The era of blind faith in big data must end | Cathy O'Neil

241,832 views ・ 2017-09-07

TED


請雙擊下方英文字幕播放視頻。

譯者: Lilian Chiu 審譯者: NAN-KUN WU
00:12
Algorithms are everywhere.
0
12795
1596
演算法無所不在。
00:15
They sort and separate the winners from the losers.
1
15931
3125
它們能把贏家和輸家區分開來。
00:19
The winners get the job
2
19839
2264
贏家能得到工作,
00:22
or a good credit card offer.
3
22127
1743
或是好的信用卡方案。
00:23
The losers don't even get an interview
4
23894
2651
輸家連面試的機會都沒有,
00:27
or they pay more for insurance.
5
27410
1777
或是他們的保險費比較高。
00:30
We're being scored with secret formulas that we don't understand
6
30017
3549
我們都被我們不了解的 秘密方程式在評分,
00:34
that often don't have systems of appeal.
7
34495
3217
且那些方程式通常 都沒有申訴體制。
00:39
That begs the question:
8
39060
1296
問題就來了:
00:40
What if the algorithms are wrong?
9
40380
2913
如果演算法是錯的怎麼辦?
00:44
To build an algorithm you need two things:
10
44920
2040
要建立一個演算法,需要兩樣東西:
00:46
you need data, what happened in the past,
11
46984
1981
需要資料,資料是過去發生的事,
00:48
and a definition of success,
12
48989
1561
還需要對成功的定義,
00:50
the thing you're looking for and often hoping for.
13
50574
2457
也就是你在找的東西、 你想要的東西。
00:53
You train an algorithm by looking, figuring out.
14
53055
5037
你透過尋找和計算的方式 來訓練一個演算法。
00:58
The algorithm figures out what is associated with success.
15
58116
3419
演算法會算出什麼和成功有相關性。
01:01
What situation leads to success?
16
61559
2463
什麼樣的情況會導致成功?
01:04
Actually, everyone uses algorithms.
17
64701
1762
其實,人人都在用演算法。
01:06
They just don't formalize them in written code.
18
66487
2718
他們只是沒把演算法寫為程式。
01:09
Let me give you an example.
19
69229
1348
讓我舉個例子。
01:10
I use an algorithm every day to make a meal for my family.
20
70601
3316
我每天都用演算法 來為我的家庭做飯。
01:13
The data I use
21
73941
1476
我用的資料
01:16
is the ingredients in my kitchen,
22
76214
1659
是我廚房中的原料、
01:17
the time I have,
23
77897
1527
我擁有的時間、
01:19
the ambition I have,
24
79448
1233
我的野心、
01:20
and I curate that data.
25
80705
1709
我把這些資料拿來做策劃。
01:22
I don't count those little packages of ramen noodles as food.
26
82438
4251
我不把那一小包小包的 拉麵條視為是食物。
01:26
(Laughter)
27
86713
1869
(笑聲)
01:28
My definition of success is:
28
88606
1845
我對成功的定義是:
01:30
a meal is successful if my kids eat vegetables.
29
90475
2659
如果我的孩子吃了蔬菜, 這頓飯就算成功。
01:34
It's very different from if my youngest son were in charge.
30
94001
2854
但如果我的小兒子主導時 一切就不同了。
01:36
He'd say success is if he gets to eat lots of Nutella.
31
96879
2788
他會說,如果能吃到很多 能多益(巧克力榛果醬)就算成功。
01:40
But I get to choose success.
32
100999
2226
但我能選擇什麼才算成功。
01:43
I am in charge. My opinion matters.
33
103249
2707
我是主導的人,我的意見才重要。
01:45
That's the first rule of algorithms.
34
105980
2675
那是演算法的第一條規則。
01:48
Algorithms are opinions embedded in code.
35
108679
3180
演算法是被嵌入程式中的意見。
01:53
It's really different from what you think most people think of algorithms.
36
113382
3663
這和你認為大部份人 對演算法的看法很不一樣。
01:57
They think algorithms are objective and true and scientific.
