maybe the free market will solve this problem.
195
561074
2306
09:23
It won't.
196
563404
1249
然而并不会。
09:24
There's a lot of money to be made in unfairness.
197
564677
3120
在不公平的情况下, 有很多钱可以赚。
09:28
Also, we're not economic rational agents.
198
568947
3369
而且,我们不是经济理性的代理人。
09:32
We all are biased.
199
572851
1292
我们都是有偏见的。
09:34
We're all racist and bigoted in ways that we wish we weren't,
200
574780
3377
我们都是固执的种族主义者, 虽然我们希望我们不是,
09:38
in ways that we don't even know.
201
578181
2019
虽然我们甚至没有意识到。
09:41
We know this, though, in aggregate,
202
581172
3081
总的来说,我们知道这一点,
09:44
because sociologists have consistently demonstrated this
203
584277
3220
因为社会学家会一直通过这些实验
09:47
with these experiments they build,
204
587521
1665
来证明这一点,
他们发送了大量的工作申请,
09:49
where they send a bunch of applications to jobs out,
205
589210
2568
09:51
equally qualified but some have white-sounding names
206
591802
2501
都是有同样资格的候选人, 有些用白人人名,
09:54
and some have black-sounding names,
207
594327
1706
有些用黑人人名,
09:56
and it's always disappointing, the results -- always.
208
596057
2694
然而结果总是令人失望的。
09:59
So we are the ones that are biased,
209
599330
1771
所以我们是有偏见的,
我们还通过选择收集到的数据
10:01
and we are injecting those biases into the algorithms
210
601125
3429
10:04
by choosing what data to collect,
211
604578
1812
来把偏见注入到算法中,
10:06
like I chose not to think about ramen noodles --
212
606414
2743
就像我不选择去想拉面一样——
10:09
I decided it was irrelevant.
213
609181
1625
我自认为这无关紧要。
10:10
But by trusting the data that's actually picking up on past practices
214
610830
5684
但是,通过信任那些 在过去的实践中获得的数据
10:16
and by choosing the definition of success,
215
616538
2014
以及通过选择成功的定义,
10:18
how can we expect the algorithms to emerge unscathed?
216
618576
3983
我们怎么能指望算法 会是毫无瑕疵的呢?
10:22
We can't. We have to check them.
217
622583
2356
我们不能。我们必须检查。
10:25
We have to check them for fairness.
218
625985
1709
我们必须检查它们是否公平。
10:27
The good news is, we can check them for fairness.
219
627718
2711
好消息是,我们可以做到这一点。
10:30
Algorithms can be interrogated,
220
630453
3352
算法是可以被审问的,
10:33
and they will tell us the truth every time.
221
633829
2034
而且每次都能告诉我们真相。
10:35
And we can fix them. We can make them better.
222
635887
2493
然后我们可以修复它们。 我们可以让他们变得更好。
10:38
I call this an algorithmic audit,
223
638404
2375
我把它叫做算法审计,
10:40
and I'll walk you through it.
224
640803
1679
接下来我会为你们解释。
10:42
First, data integrity check.
225
642506
2196
首先,数据的完整性检查。
10:45
For the recidivism risk algorithm I talked about,
226
645952
2657
对于刚才提到过的累犯风险算法,
10:49
a data integrity check would mean we'd have to come to terms with the fact
227
649402
3573
数据的完整性检查将意味着 我们不得不接受这个事实,
10:52
that in the US, whites and blacks smoke pot at the same rate
228
652999
3526
在美国,白人和黑人 吸毒的比例是一样的,
10:56
but blacks are far more likely to be arrested --
229
656549
2485
但是黑人更有可能被逮捕——
10:59
four or five times more likely, depending on the area.
230
659058
3184
取决于区域,可能性是白人的4到5倍。
11:03
What is that bias looking like in other crime categories,
231
663137
2826
这种偏见在其他犯罪类别中 是什么样子的,
11:05
and how do we account for it?
232
665987
1451
我们又该如何解释呢?
11:07
Second, we should think about the definition of success,
233
667982
3039
其次,我们应该考虑成功的定义,
11:11
audit that.
