Can AI Help Solve the Climate Crisis? | Sims Witherspoon | TED

74,571 views ・ 2023-09-21

TED


请双击下面的英文字幕来播放视频。

翻译人员: jing lin 校对人员: suya f.
00:08
You may have had the experience of unboxing furniture
0
8505
3754
你应该有家具拆箱的经验吧,
00:12
and come across instructions that go something like this:
1
12259
3420
你会看到这样的安装说明:
00:15
"Assemble the bookshelf according to the provided diagram."
2
15679
3378
“请按照示意图组装书架。”
00:19
Yes, I know what a bookshelf looks like.
3
19724
3045
是的,我知道书架是什么样子。
00:22
Probably wouldn't be reading the assembly instructions
4
22769
2544
但如果不是因为在这个 过程中我需要一些帮助,
00:25
if I didn't need a little more help with the process.
5
25355
3086
我大概不会去阅读组装说明。
00:28
Or maybe you've opened a cookbook
6
28441
1794
或者当你打开一本食谱,
00:30
with an author who thinks you're already somewhat of a chef.
7
30235
3170
食谱的作者似乎默认 你已经有点厨师的基础了。
00:33
"Deglaze the pan."
8
33446
1460
“给锅除釉。”
00:35
What?
9
35448
1252
这是什么意思?
00:36
(Laughter)
10
36700
1001
(笑声)
00:37
OK, off I go on a separate search to understand whatever that means.
11
37742
4171
好吧,我只好开始另外的搜索 来弄清楚这是什么意思。
00:42
Instructions that tell you what to do and not how to do it
12
42414
4921
一个操作说明仅 告诉你“该做什么”,
而不是“怎么做”
00:47
are pretty useless.
13
47335
1544
它是毫无用处的。
00:49
And yet, even when we're talking
14
49212
1627
但是,当我们在谈论
00:50
about something as important as climate change,
15
50881
3003
像气候变化这样重要的事情时,
00:53
we hear them all the time.
16
53884
1710
也总能听见:
00:55
“Transition to renewable energy.”
17
55927
1710
“向可再生能源转型。”
00:57
“Electrify everything else.”
18
57679
1460
“让一切电气化。”
00:59
“Deploy solutions that are equitable and fair.”
19
59180
2878
“要部署公平、公正的解决方案。”
01:03
Yes, let's do all of that.
20
63310
4004
现在,让我们一起来做这些事。
01:07
But how?
21
67314
2252
但是,怎么做呢?
01:10
Answering how is where we understand which solutions are actually feasible,
22
70775
6257
要回答怎么做,就要了解 哪些方案是切实可行的,
01:17
whether that be with today's infrastructure,
23
77032
2627
无论是当今的基础设施、
01:19
our evolving regulatory environment
24
79659
2044
不断变化的监管环境、
01:21
or any of the other number of dependencies and constraints
25
81703
3086
还是我们必须考虑的
01:24
that we have to consider.
26
84831
1752
任何其他依存和限制条件。
01:27
How we solve climate change
27
87626
1293
我们如何解决气候变化问题
01:28
also depends on our very definition of the problem.
28
88960
3253
还取决于我们对这个问题的定义。
01:32
It's a scientific challenge, a sociopolitical issue,
29
92213
3713
这是一个科学挑战、 一个社会政治问题、
01:35
an economic problem and so much more.
30
95967
2670
也是一个经济问题,等等。
01:38
And how we solve it will depend on how we frame it.
31
98678
3629
而我们如何解决它 将取决于我们如何构建它。
01:43
There is no single answer.
32
103391
2002
没有单一的答案。
01:46
I'm a scientist,
33
106728
1293
我是一名科学家,
01:48
so I approach climate change as a scientific challenge.
34
108021
3837
所以我把气候变化 当作一项科学挑战来对待。
01:52
I'm also a techno-optimist
35
112442
2127
我也是一名技术乐观主义者
01:54
and artificial-intelligence product manager,
36
114569
2753
和人工智能产品经理,
01:57
so I also approach it as a technological one.
37
117364
2877
所以我也把它当作一项技术挑战。
02:01
When it comes to a sustainable future,
38
121952
2127
谈到可持续的未来,
02:04
artificial intelligence can help us do three critical things.
39
124079
3837
人工智能可以帮助我们 做三件关键的事情。
02:08
First, it can help us understand climate change
40
128333
3545
首先,它可以帮助我们了解气候变化
02:11
and its effects on Earth's ecosystems.
41
131878
2878
及其它对地球生态系统的影响。
02:15
Second, it can help us optimize current systems and infrastructure,
42
135173
4379
其次,它可以帮助我们优化 当前的系统和基础架构,
02:19
because we can't just start over from scratch today.
43
139594
3962
因为我们今天不可能从零开始。
02:24
And third, it can help us accelerate the breakthrough science we need,
44
144182
5047
第三,它可以帮助我们加速科学的突破,
02:29
such as fusion as a carbon-free energy source.
45
149270
2962
例如核聚变作为无碳能源。
02:32
Today, I'd like to talk about that second one,
46
152899
2377
今天,我想谈谈第二个问题:
02:35
optimizing current systems,
47
155276
1752
即优化当前的系统,
02:37
and specifically, how we can use AI to harness a superpower
48
157070
4004
特别是人工智能如何帮助我们利用
02:41
we already have in this fight:
49
161074
2085
我们在这场斗争中已经拥有的超级能量:
02:43
wind energy.
50
163868
1127
风能。
02:46
Renewables are unquestionably a key to a sustainable future,
51
166913
3670
毫无疑问,可再生能源 是可持续未来的关键,
02:50
but the problem is they're unpredictable.
52
170583
3337
但问题在于它们是不可预测的。
02:53
Sometimes, the sun shines and the wind blows,
53
173920
2461
有些时候,阳光普照、风力强劲,
02:56
and sometimes, it just doesn't.
54
176423
2544
但另一些时候,就并非如此。
02:59
Now, for an electricity systems operator,
55
179509
3045
对于电力系统运营商来说
03:02
who needs supply to meet demand in real time, 24-7,
56
182595
5089
他需要能够满足全天 候实时需求的电力供应
03:07
this is hugely problematic.
57
187726
2252
那这就是个大问题。
03:10
Renewables can't be 100 percent reliably scheduled.
58
190562
3587
可再生能源无法被百分之 百可靠地预先安排。
03:15
Now, unfortunately, fossil-fuel plants are the opposite.
59
195066
3545
不幸的是, 化石燃料发电厂却恰恰相反。
03:19
You can burn a specific amount of coal at a set time
60
199195
3754
你可以在设定的时间 燃烧特定数量的煤炭,
03:22
to deliver exactly the amount of electricity you want
61
202949
2836
就能在可预测的时间范围内
03:25
in a predictable time window.
62
205827
1919
准确提供你想要的电量。
03:28
So ...
63
208788
1335
所以...
03:30
if you're a power systems manager
64
210165
1710
如果你是一名电力系统经理,
03:31
whose job is to literally keep the lights on,
65
211916
3129
你的工作就是要保证电灯能亮起来,
03:35
which source are you more confident depending on?
66
215045
2627
那么你更有信心依赖哪个来源?
03:38
But here's one of the places where AI can come in.
67
218965
2961
这就是人工智能可以 发挥作用的地方之一。
03:41
It is a powerful tool for forecasting.
68
221926
2837
它是一个强大的预测工具。
03:45
AI systems can ingest vast amounts of historical data
69
225805
3045
人工智能系统可以摄取 大量的历史数据,
03:48
and help us predict future events.
70
228892
2252
帮助我们预测未来的事件。
03:51
So, while we can't eliminate the variability of wind,
71
231853
4087
虽然我们无法消除风的多变性
03:55
we can use AI to more accurately predict its availability.
72
235982
4463
但我们可以用人工智能来 更准确地预测其可用性。
04:01
That was my team’s “what” to do.
73
241196
2168
那就是我的团队要正在做的事。
04:03
Use AI to accelerate the transition to renewables, like wind energy.
74
243907
4296
使用人工智能加速向 可再生能源(如风能)的转变。
04:08
The tough part was the “how” to do it.
75
248995
3629
困难的部分是 “如何” 去做。
04:13
First, we researched the challenge.
76
253833
2419
首先,我们仔细研究了这个问题。
04:16
We read papers, we spoke to domain experts,
77
256294
2586
我们研读论文、 与领域专家进行交流,
04:18
we found out everything we could about the problem.
78
258880
3212
找到我们所能找到 的关于这个问题的一切。
04:22
Our team, which is a mix of research scientists,
79
262425
2378
我们的团队由研究型科学家、
04:24
engineers, a product manager, a program manager
80
264803
2544
工程师、产品经理、项目经理
04:27
and an impact analyst,
81
267347
1585
和影响分析师组成。
04:28
decided that a neural net trained on historical weather data
82
268973
3963
我们认为,用历史天气数据 和涡轮发电量信息
04:32
and turbine power-production information
83
272936
2210
训练过的神经网络
04:35
would likely help us accomplish our goal.
84
275188
2127
很有可能会帮助我们实现目标。
04:38
Next, we needed to find two core elements:
85
278233
4296
接下来,我们需要找 到两个核心要素:
04:43
data to train the system
86
283154
2211
用于训练系统的数据
04:45
and a partner who was willing to deploy it.
87
285365
2836
和愿意部署系统的合作伙伴。
04:49
Both of these can be major obstacles
88
289077
2669
在现实场景中部署人工智能时,
04:51
when it comes to deploying AI in real-world scenarios.
89
291746
3670
这两者都可能成为主要障碍。
04:56
Let's start with data.
90
296584
1669
让我们从数据开始。
04:58
There are massive gaps in climate-critical data --
91
298795
3712
有关气候的关键数据存在巨大缺口,
05:02
not just in electricity,
92
302549
2043
这缺口不仅在电力领域,
05:04
but in agriculture, transportation, industry and many other sectors.
93
304592
5339
还在农业、交通、 工业和许多其他领域。
05:10
Some of our data, we could purchase or download for free --
94
310682
3462
有一些数据我们可以免费购买或下载,
05:14
weather forecasts, for instance.
95
314144
2252
例如天气预报。
05:16
But some of the data we needed was proprietary,
96
316437
4130
但是我们需要的一些数据是专属的,
05:20
and this would be, like, turbine power-production information
97
320608
4171
比如风力发电场的涡轮发电信息
05:24
and other operational data from the wind farms.
98
324821
2586
和其他运营数据。
05:27
Now, we needed that proprietary data so that we could train our models
99
327407
4963
我们需要这些专有数据, 这样才能训练人工智能模型
05:32
to learn the relationship between historical weather
100
332370
3545
了解历史天气
05:35
and historical power production,
101
335915
2086
与历史发电量之间的关系,
05:38
so it could then then make predictions about future power availability
102
338042
4130
这样它才能根据天气预报的数据
05:42
based on what data said about future weather.
103
342172
2919
预测未来的电力供应情况。
05:45
Now it's probably worth mentioning here
104
345800
1919
还需要提及的一点是:
05:47
that we were looking at a few years of data
105
347760
2086
我们查看的是这几年的
05:49
on hourly resolution,
106
349888
1167
每小时数据
05:51
not historical data at a timescale
107
351097
1794
而不是与目前气候有巨大差异的
05:52
that would have massive climactic differences from present day.
108
352932
3170
的历史时期的数据。
05:56
In addition to data,
109
356144
2169
除了数据之外,
05:58
we needed to find a partner with domain expertise
110
358313
3962
我们还要找到既具有领域专业知识、
06:02
and the willingness and scale to test new systems.
111
362275
3503
又具备测试新系统 的意愿和规模的合作伙伴。
06:06
You know, surprisingly, this can be a major hurdle
112
366279
4171
令人惊讶的是, 在现实世界中部署人工智能,
06:10
when it comes to deploying AI in the real world.
113
370491
2920
这可能是一个主要障碍。
06:13
Believe it or not, it's not every wind-farm manager
114
373453
3044
不管你信不信,并不是 每个风电场经理都想
06:16
that wants to let a bunch of AI researchers
115
376539
2002
让一群人工智能研究人员
06:18
test on their multimillion- or multibillion-dollar systems.
116
378583
4504
在价值数百万或数十亿美元 的系统上进行测试。
06:23
But the thing is, in order to prove that AI works,
117
383129
3879
但问题是, 为了证明人工智能行之有效,
06:27
we have to have deployment opportunities in the real world.
118
387050
3712
我们必须在现实世界中拥有测试机会。
06:31
Luckily for us, Google was a ready and willing partner.
119
391721
3462
幸运的是,Google就是一个 现成且有意愿的合作伙伴。
06:35
OK, yes, DeepMind is a part of Google,
120
395225
3253
是的,DeepMind是谷歌的一部分,
06:38
but it's not a given that they would let us test on their systems.
121
398519
5047
但可以让我们在他们的系统上 进行测试并不是理所当然的。
06:44
Yet they let us test on 700 megawatts of their wind-power capacity,
122
404108
3671
他们让我们测试了 700兆瓦的风力发电量,
06:47
which is equivalent to a large wind farm in the United States.
123
407779
3503
这相当于美国的一个大型风力发电场。
06:51
This made them an excellent proxy for external wind-farm operators.
124
411282
4505
这使它们成为外部风力 发电场运营商的绝佳代理。
06:56
They also lent us an expert team to advise on metrics and benchmarks
125
416246
4754
他们还借给我们一个专家团队, 就指标和基准提出建议,
07:01
and to share the data that we needed.
126
421000
2628
并分享我们需要的数据。
07:03
This is another critical component of AI for the real-world deployments.
127
423628
4212
这是人工智能能在现实世界中 使用的另一个关键因素。
07:08
Working with a domain-expert team that can tell you what they need,
128
428258
4879
与领域内专家团队合作, 才能知道他们需要什么,
07:13
how they need it to work,
129
433137
1418
需要人工智能如何工作,
07:14
which constraints keep the system safe,
130
434555
2545
哪些限制条件可以保证系统的安全、
07:17
what quantifiable metrics to use to measure AI performance
131
437141
4588
用哪些可量化的指标 来衡量人工智能性能、
07:21
and how much better that AI performance needs to be
132
441771
3629
以及人工智能的性能需要
07:25
than their previous systems
133
445400
1334
比他们的前一代提升多少,
07:26
to make the cost of switching over even worth it.
134
446776
2961
才能使切换的成本物有所值。
07:29
And that's just to name a few.
135
449737
1752
这只是其中的几个例子。
07:32
So at this point, we have our idea,
136
452448
2837
现在这个时候,
07:35
we have our data, we have our deployment partner.
137
455326
3045
我们具备了想法、数据、合作伙伴。
07:38
Now, to test and deploy our system.
138
458371
3503
现在,来测试和部署我们的系统。
07:43
Improving the accuracy of electricity-supply forecast
139
463501
2795
提高电力供应预测的准确性
07:46
is incredibly important.
140
466337
1752
极为重要。
07:48
If predictions are higher than actual generation,
141
468631
3128
如果预测量高于实际发电量,
07:51
renewable electricity managers may not have enough supply to meet demand.
142
471801
4463
可再生电力管理公司可能 没有足够的供应来满足需求。
07:56
This, in turn, drives the purchase of carbon-intensive fossil fuels
143
476264
3628
这反过来又推动购买碳密集型化石燃料
07:59
to cover that gap,
144
479934
1335
以弥补这一缺口,
08:01
because they're largely what makes up backup generation.
145
481269
2627
因为它们在很大 程度上构成了备用发电量。
08:04
Now, the good news.
146
484605
2002
接下来是好消息。
08:07
Our AI system performed 20 percent better than Google's existing systems.
147
487400
6298
我们人工智能系统的准确度 比谷歌的现有系统高20%。
08:13
Even better news is that Google decided to scale this technology.
148
493698
3795
更好的消息是,谷歌决定扩大 应用这项技术的规模。
08:17
And scaling is so important.
149
497535
3295
扩大规模非常重要。
08:21
We will run out of time in the climate countdown
150
501581
2711
我们在气候倒计时中的时间越来越少了,
08:24
if we aren't deploying solutions that are widely applicable.
151
504292
3795
我们需要部署广泛适用的解决方案 。
08:28
This particular solution is being developed
152
508880
2002
这种特殊的解决方案
08:30
into a software product
153
510882
1251
正在开发成一款软件产品。
08:32
that French company Engie is among the first to pilot.
154
512133
2753
法国Engie公司是最早 试用的公司之一。
08:36
But, you know,
155
516179
2127
但你知道的,
08:38
it doesn't even take a major research organization to do this kind of work.
156
518348
4004
它甚至不需要大型研究机构 就能完成这样的工作。
08:42
Where we focused on AI for supply-side forecasting,
157
522393
3420
我们的人工智能专注于“供应侧预测”
08:45
a small UK-based nonprofit called Open Climate Fix
158
525855
4004
一个叫Open Climate Fix的英国小型非营利组织
08:49
is focusing on AI for demand-side forecasting.
159
529859
3045
则专注于“需求侧预测”的人工智能。
08:53
They found a willing partner in the UK National Grid,
160
533529
3045
他们在英国国家电网 中找到了合作伙伴,
08:56
and are currently deploying forecasts that are two times more accurate
161
536616
5005
并且目前测试中的预测准确度
09:01
than the UK grid's previously used systems.
162
541621
2836
是英国电网之前使用系统的两倍。
09:05
Now, all of this is to say is that AI can help us
163
545375
4504
现在的所有这些都告诉我们
09:09
with the transition to renewable energy,
164
549921
1960
人工智能是可以协助向可再生能源的转变,
09:11
but scientists and technologists,
165
551923
2043
但仅靠科学家和技术专家,
09:13
we're not going to be able to do that alone.
166
553966
2294
是无法单独做到这一点。
09:16
We need to be working with partners and experts
167
556302
3087
我们需要与能够教我们
09:19
who can teach us the “how.”
168
559430
1669
“如何做” 的合作伙伴和专家合作。
09:21
So for those of you interested in this space,
169
561974
4046
因此,对于那些对此感兴趣的人,
09:26
if you're a domain expert,
170
566020
2211
如果您是领域内的专家,
09:28
please share the problems you face and the challenges that you have
171
568272
3546
请分享您面临的问题和挑战,
09:31
so that our sector can ensure
172
571818
1960
以便我们能够实现
09:33
that AI pursuits will have impact in the real world
173
573820
3253
人工智能的发展对现实世界中产生影响,
09:37
and not be purely academic.
174
577115
2210
而不仅仅是学术性的。
09:40
Even better,
175
580118
1376
更好的是,
09:41
if you want to incentivize ML researchers to work on your problems,
176
581536
3253
如果你想激励 机器学习研究人员研究你的问题,
09:44
I'll let you in on a little secret:
177
584831
2335
我会告诉你一个小秘密:
09:47
build a competition, and they will come.
178
587208
2586
举办一场竞赛,他们就会来的。
09:49
(Laughter)
179
589836
1293
(笑声)
09:51
It's true.
180
591170
1168
这是真的。
09:52
Just don't forget the datasets and metrics.
181
592338
2669
只是不要忘记数据集和指标。
09:55
If you are a data holder, where it’s safe and responsible to do so,
182
595675
7007
如果您是数据持有者,并且 可以安全且负责任地这样做,
10:02
please share data related to those challenges.