37
117069
4504
他們認為演算法是 客觀的、真實的、科學的。
02:02
That's a marketing trick.
38
122207
1699
那是種行銷技倆。
02:05
It's also a marketing trick
39
125089
2125
還有一種行銷技倆是
02:07
to intimidate you with algorithms,
40
127238
3154
用演算法來威脅你,
02:10
to make you trust and fear algorithms
41
130416
3661
讓你相信並懼怕演算法,
02:14
because you trust and fear mathematics.
42
134101
2018
因為你相信並懼怕數學。
02:17
A lot can go wrong when we put blind faith in big data.
43
137387
4830
當我們盲目相信大數據時, 很多地方都可能出錯。
02:23
This is Kiri Soares. She's a high school principal in Brooklyn.
44
143504
3373
這位是琦莉索瑞斯, 她是布魯克林的高中校長。
02:26
In 2011, she told me her teachers were being scored
45
146901
2586
2011 年,她告訴我, 用來評分她的老師的演算法
02:29
with a complex, secret algorithm
46
149511
2727
是一種複雜的秘密演算法,
02:32
called the "value-added model."
47
152262
1489
叫做「加值模型」。
02:34
I told her, "Well, figure out what the formula is, show it to me.
48
154325
3092
我告訴她:「找出那方程式 是什麼,給我看,
02:37
I'm going to explain it to you."
49
157441
1541
我就會解釋給你聽。」
02:39
She said, "Well, I tried to get the formula,
50
159006
2141
她說:「嗯,我試過取得方程式了,
02:41
but my Department of Education contact told me it was math
51
161171
2772
但教育部聯絡人告訴我, 那方程式是數學,
02:43
and I wouldn't understand it."
52
163967
1546
我也看不懂的。」
02:47
It gets worse.
53
167086
1338
還有更糟的。
02:48
The New York Post filed a Freedom of Information Act request,
54
168448
3530
紐約郵報提出了一項 資訊自由法案的請求,
02:52
got all the teachers' names and all their scores
55
172002
2959
取得有所有老師的名字 以及他們的分數,
02:54
and they published them as an act of teacher-shaming.
56
174985
2782
郵報把這些都刊出來, 用來羞辱老師。
02:58
When I tried to get the formulas, the source code, through the same means,
57
178904
3860
當我試著透過同樣的手段 來找出方程式、原始碼,
03:02
I was told I couldn't.
58
182788
2149
我被告知我不可能辦到。
03:04
I was denied.
59
184961
1236
我被拒絕了。
03:06
I later found out
60
186221
1174
我後來發現,
03:07
that nobody in New York City had access to that formula.
61
187419
2866
紐約市中沒有人能取得那方程式。
03:10
No one understood it.
62
190309
1305
沒有人了解它。
03:13
Then someone really smart got involved, Gary Rubinstein.
63
193749
3224
有個很聰明的人介入: 蓋瑞魯賓斯坦。
03:16
He found 665 teachers from that New York Post data
64
196997
3621
他發現紐約郵報資料中 有 665 名老師
03:20
that actually had two scores.
65
200642
1866
其實有兩個分數。
03:22
That could happen if they were teaching
66
202532
1881
如果他們是在教七年級
03:24
seventh grade math and eighth grade math.
67
204437
2439
及八年級數學,是有可能發生。
03:26
He decided to plot them.
68
206900
1538
他決定把他們用圖畫出來。
03:28
Each dot represents a teacher.
69
208462
1993
每一個點代表一個老師。
03:30
(Laughter)
70
210924
2379
(笑聲)
03:33
What is that?
71
213327
1521
那是什麼?
03:34
(Laughter)
72
214872
1277
(笑聲)
03:36
That should never have been used for individual assessment.
73
216173
3446
那絕對不該被用來做個人評估用。
03:39
It's almost a random number generator.
74
219643
1926
它幾乎就是個隨機數產生器。
03:41
(Applause)
75
221593
2946
(掌聲)
03:44
But it was.
76
224563
1162
但它的確被用了。
03:45
This is Sarah Wysocki.
77
225749
1176
這是莎拉薇沙琪,
03:46
She got fired, along with 205 other teachers,
78
226949
2175
她和其他 205 名老師都被開除了,
03:49
from the Washington, DC school district,
79
229148
2662
都是在華盛頓特區的學區,
03:51
even though she had great recommendations from her principal
80
231834
2909
即使她有校長及 學童家長的強力推薦,
03:54
and the parents of her kids.
81
234767
1428
還是被開除了。
03:57
I know what a lot of you guys are thinking,
82
237210
2032
我很清楚你們在想什麼,
03:59
especially the data scientists, the AI experts here.
83
239266
2487
特別是這裡的資料科學家 及人工智慧專家。
04:01
You're thinking, "Well, I would never make an algorithm that inconsistent."
84
241777
4226
你們在想:「我絕對不會寫出 那麼不一致的演算法。」
04:06
But algorithms can go wrong,
85
246673
1683
但演算法是可能出錯的,
04:08
even have deeply destructive effects with good intentions.
86
248380
4598
即使出自好意 仍可能產生毀滅性的效應。
04:14
And whereas an airplane that's designed badly
87
254351
2379
設計得很糟的飛機墜機,
04:16
crashes to the earth and everyone sees it,
88
256754
2001
每個人都會看到;
04:18
an algorithm designed badly
89
258779
1850
可是,設計很糟的演算法,
04:22
can go on for a long time, silently wreaking havoc.
90
262065
3865
可以一直運作很長的時間, 靜靜地製造破壞或混亂。
04:27
This is Roger Ailes.
91
267568
1570
這位是羅傑艾爾斯。
04:29
(Laughter)
92
269162
2000
(笑聲)
04:32
He founded Fox News in 1996.
93
272344
2388
他在 1996 年成立了 Fox News。
04:35
More than 20 women complained about sexual harassment.
94
275256
2581
有超過二十位女性投訴性騷擾。
04:37
They said they weren't allowed to succeed at Fox News.
95
277861
3235
她們說,她們在 Fox News 不被允許成功。
04:41
He was ousted last year, but we've seen recently
96
281120
2520
他去年被攆走了,但我們看到近期
04:43
that the problems have persisted.
97
283664
2670
這個問題仍然存在。
04:47
That begs the question:
98
287474
1400
這就帶來一個問題:
04:48
What should Fox News do to turn over another leaf?
99
288898
2884
Fox News 該做什麼才能改過自新?
04:53
Well, what if they replaced their hiring process
100
293065
3041
如果他們把僱用的流程換掉,
04:56
with a machine-learning algorithm?
101
296130
1654
換成機器學習演算法呢?
04:57
That sounds good, right?
102
297808
1595
聽起來很好,對嗎?
04:59
Think about it.
103
299427
1300
想想看。
05:00
The data, what would the data be?
104
300751
2105
資料,資料會是什麼?
05:02
A reasonable choice would be the last 21 years of applications to Fox News.
105
302880
4947
一個合理的選擇會是 Fox News 過去 21 年間收到的申請。
05:07
Reasonable.
106
307851
1502
很合理。
05:09
What about the definition of success?
107
309377
1938
成功的定義呢?
05:11
Reasonable choice would be,
108
311741
1324
合理的選擇會是,
05:13
well, who is successful at Fox News?
109
313089
1778
在 Fox News 有誰是成功的?
05:14
I guess someone who, say, stayed there for four years
110
314891
3580
我猜是在那邊待了四年、
05:18
and was promoted at least once.
111
318495
1654
且至少升遷過一次的人。
05:20
Sounds reasonable.
112
320636
1561
聽起來很合理。
05:22
And then the algorithm would be trained.
113
322221
2354
接著,演算法就會被訓練。
05:24
It would be trained to look for people to learn what led to success,
114
324599
3877
它會被訓練來找人, 尋找什麼導致成功,
05:29
what kind of applications historically led to success
115
329039
4318
在過去怎樣的申請書會導致成功,
05:33
by that definition.
116
333381
1294
用剛剛的成功定義。
05:36
Now think about what would happen
117
336020
1775
想想看會發生什麼事,
05:37
if we applied that to a current pool of applicants.
118
337819
2555
如果我們把它用到 目前的一堆申請書上。
05:40
It would filter out women
119
340939
1629
它會把女性過濾掉,
05:43
because they do not look like people who were successful in the past.
120
343483
3930
因為在過去,女性 並不像是會成功的人。
05:51
Algorithms don't make things fair
121
351572
2537
如果只是漫不經心、 盲目地運用演算法,
05:54
if you just blithely, blindly apply algorithms.
122
354133
2694
它們並不會讓事情變公平。
05:56
They don't make things fair.
123
356851
1482
演算法不會讓事情變公平。
05:58
They repeat our past practices,
124
358357
2128
它們會重覆我們過去的做法,
06:00
our patterns.
125
360509
1183
我們的模式。
06:01
They automate the status quo.
126
361716
1939
它們會把現狀給自動化。
06:04
That would be great if we had a perfect world,
127
364538
2389
如果我們有個完美的 世界,那就很好了,
06:07
but we don't.
128
367725
1312
但世界不完美。
06:09
And I'll add that most companies don't have embarrassing lawsuits,
129
369061
4102
我還要補充,大部份公司 沒有難堪的訴訟,
06:14
but the data scientists in those companies
130
374266
2588
但在那些公司中的資料科學家
06:16
are told to follow the data,
131
376878
2189
被告知要遵從資料,
06:19
to focus on accuracy.
132
379091
2143
著重正確率。
06:22
Think about what that means.
133
382093
1381
想想那意味著什麼。
06:23
Because we all have bias, it means they could be codifying sexism
134
383498
4027
因為我們都有偏見,那就意味著, 他們可能會把性別偏見
06:27
or any other kind of bigotry.
135
387549
1836
或其他偏執給寫到程式中,
06:31
Thought experiment,
136
391308
1421
來做個思想實驗,
06:32
because I like them:
137
392753
1509
因為我喜歡思想實驗:
06:35
an entirely segregated society --
138
395394
2975
一個完全種族隔離的社會,
06:40
racially segregated, all towns, all neighborhoods
139
400067
3328
所有的城鎮、所有的街坊 都做了種族隔離,
06:43
and where we send the police only to the minority neighborhoods
140
403419
3037
我們只會針對少數種族 住的街坊派出警力
06:46
to look for crime.
141
406480
1193
來尋找犯罪。
06:48
The arrest data would be very biased.
142
408271
2219
逮捕的資料會非常偏頗。
06:51
What if, on top of that, we found the data scientists
143
411671
2575
如果再加上,我們 找到了資料科學家,
06:54
and paid the data scientists to predict where the next crime would occur?
144
414270
4161
付錢給他們,要他們預測下次 犯罪會發生在哪裡,會如何?
06:59
Minority neighborhood.
145
419095
1487
答案:少數種族的街坊。
07:01
Or to predict who the next criminal would be?
146
421105
3125
或是去預測下一位犯人會是誰?
07:04
A minority.
147
424708
1395
答案:少數族裔。
07:07
The data scientists would brag about how great and how accurate
148
427769
3541
資料科學家會吹噓他們的的模型
07:11
their model would be,
149
431334
1297
有多了不起、多精準,
07:12
and they'd be right.
150
432655
1299
他們是對的。
07:15
Now, reality isn't that drastic, but we do have severe segregations
151
435771
4615
現實沒那麼極端,但在許多 城鎮和城市中,我們的確有
07:20
in many cities and towns,
152
440410
1287
嚴重的種族隔離,
07:21
and we have plenty of evidence
153
441721
1893
我們有很多證據可證明
07:23
of biased policing and justice system data.
154
443638
2688
執法和司法資料是偏頗的。
07:27
And we actually do predict hotspots,
155
447452
2815
我們確實預測了熱點,
07:30
places where crimes will occur.
156
450291
1530
犯罪會發生的地方。
07:32
And we do predict, in fact, the individual criminality,
157
452221
3866
事實上,我們確實預測了 個別的犯罪行為,
07:36
the criminality of individuals.
158
456111
1770
個人的犯罪行為。
07:38
The news organization ProPublica recently looked into
159
458792
3963
新聞組織 ProPublica 近期調查了
07:42
one of those "recidivism risk" algorithms,
160
462779
2024
「累犯風險」演算法之一,
07:44
as they're called,
161
464827
1163
他們是這麼稱呼它的,
07:46
being used in Florida during sentencing by judges.
162
466014
3194
演算法被用在佛羅里達, 法官在判刑時使用。
07:50
Bernard, on the left, the black man, was scored a 10 out of 10.
163
470231
3585
左邊的黑人是伯納, 總分十分,他得了十分。
07:54
Dylan, on the right, 3 out of 10.
164
474999
2007
右邊的狄倫,十分只得了三分。
07:57
10 out of 10, high risk. 3 out of 10, low risk.
165
477030
2501
十分就得十分,高風險。 十分只得三分,低風險。
08:00
They were both brought in for drug possession.
166
480418
2385
他們都因為持有藥品而被逮捕。
08:02
They both had records,
167
482827
1154
他們都有犯罪記錄,
08:04
but Dylan had a felony
168
484005
2806
但狄倫犯過重罪,
08:06
but Bernard didn't.
169
486835
1176
伯納則沒有。
08:09
This matters, because the higher score you are,
170
489638
3066
這很重要,因為你的得分越高,
08:12
the more likely you're being given a longer sentence.
171
492728
3473
你就越可能被判比較長的徒刑。
08:18
What's going on?
172
498114
1294
發生了什麼事?
08:20
Data laundering.
173
500346
1332
洗資料。
08:22
It's a process by which technologists hide ugly truths
174
502750
4427
它是個流程,即技術專家 用黑箱作業的演算法
08:27
inside black box algorithms
175
507201
1821
來隱藏醜陋的真相,
08:29
and call them objective;
176
509046
1290
還宣稱是客觀的;
08:31
call them meritocratic.
177
511140
1568
是精英領導的。
08:34
When they're secret, important and destructive,
178
514938
2385
我為這些秘密、重要、
又有毀滅性的演算法取了個名字:
08:37
I've coined a term for these algorithms:
179
517347
2487
08:39
"weapons of math destruction."
180
519858
1999
「毀滅性的數學武器」。
08:41
(Laughter)
181
521881
1564
(笑聲)
08:43
(Applause)
182
523469
3054
(掌聲)
08:46
They're everywhere, and it's not a mistake.
183
526547
2354
它們無所不在,且不是個過失。
08:49
These are private companies building private algorithms
184
529515
3723
私人公司建立私人演算法,
08:53
for private ends.
185
533262
1392
來達到私人的目的。
08:55
Even the ones I talked about for teachers and the public police,
186
535034
3214
即使是我剛談到 對老師和警方用的演算法,
08:58
those were built by private companies
187
538272
1869
也是由私人公司建立的,
09:00
and sold to the government institutions.
188
540165
2231
然後再銷售給政府機關。
09:02
They call it their "secret sauce" --
189
542420
1873
他們稱它為「秘方醬料」,
09:04
that's why they can't tell us about it.
190
544317
2128
所以不能跟我們討論它。
09:06
It's also private power.
191
546469
2220
它也是種私人的權力。
09:09
They are profiting for wielding the authority of the inscrutable.
192
549744
4695
他們透過行使別人 無法理解的權威來獲利。
09:16
Now you might think, since all this stuff is private
193
556934
2934
你可能會認為, 所有這些都是私人的,
09:19
and there's competition,
194
559892
1158
且有競爭存在,
09:21
maybe the free market will solve this problem.
195
561074
2306
也許自由市場會解決這個問題。
09:23
It won't.
196
563404
1249
並不會。
09:24
There's a lot of money to be made in unfairness.
197
564677
3120
從不公平中可以賺取很多錢。
09:28
Also, we're not economic rational agents.
198
568947
3369
且,我們不是經濟合法代理人。
09:32
We all are biased.
199
572851
1292
我們都有偏見。
09:34
We're all racist and bigoted in ways that we wish we weren't,
200
574780
3377
我們都是種族主義的、偏執的, 即使我們也希望不要這樣,
09:38
in ways that we don't even know.
201
578181
2019
我們甚至不知道我們是這樣的。
09:41
We know this, though, in aggregate,
202
581172
3081
不過我們確實知道,總的來說,
09:44
because sociologists have consistently demonstrated this
203
584277
3220
因為社會學家不斷地用 他們建立的實驗
09:47
with these experiments they build,
204
587521
1665
來展現出這一點,
09:49
where they send a bunch of applications to jobs out,
205
589210
2568
他們寄出一大堆的工作申請書,
09:51
equally qualified but some have white-sounding names
206
591802
2501
都有同樣的資格, 但有些用白人人名,
09:54
and some have black-sounding names,
207
594327
1706
有些用黑人人名,
09:56
and it's always disappointing, the results -- always.
208
596057
2694
結果總是讓人失望的,總是如此。
09:59
So we are the ones that are biased,
209
599330
1771
所以,我們才是有偏見的人,
10:01
and we are injecting those biases into the algorithms
210
601125
3429
且我們把這些偏見注入演算法中,
10:04
by choosing what data to collect,
211
604578
1812
做法是選擇要收集哪些資料、
10:06
like I chose not to think about ramen noodles --
212
606414
2743
比如我選擇不要考量拉麵,
10:09
I decided it was irrelevant.
213
609181
1625
我決定它不重要。
10:10
But by trusting the data that's actually picking up on past practices
214
610830
5684
但透過相信這些資料 真的能了解過去的做法,
10:16
and by choosing the definition of success,
215
616538
2014
以及透過選擇成功的定義,
10:18
how can we expect the algorithms to emerge unscathed?
216
618576
3983
我們如何能冀望產生的演算法未受損?
10:22
We can't. We have to check them.
217
622583
2356
不能。我們得要檢查這些演算法。
10:25
We have to check them for fairness.
218
625985
1709
我們得要檢查它們是否公平。
10:27
The good news is, we can check them for fairness.
219
627718
2711
好消息是,我們可以 檢查它們是否公平。
10:30
Algorithms can be interrogated,
220
630453
3352
演算法可以被審問,
10:33
and they will tell us the truth every time.
221
633829
2034
且它們每次都會告訴我們真相。
10:35
And we can fix them. We can make them better.
222
635887
2493
我們可以修正它們, 我們可以把它們變更好。
10:38
I call this an algorithmic audit,
223
638404
2375
我稱這個為演算法稽核,
10:40
and I'll walk you through it.
224
640803
1679
我會帶大家來了解它。
10:42
First, data integrity check.
225
642506
2196
首先,檢查資料完整性。
10:45
For the recidivism risk algorithm I talked about,
226
645952
2657
針對我先前說的累犯風險演算法,
10:49
a data integrity check would mean we'd have to come to terms with the fact
227
649402
3573
檢查資料完整性就意味著 我們得接受事實,
10:52
that in the US, whites and blacks smoke pot at the same rate
228
652999
3526
事實是,在美國,白人和黑人 抽大麻的比率是一樣的,
10:56
but blacks are far more likely to be arrested --
229
656549
2485
但黑人被逮捕的機率遠高於白人,
10:59
four or five times more likely, depending on the area.
230
659058
3184
四、五倍高的可能性被捕, 依地區而異。
11:03
What is that bias looking like in other crime categories,
231
663137
2826
在其他犯罪類別中, 那樣的偏見會如何呈現?
11:05
and how do we account for it?
232
665987
1451
我們要如何處理它?
11:07
Second, we should think about the definition of success,
233
667982
3039
第二,我們要想想成功的定義,
11:11
audit that.
234
671045
1381
去稽核它。
11:12
Remember -- with the hiring algorithm? We talked about it.
235
672450
2752
記得我們剛剛談過的僱用演算法嗎?