234
671045
1381
审计它。
11:12
Remember -- with the hiring algorithm? We talked about it.
235
672450
2752
还记得我们谈论的雇佣算法吗?
11:15
Someone who stays for four years and is promoted once?
236
675226
3165
那个呆了四年的人, 然后被提升了一次?
11:18
Well, that is a successful employee,
237
678415
1769
这的确是一个成功的员工,
但这也是一名受到公司文化支持的员工。
11:20
but it's also an employee that is supported by their culture.
238
680208
3079
11:23
That said, also it can be quite biased.
239
683909
1926
也就是说, 这可能会有很大的偏差。
11:25
We need to separate those two things.
240
685859
2065
我们需要把这两件事分开。
11:27
We should look to the blind orchestra audition
241
687948
2426
我们应该去看一下乐团盲选试奏,
11:30
as an example.
242
690398
1196
举个例子。
11:31
That's where the people auditioning are behind a sheet.
243
691618
2756
这就是人们在幕后选拔乐手的地方。
11:34
What I want to think about there
244
694766
1931
我想要考虑的是
11:36
is the people who are listening have decided what's important
245
696721
3417
倾听的人已经 决定了什么是重要的,
11:40
and they've decided what's not important,
246
700162
2029
同时他们已经决定了 什么是不重要的,
他们也不会因此而分心。
11:42
and they're not getting distracted by that.
247
702215
2059
11:44
When the blind orchestra auditions started,
248
704781
2749
当乐团盲选开始时,
11:47
the number of women in orchestras went up by a factor of five.
249
707554
3444
在管弦乐队中, 女性的数量上升了5倍。
11:52
Next, we have to consider accuracy.
250
712073
2015
其次,我们必须考虑准确性。
11:55
This is where the value-added model for teachers would fail immediately.
251
715053
3734
这就是针对教师的增值模型 立刻失效的地方。
11:59
No algorithm is perfect, of course,
252
719398
2162
当然,没有一个算法是完美的,
12:02
so we have to consider the errors of every algorithm.
253
722440
3605
所以我们要考虑每一个算法的误差。
12:06
How often are there errors, and for whom does this model fail?
254
726656
4359
出现错误的频率有多高, 让这个模型失败的对象是谁?
12:11
What is the cost of that failure?
255
731670
1718
失败的代价是什么?
12:14
And finally, we have to consider
256
734254
2207
最后,我们必须考虑
12:17
the long-term effects of algorithms,
257
737793
2186
这个算法的长期效果,
12:20
the feedback loops that are engendering.
258
740686
2207
与正在产生的反馈循环。
12:23
That sounds abstract,
259
743406
1236
这听起来很抽象,
12:24
but imagine if Facebook engineers had considered that
260
744666
2664
但是想象一下 如果脸书的工程师们之前考虑过,
12:28
before they decided to show us only things that our friends had posted.
261
748090
4855
并决定只向我们展示 我们朋友所发布的东西。
12:33
I have two more messages, one for the data scientists out there.
262
753581
3234
我还有两条建议, 一条是给数据科学家的。
12:37
Data scientists: we should not be the arbiters of truth.
263
757270
3409
数据科学家们:我们不应该 成为真相的仲裁者。
12:41
We should be translators of ethical discussions that happen
264
761340
3783
我们应该成为大社会中 所发生的道德讨论的
12:45
in larger society.
265
765147
1294
翻译者。
12:47
(Applause)
266
767399
2133
(掌声)
12:49
And the rest of you,
267
769556
1556
然后剩下的人,
12:51
the non-data scientists:
268
771831
1396
非数据科学家们:
12:53
this is not a math test.
269
773251
1498
这不是一个数学测试。
12:55
This is a political fight.
270
775452
1348
这是一场政治斗争。
12:58
We need to demand accountability for our algorithmic overlords.
271
778407
3907
我们应该要求我们的 算法霸主承担问责。
13:03
(Applause)
272
783938
1499
(掌声)
13:05
The era of blind faith in big data must end.
273
785461
4225
盲目信仰大数据的时代必须结束。
13:09
Thank you very much.
274
789710
1167
非常感谢。
13:10
(Applause)
275
790901
5303
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog