Can AI Help Solve the Climate Crisis? | Sims Witherspoon | TED

77,487 views ・ 2023-09-21

TED


請雙擊下方英文字幕播放視頻。

譯者: C Leung 審譯者: 麗玲 辛
00:08
You may have had the experience of unboxing furniture
0
8505
3754
你可能有拆開家具包裝的經驗,
00:12
and come across instructions that go something like this:
1
12259
3420
並遇到類似這樣的說明:
00:15
"Assemble the bookshelf according to the provided diagram."
2
15679
3378
「根據示意圖,組裝書架。」
00:19
Yes, I know what a bookshelf looks like.
3
19724
3045
我當然知道書架是什麼樣子。
00:22
Probably wouldn't be reading the assembly instructions
4
22769
2544
要不是在過程中需要一點幫助,
00:25
if I didn't need a little more help with the process.
5
25355
3086
我才不會去看組裝說明。
00:28
Or maybe you've opened a cookbook
6
28441
1794
或許你曾打開一本烹飪書,
00:30
with an author who thinks you're already somewhat of a chef.
7
30235
3170
而該作者假設你已有些廚藝基礎。
00:33
"Deglaze the pan."
8
33446
1460
「洗鍋收汁。」
00:35
What?
9
35448
1252
什麼?
00:36
(Laughter)
10
36700
1001
(笑聲)
00:37
OK, off I go on a separate search to understand whatever that means.
11
37742
4171
好吧,我就另外去搜尋一下 以理解它的意思。
00:42
Instructions that tell you what to do and not how to do it
12
42414
4921
那些告訴你該做什麼, 而不是如何做的使用說明
00:47
are pretty useless.
13
47335
1544
是毫無用處的。
00:49
And yet, even when we're talking
14
49212
1627
然而,即使我們在談論
00:50
about something as important as climate change,
15
50881
3003
像氣候變化如此重要的事情時,
00:53
we hear them all the time.
16
53884
1710
我們總會聽到這些聲音:
00:55
“Transition to renewable energy.”
17
55927
1710
「過渡到再生能源。」
00:57
“Electrify everything else.”
18
57679
1460
「將一切電氣化。」
00:59
“Deploy solutions that are equitable and fair.”
19
59180
2878
「部署公平公正的解決方案。」
01:03
Yes, let's do all of that.
20
63310
4004
是的,讓我們來做這一切。
01:07
But how?
21
67314
2252
但怎樣做呢?
01:10
Answering how is where we understand which solutions are actually feasible,
22
70775
6257
回答「怎樣做」,我們就了解 哪些解決方案實際上可行,
01:17
whether that be with today's infrastructure,
23
77032
2627
無論是當今的基礎設施,
01:19
our evolving regulatory environment
24
79659
2044
不斷發展的監管環境,
01:21
or any of the other number of dependencies and constraints
25
81703
3086
還是其他我們必須考慮的 依賴關係和限制。
01:24
that we have to consider.
26
84831
1752
01:27
How we solve climate change
27
87626
1293
我們如何解決氣候變化
01:28
also depends on our very definition of the problem.
28
88960
3253
也取決於我們對這個問題的定義。
01:32
It's a scientific challenge, a sociopolitical issue,
29
92213
3713
這是科學挑戰、社會政治問題、
01:35
an economic problem and so much more.
30
95967
2670
經濟問題等等。
01:38
And how we solve it will depend on how we frame it.
31
98678
3629
我們如何解決它 將取決於我們如何構建它。
01:43
There is no single answer.
32
103391
2002
沒有單一答案。
01:46
I'm a scientist,
33
106728
1293
我是科學家,
01:48
so I approach climate change as a scientific challenge.
34
108021
3837
所以我將氣候變化視為一項科學挑戰。
01:52
I'm also a techno-optimist
35
112442
2127
我也是技術樂觀主義者
01:54
and artificial-intelligence product manager,
36
114569
2753
和人工智能慧產品經理,
01:57
so I also approach it as a technological one.
37
117364
2877
因此我也視其為技術挑戰。
02:01
When it comes to a sustainable future,
38
121952
2127
談到永續發展的未來,
02:04
artificial intelligence can help us do three critical things.
39
124079
3837
人工智慧可以幫助我們 做三件關鍵事情。
02:08
First, it can help us understand climate change
40
128333
3545
首先,它可以幫助我們了解氣候變化
02:11
and its effects on Earth's ecosystems.
41
131878
2878
及其對地球生態系統的影響。
02:15
Second, it can help us optimize current systems and infrastructure,
42
135173
4379
其次,它可以幫助我們最佳化 當前的系統和基礎設施,
02:19
because we can't just start over from scratch today.
43
139594
3962
因為我們不能在這刻才從頭起步。
02:24
And third, it can help us accelerate the breakthrough science we need,
44
144182
5047
第三,它可以幫助我們加速 所需的科學突破,
02:29
such as fusion as a carbon-free energy source.
45
149270
2962
例如作為無碳能源的核聚變。
02:32
Today, I'd like to talk about that second one,
46
152899
2377
今天,我想談談第二個關鍵:
02:35
optimizing current systems,
47
155276
1752
最佳化當前系統,
02:37
and specifically, how we can use AI to harness a superpower
48
157070
4004
特別是,我們如何利用 AI 去駕馭
我們在這場戰鬥中已擁有的巨大力量:
02:41
we already have in this fight:
49
161074
2085
02:43
wind energy.
50
163868
1127
風能。
02:46
Renewables are unquestionably a key to a sustainable future,
51
166913
3670
再生能源無疑是永續發展未來的關鍵,
02:50
but the problem is they're unpredictable.
52
170583
3337
但問題在於它們是不可預測的。
02:53
Sometimes, the sun shines and the wind blows,
53
173920
2461
有時候,風和日麗;
02:56
and sometimes, it just doesn't.
54
176423
2544
有時候,靜如止水。
02:59
Now, for an electricity systems operator,
55
179509
3045
對於電力系統營運商來說,
03:02
who needs supply to meet demand in real time, 24-7,
56
182595
5089
它們需要全天候實時滿足供電需求,
03:07
this is hugely problematic.
57
187726
2252
這是非常大的問題。
03:10
Renewables can't be 100 percent reliably scheduled.
58
190562
3587
再生能源無法百分之百 可靠地預先安排。
03:15
Now, unfortunately, fossil-fuel plants are the opposite.
59
195066
3545
不幸的是,化石燃料發電廠卻可以。
03:19
You can burn a specific amount of coal at a set time
60
199195
3754
你可以在預設的時間內, 燃燒特定數量的煤炭,
03:22
to deliver exactly the amount of electricity you want
61
202949
2836
以便在可預測的時間範圍內
03:25
in a predictable time window.
62
205827
1919
準確提供你想要的電量。
03:28
So ...
63
208788
1335
所以...
03:30
if you're a power systems manager
64
210165
1710
如果你是電力系統經理,
03:31
whose job is to literally keep the lights on,
65
211916
3129
工作就是確保電燈保持亮著,
03:35
which source are you more confident depending on?
66
215045
2627
你對哪個來源更有信心?
03:38
But here's one of the places where AI can come in.
67
218965
2961
這是 AI 可以發揮作用的地方。
03:41
It is a powerful tool for forecasting.
68
221926
2837
它是強大的預測工具。
03:45
AI systems can ingest vast amounts of historical data
69
225805
3045
AI 系統可以擷取大量歷史數據,
03:48
and help us predict future events.
70
228892
2252
並協助我們預測未來事件。
03:51
So, while we can't eliminate the variability of wind,
71
231853
4087
雖然我們無法消除風的可變化性,
03:55
we can use AI to more accurately predict its availability.
72
235982
4463
但我們可以使用 AI 更準確地預測其可用性。
04:01
That was my team’s “what” to do.
73
241196
2168
這就是我的團隊要做的「事情」,
04:03
Use AI to accelerate the transition to renewables, like wind energy.
74
243907
4296
使用 AI 加速過渡到 再生能源,如風能,
04:08
The tough part was the “how” to do it.
75
248995
3629
困難的是「怎樣」做到這點。
04:13
First, we researched the challenge.
76
253833
2419
首先,我們研究了這個難題。
04:16
We read papers, we spoke to domain experts,
77
256294
2586
我們閱讀論文,與領域專家交流,
04:18
we found out everything we could about the problem.
78
258880
3212
我們儘力找出關於這問題的一切面向。
04:22
Our team, which is a mix of research scientists,
79
262425
2378
我們的團隊由研究科學家、
04:24
engineers, a product manager, a program manager
80
264803
2544
工程師、產品經理、專案經理
04:27
and an impact analyst,
81
267347
1585
和影響力分析師組成,
04:28
decided that a neural net trained on historical weather data
82
268973
3963
他們認為,根據歷史天氣資料 和渦輪發電生產資訊
04:32
and turbine power-production information
83
272936
2210
訓練而成的神經網路,
04:35
would likely help us accomplish our goal.
84
275188
2127
可能會幫助我們實現目標。
04:38
Next, we needed to find two core elements:
85
278233
4296
接下來,我們需要找到兩個核心要素:
04:43
data to train the system
86
283154
2211
用於訓練系統的數據
04:45
and a partner who was willing to deploy it.
87
285365
2836
和願意部署系統的合作夥伴。
04:49
Both of these can be major obstacles
88
289077
2669
在實際情境中部署 AI 時,
04:51
when it comes to deploying AI in real-world scenarios.
89
291746
3670
這兩者都可能是主要障礙。
04:56
Let's start with data.
90
296584
1669
讓我們從數據開始。
04:58
There are massive gaps in climate-critical data --
91
298795
3712
關鍵氣候數據存在巨大差距,
05:02
not just in electricity,
92
302549
2043
不僅在電力方面,
05:04
but in agriculture, transportation, industry and many other sectors.
93
304592
5339
而且在農業,運輸, 工業和許多其他領域。
05:10
Some of our data, we could purchase or download for free --
94
310682
3462
我們可以購買或免費下載某些數據,
05:14
weather forecasts, for instance.
95
314144
2252
例如,天氣預報。
05:16
But some of the data we needed was proprietary,
96
316437
4130
但我們需要的一些數據是專有的,
05:20
and this would be, like, turbine power-production information
97
320608
4171
例如渦輪機發電資訊
05:24
and other operational data from the wind farms.
98
324821
2586
和風力發電場的操作數據。
05:27
Now, we needed that proprietary data so that we could train our models
99
327407
4963
我們需要這些專有數據 來訓練我們的模型,
05:32
to learn the relationship between historical weather
100
332370
3545
學習了解過去天氣 和電力生產之間的關係,
05:35
and historical power production,
101
335915
2086
05:38
so it could then then make predictions about future power availability
102
338042
4130
然後它可以根據未來天氣的數據,
05:42
based on what data said about future weather.
103
342172
2919
預測未來的電力可用性。
05:45
Now it's probably worth mentioning here
104
345800
1919
在此或值得一提的是,
05:47
that we were looking at a few years of data
105
347760
2086
我們正查看幾年來, 每小時分辨率的數據,
05:49
on hourly resolution,
106
349888
1167
而不是時間刻度上的歷史數據,
05:51
not historical data at a timescale
107
351097
1794
05:52
that would have massive climactic differences from present day.
108
352932
3170
因它們與當今數據 存在巨大氣候差異。
05:56
In addition to data,
109
356144
2169
除了數據外,
05:58
we needed to find a partner with domain expertise
110
358313
3962
我們還需要尋找具備領域專業知識,
06:02
and the willingness and scale to test new systems.
111
362275
3503
有意願、也有規模的合作夥伴 來測試新系統。
06:06
You know, surprisingly, this can be a major hurdle
112
366279
4171
出人意外地, 在現實世界中部署 AI,
06:10
when it comes to deploying AI in the real world.
113
370491
2920
這可能是個主要障礙。
06:13
Believe it or not, it's not every wind-farm manager
114
373453
3044
信不信由你, 並不是每個風電場經理
06:16
that wants to let a bunch of AI researchers
115
376539
2002
都想讓一群 AI 研究人員,
06:18
test on their multimillion- or multibillion-dollar systems.
116
378583
4504
在他們價值數億或數十億美元的 系統上進行測試。
06:23
But the thing is, in order to prove that AI works,
117
383129
3879
但問題是, 為了證明 AI 有效,
06:27
we have to have deployment opportunities in the real world.
118
387050
3712
我們必須在現實世界中有部署機會。
06:31
Luckily for us, Google was a ready and willing partner.
119
391721
3462
幸運地,谷歌是個現成 而樂意的合作夥伴。
06:35
OK, yes, DeepMind is a part of Google,
120
395225
3253
是的,DeepMind 是 谷歌的一部分,
06:38
but it's not a given that they would let us test on their systems.
121
398519
5047
但他們不一定會讓我們 在其系統上測試。
06:44
Yet they let us test on 700 megawatts of their wind-power capacity,
122
404108
3671
然而,他們讓我們測試 700 兆瓦 的風力發電能力,
06:47
which is equivalent to a large wind farm in the United States.
123
407779
3503
相當於美國的一個大型風力發電場。
06:51
This made them an excellent proxy for external wind-farm operators.
124
411282
4505
這使它們成為外部 風電場營運商的優秀代理。
06:56
They also lent us an expert team to advise on metrics and benchmarks
125
416246
4754
他們還借給我們一個專家團隊, 就指標和基準測試提供建議,
07:01
and to share the data that we needed.
126
421000
2628
並共享我們所需的數據。
07:03
This is another critical component of AI for the real-world deployments.
127
423628
4212
這是 AI 在現實世界部署的 另一關鍵組件。
07:08
Working with a domain-expert team that can tell you what they need,
128
428258
4879
與領域專家團隊合作, 他們可告訴你他們的需求、
07:13
how they need it to work,
129
433137
1418
如何運作、
07:14
which constraints keep the system safe,
130
434555
2545
哪些限制可確保系統安全、
07:17
what quantifiable metrics to use to measure AI performance
131
437141
4588
使用哪些量化指標 來衡量 AI 性能,
07:21
and how much better that AI performance needs to be
132
441771
3629
以及 AI 性能需要 比之前的系統要好多少,
07:25
than their previous systems
133
445400
1334
07:26
to make the cost of switching over even worth it.
134
446776
2961
才能讓切換成本物超所值。
07:29
And that's just to name a few.
135
449737
1752
而這只是幾個例子。
07:32
So at this point, we have our idea,
136
452448
2837
到這時候,我們已經有想法、
07:35
we have our data, we have our deployment partner.
137
455326
3045
有數據、有部署合作夥伴。
07:38
Now, to test and deploy our system.
138
458371
3503
現在談談測試和部署我們的系統。
07:43
Improving the accuracy of electricity-supply forecast
139
463501
2795
提高電力供應預測的準確性
07:46
is incredibly important.
140
466337
1752
極其重要。
07:48
If predictions are higher than actual generation,
141
468631
3128
如果預測值高於實際發電,
07:51
renewable electricity managers may not have enough supply to meet demand.
142
471801
4463
再生電力管理者未必 有足夠的電力供應來滿足需求。
07:56
This, in turn, drives the purchase of carbon-intensive fossil fuels
143
476264
3628
這反而會迫使他們 購買碳密集型化石燃料,
07:59
to cover that gap,
144
479934
1335
以彌補缺口,
08:01
because they're largely what makes up backup generation.
145
481269
2627
因為它們主要組成備用發電。
08:04
Now, the good news.
146
484605
2002
好消息是,
08:07
Our AI system performed 20 percent better than Google's existing systems.
147
487400
6298
我們的 AI 系統效能 比谷歌現有系統好 20%。
08:13
Even better news is that Google decided to scale this technology.
148
493698
3795
更好的是,谷歌決定 擴展這項技術。
08:17
And scaling is so important.
149
497535
3295
規模化是如此重要。
08:21
We will run out of time in the climate countdown
150
501581
2711
如果我們不去部署 廣泛適用的解決方案 ,
08:24
if we aren't deploying solutions that are widely applicable.
151
504292
3795
我們的時間就會於氣候倒數中耗盡。
08:28
This particular solution is being developed
152
508880
2002
這種特殊的解決方案 正在開發成為軟體產品,
08:30
into a software product
153
510882
1251
08:32
that French company Engie is among the first to pilot.
154
512133
2753
而法國公司 Engie 是首批試點公司。
08:36
But, you know,
155
516179
2127
但你知道,
08:38
it doesn't even take a major research organization to do this kind of work.
156
518348
4004
我們甚至不需要 大型研究組織來做這種工作。
08:42
Where we focused on AI for supply-side forecasting,
157
522393
3420
當我們專注於 AI 進行供給面的預測,
08:45
a small UK-based nonprofit called Open Climate Fix
158
525855
4004
有一家名為 Open Climate Fix 的 英國小型非營利組織
08:49
is focusing on AI for demand-side forecasting.
159
529859
3045
則專注於需求面預測的 AI 。
08:53
They found a willing partner in the UK National Grid,
160
533529
3045
他們在英國國家電網 找到了願意合作的夥伴,
08:56
and are currently deploying forecasts that are two times more accurate
161
536616
5005
目前正在部署的預測,
比英國電網先前使用的系統準確兩倍。
09:01
than the UK grid's previously used systems.
162
541621
2836
09:05
Now, all of this is to say is that AI can help us
163
545375
4504
這一切都在告訴我們,
AI 能幫助我們過渡到再生能源,
09:09
with the transition to renewable energy,
164
549921
1960
09:11
but scientists and technologists,
165
551923
2043
但科學家和技術人員,
09:13
we're not going to be able to do that alone.
166
553966
2294
並不能單獨做到這點。
09:16
We need to be working with partners and experts
167
556302
3087
我們要和合作夥伴及專家一同工作,
09:19
who can teach us the “how.”
168
559430
1669
因他們能教導我們「怎樣」做。
09:21
So for those of you interested in this space,
169
561974
4046
因此,對這個領域感興趣的人來說,
09:26
if you're a domain expert,
170
566020
2211
如果你是領域專家,
09:28
please share the problems you face and the challenges that you have
171
568272
3546
請分享你面對的問題和挑戰,
09:31
so that our sector can ensure
172
571818
1960
以便我們的行業可以確保
09:33
that AI pursuits will have impact in the real world
173
573820
3253
AI 的追求將在現實世界中產生影響,
09:37
and not be purely academic.
174
577115
2210
而不是純理論的。
09:40
Even better,
175
580118
1376
更好的是,
09:41
if you want to incentivize ML researchers to work on your problems,
176
581536
3253
若你想激勵機器學習的 研究人員去解決你的問題,
09:44
I'll let you in on a little secret:
177
584831
2335
告訴你一個小秘訣:
09:47
build a competition, and they will come.
178
587208
2586
舉辦競賽,他們就來。
09:49
(Laughter)
179
589836
1293
(笑聲)
09:51
It's true.
180
591170
1168
是真的。
09:52
Just don't forget the datasets and metrics.
181
592338
2669
不過,不要忘記數據集和指標。
09:55
If you are a data holder, where it’s safe and responsible to do so,
182
595675
7007
如果你是數據持有者, 在安全且負責的情況下,
10:02
please share data related to those challenges.
183
602682
3211
請分享與這些問題相關的數據。
10:06
If you're not sure whether the data you have is even climate-critical,
184
606436
3420
如果你不確定自己擁有的數據 是否對氣候至關重要,
10:09
you can check out Climate Change AI's website,
185
609856
2460
可以查看 Climate Change AI 的網站,
10:12
where they have published a wish list of climate-critical datasets.
186
612358
4463
在那裡他們發布了 氣候關鍵數據集的願望清單。
10:16
Access to these datasets
187
616821
1251
若能取得這些數據集,
10:18
would unblock crucial research and innovation in AI for climate.
188
618114
4046
將掃除 AI 在氣候方面 的關鍵研究和創新的障礙。
10:23
If you're a deployment partner,
189
623619
2378
如果你願意成為部署合作夥伴,
10:25
please, let us know who you are,
190
625997
2002
請告訴我們,
特別是如果你願意測試創新系統。
10:28
especially if you're willing to test innovative systems.
191
628040
3254
10:32
And for everyone who's interested in this space,
192
632753
3504
至於每一位對這個領域感興趣的人,
10:36
please know you do not have to be technical to work in tech.
193
636299
4337
請知道你不必具備技術背景, 也能從事技術工作。
10:41
AI for climate action requires a variety of skill sets
194
641429
4046
應用於氣候行動的 AI
需要各種技能和多元的背景,
10:45
and a diversity of backgrounds
195
645475
1793
10:47
that, yes, includes research scientists and engineers,
196
647310
3295
是的,包括研究科學家和工程師,
10:50
but it also includes ethicists and policy experts,
197
650646
3629
但也包括倫理學家和政策專家、
10:54
communication teams, product managers,
198
654275
2336
溝通團隊、產品經理、
10:56
program managers and so many more folks.
199
656611
2919
項目經理及其他人才等等。
11:01
Now for the warning label.
200
661282
1752
現在談談警告。
11:04
AI is not a silver bullet.
201
664160
2002
AI 不是靈丹妙藥。
11:07
It will not solve all problems driving climate change.
202
667038
3044
它無法解決 導致氣候變化的所有問題。
11:10
It isn't even the right tool for many of the challenges that we face.
203
670082
3546
對於我們面臨的許多挑戰, 它甚至不是正確的工具。
11:14
AI is also not a technology without tensions.
204
674212
3586
AI 也不是一門輕鬆科技。
11:18
It needs to be deployed safely and responsibly.
205
678216
3378
它需要安全地、負責任地部署。
11:21
Not to mention,
206
681928
1167
更不用說,
11:23
until our grids are run on clean energy, AI itself will carry a carbon footprint,
207
683137
4088
除非我們的電網使用清潔能源, AI 本身將帶來碳足跡,
11:27
as will any energy-intensive technology we use.
208
687225
3920
我們使用的任何 能源密集型科技也一樣。
11:33
But AI can be a transformational tool in our fight against climate change --
209
693314
5422
但是,AI 可以成為 我們應對氣候變化的轉型工具-
11:38
it's just on all of us to wield it effectively.
210
698778
2961
只是需要我們所有人有效地運用它。
11:42
The “why” we need to is absolutely harrowing.
211
702865
3962
我們要做的「原因」絕對痛苦,
11:46
The “what” we can do is really exciting.
212
706869
3420
而能做的「事情」確實令人興奮。
11:50
But it’s the “how” we can do it
213
710331
2294
但正是我們能「怎樣」做到,
11:52
that will illuminate feasibility and help us drive impact.
214
712667
3753
將啟發可行性,並幫助我們產生影響。
11:57
So, in your next climate action conversations,
215
717046
4129
因此,下一次,在氣候行動對話中,
12:01
when someone presents you with an exciting "what,"
216
721175
4296
當有人向你提出 讓人振奮的「事情」時,
12:05
please help to advance the conversation
217
725513
2502
請幫忙將對話推進,
12:08
to the impactful "how."
218
728015
2878
朝向有影響力的「怎樣」做。
12:10
Thank you.
219
730935
1209
謝謝。
12:12
(Cheers and applause)
220
732186
3921
(歡呼聲及掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7