183
602682
3211
请分享与这些难题相关的数据。
10:06
If you're not sure whether the data you have is even climate-critical,
184
606436
3420
如果你不确定自己拥有的数据 是否对气候至关重要,
10:09
you can check out Climate Change AI's website,
185
609856
2460
你可以访问
“Climate Change AI”网站,
10:12
where they have published a wish list of climate-critical datasets.
186
612358
4463
那里发布了“气候关键 数据集”的愿望清单。
10:16
Access to these datasets
187
616821
1251
获得这些数据集
10:18
would unblock crucial research and innovation in AI for climate.
188
618114
4046
将解锁人工智能气候 领域的关键研究和创新。
10:23
If you're a deployment partner,
189
623619
2378
如果您是可部署系统的合作伙伴,
10:25
please, let us know who you are,
190
625997
2002
请告诉我们您的身份,
10:28
especially if you're willing to test innovative systems.
191
628040
3254
特别是如果您愿意测试创新系统。
10:32
And for everyone who's interested in this space,
192
632753
3504
对于所有对这个话题感兴趣的人,
10:36
please know you do not have to be technical to work in tech.
193
636299
4337
请知道,从事科技相关工作 并不必须是技术人员。
10:41
AI for climate action requires a variety of skill sets
194
641429
4046
用于气候行动的人工智能 需要各种各样的技能组合
10:45
and a diversity of backgrounds
195
645475
1793
和不同的背景,
10:47
that, yes, includes research scientists and engineers,
196
647310
3295
是的,包括研究科学家和工程师,
10:50
but it also includes ethicists and policy experts,
197
650646
3629
但也包括伦理学家和政策专家、
10:54
communication teams, product managers,
198
654275
2336
沟通团队、产品经理、
10:56
program managers and so many more folks.
199
656611
2919
项目经理等等。
11:01
Now for the warning label.
200
661282
1752
现在,警示标签来了。
11:04
AI is not a silver bullet.
201
664160
2002
人工智能不是灵丹妙药。
11:07
It will not solve all problems driving climate change.
202
667038
3044
它无法解决推动气候变化的所有问题。
11:10
It isn't even the right tool for many of the challenges that we face.
203
670082
3546
它甚至不是应对我们面临 的许多挑战的正确工具。
11:14
AI is also not a technology without tensions.
204
674212
3586
人工智能也不是一项 不会带来紧张关系的技术。
11:18
It needs to be deployed safely and responsibly.
205
678216
3378
它需要安全、负责任地部署。
11:21
Not to mention,
206
681928
1167
更不用说在我们的 电网使用清洁能源之前,
11:23
until our grids are run on clean energy, AI itself will carry a carbon footprint,
207
683137
4088
人工智能本身将产生碳足迹,
11:27
as will any energy-intensive technology we use.
208
687225
3920
正如我们使用的任何能源密集型技术。
11:33
But AI can be a transformational tool in our fight against climate change --
209
693314
5422
但是人工智能可以成为我们 应对气候变化的变革性工具,
11:38
it's just on all of us to wield it effectively.
210
698778
2961
我们所有人都有责任有效地使用它。
11:42
The “why” we need to is absolutely harrowing.
211
702865
3962
我们使用它的原因令人痛苦,
11:46
The “what” we can do is really exciting.
212
706869
3420
但我们能做的事情却令人兴奋。
11:50
But it’s the “how” we can do it
213
710331
2294
正是我们 “如何做”的方法
11:52
that will illuminate feasibility and help us drive impact.
214
712667
3753
将会证明它的可行性, 并帮助我们推动它的影响力。
11:57
So, in your next climate action conversations,
215
717046
4129
因此,在你的下一次气候行动对话中,
12:01
when someone presents you with an exciting "what,"
216
721175
4296
当有人向你介绍一个 激动人心的“做什么” 时,
12:05
please help to advance the conversation
217
725513
2502
请帮助将对话推进
12:08
to the impactful "how."
218
728015
2878
到有真正影响力的 “如何做”。
12:10
Thank you.
219
730935
1209
谢谢。
12:12
(Cheers and applause)
220
732186
3921
(欢呼和掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7