11:15
Someone who stays for four years and is promoted once?
236
675226
3165
待了四年且升遷至少一次?
11:18
Well, that is a successful employee,
237
678415
1769
那就是個成功員工,
11:20
but it's also an employee that is supported by their culture.
238
680208
3079
但那也是個被其文化所支持的員工。
11:23
That said, also it can be quite biased.
239
683909
1926
儘管如此,它也可能很有偏見。
11:25
We need to separate those two things.
240
685859
2065
我們得把這兩件事分開。
11:27
We should look to the blind orchestra audition
241
687948
2426
我們應該要把交響樂團的盲眼甄選
11:30
as an example.
242
690398
1196
當作參考範例。
11:31
That's where the people auditioning are behind a sheet.
243
691618
2756
他們的做法是讓試演奏的人 在布幕後演奏。
11:34
What I want to think about there
244
694766
1931
我想探討的重點是
11:36
is the people who are listening have decided what's important
245
696721
3417
那些在聽並且決定什麼重要的人,
11:40
and they've decided what's not important,
246
700162
2029
他們也會決定什麼不重要 ,
11:42
and they're not getting distracted by that.
247
702215
2059
他們不會被不重要的部份給分心。
11:44
When the blind orchestra auditions started,
248
704781
2749
當交響樂團開始採用盲眼甄選,
11:47
the number of women in orchestras went up by a factor of five.
249
707554
3444
團內的女性成員數上升五倍。
11:52
Next, we have to consider accuracy.
250
712073
2015
接著,我們要考量正確率。
11:55
This is where the value-added model for teachers would fail immediately.
251
715053
3734
這就是老師的加值模型 立刻會出問題的地方。
11:59
No algorithm is perfect, of course,
252
719398
2162
當然,沒有演算法是完美的,
12:02
so we have to consider the errors of every algorithm.
253
722440
3605
所以我們得要考量 每個演算法的錯誤。
12:06
How often are there errors, and for whom does this model fail?
254
726656
4359
多常會出現錯誤、這個模型 針對哪些人會發生錯誤?
12:11
What is the cost of that failure?
255
731670
1718
發生錯誤的成本多高?
12:14
And finally, we have to consider
256
734254
2207
最後,我們得要考量
12:17
the long-term effects of algorithms,
257
737793
2186
演算法的長期效應,
12:20
the feedback loops that are engendering.
258
740686
2207
也就是產生出來的反饋迴圈。
12:23
That sounds abstract,
259
743406
1236
那聽起來很抽象,
12:24
but imagine if Facebook engineers had considered that
260
744666
2664
但想像一下,如果臉書的工程師
12:28
before they decided to show us only things that our friends had posted.
261
748090
4855
決定只讓我們看到朋友的貼文 之前就先考量那一點。
12:33
I have two more messages, one for the data scientists out there.
262
753581
3234
我還有兩個訊息要傳遞, 其一是給資料科學家的。
12:37
Data scientists: we should not be the arbiters of truth.
263
757270
3409
資料科學家,我們 不應該是真相的仲裁者,
12:41
We should be translators of ethical discussions that happen
264
761340
3783
我們應該是翻譯者,
翻譯大社會中發生的每個道德討論。
12:45
in larger society.
265
765147
1294
12:47
(Applause)
266
767399
2133
(掌聲)
12:49
And the rest of you,
267
769556
1556
至於你們其他人,
12:51
the non-data scientists:
268
771831
1396
不是資料科學家的人:
12:53
this is not a math test.
269
773251
1498
這不是個數學考試。
12:55
This is a political fight.
270
775452
1348
這是場政治鬥爭。
12:58
We need to demand accountability for our algorithmic overlords.
271
778407
3907
我們得要求為演算法的超載負責。
13:03
(Applause)
272
783938
1499
(掌聲)
13:05
The era of blind faith in big data must end.
273
785461
4225
盲目信仰大數據的時代必須要結束。
13:09
Thank you very much.
274
789710
1167
非常謝謝。
13:10
(Applause)
275
790901
5303
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7