How data is helping us unravel the mysteries of the brain | Steve McCarroll

70,357 views ・ 2018-09-24

TED


请双击下面的英文字幕来播放视频。

翻译人员: jacks peng 校对人员: Yolanda Zhang
00:12
Nine years ago,
0
12785
1704
9年前,
00:14
my sister discovered lumps in her neck and arm
1
14513
3101
我妹妹在她的脖子和 手臂上发现了肿块,
00:17
and was diagnosed with cancer.
2
17638
1760
随后她被诊断出患有癌症。
00:20
From that day, she started to benefit
3
20985
3199
从那天起,她开始受益于
00:24
from the understanding that science has of cancer.
4
24208
3115
关于癌症的科学理论。
00:28
Every time she went to the doctor,
5
28206
2099
每次她去看医生,
00:30
they measured specific molecules
6
30329
2194
医生们会通过测量她体内的特定分子
00:32
that gave them information about how she was doing
7
32547
2881
来获得她的生理状态信息,
00:35
and what to do next.
8
35452
1309
并决定接下来应该做什么。
00:38
New medical options became available every few years.
9
38095
3666
每隔几年就会有新的医疗手段可供选择。
00:43
Everyone recognized that she was struggling heroically
10
43070
4318
每个人都意识到她在英勇地
00:47
with a biological illness.
11
47412
1728
与一种生理疾病作斗争。
00:50
This spring, she received an innovative new medical treatment
12
50847
3657
今年春天,她在一次临床试验中接受了
00:54
in a clinical trial.
13
54528
1202
一种新的疗法。
00:55
It dramatically knocked back her cancer.
14
55754
2224
该疗法显著地击退了她的癌症。
00:59
Guess who I'm going to spend this Thanksgiving with?
15
59446
2552
猜猜我今年要跟谁一起过感恩节?
01:02
My vivacious sister,
16
62022
2267
我那活泼的妹妹,
01:04
who gets more exercise than I do,
17
64313
2629
她的运动量比我都多,
01:06
and who, like perhaps many people in this room,
18
66966
2859
而她,可能跟在座的很多人一样,
01:09
increasingly talks about a lethal illness
19
69849
2292
会越来越多地谈论过去的
01:12
in the past tense.
20
72165
1263
那种致命疾病。
01:14
Science can, in our lifetimes -- even in a decade --
21
74614
3863
科学可以在我们的有生之年—— 甚至在十年之内——
01:18
transform what it means to have a specific illness.
22
78501
3207
改变患特定疾病的含义。
01:24
But not for all illnesses.
23
84055
1534
但不是所有的疾病。
01:27
My friend Robert and I were classmates in graduate school.
24
87375
3722
我和罗伯特是研究生同学。
01:31
Robert was smart,
25
91121
1801
罗伯特很聪明,
01:32
but with each passing month,
26
92946
1477
但随着时间的流逝,
01:34
his thinking seemed to become more disorganized.
27
94447
3154
他的思考似乎变得杂乱无章。
01:38
He dropped out of school, got a job in a store ...
28
98241
3198
他退了学,在一家商店找了份工作。
01:41
But that, too, became too complicated.
29
101463
2218
但那里的环境也让他 觉得越来越难以应付。
01:44
Robert became fearful and withdrawn.
30
104559
2945
罗伯特变得恐惧和孤僻。
01:48
A year and a half later, he started hearing voices
31
108281
2381
一年半后,他开始听到声音,
01:50
and believing that people were following him.
32
110686
2197
确信有人在尾随他。
01:52
Doctors diagnosed him with schizophrenia,
33
112907
2722
医生诊断他患有精神分裂症,
01:55
and they gave him the best drug they could.
34
115653
2120
给了他当时能提供的最好的药物。
01:57
That drug makes the voices somewhat quieter,
35
117797
3008
这个药物让他脑中的声音变轻了,
02:00
but it didn't restore his bright mind or his social connectedness.
36
120829
3989
但并没有恢复他聪明的头脑或社会联系。
02:06
Robert struggled to remain connected
37
126270
1856
罗伯特很难与学校,工作和朋友的
02:08
to the worlds of school and work and friends.
38
128150
2857
世界保持连接。
02:11
He drifted away,
39
131031
1383
他走失了,
02:12
and today I don't know where to find him.
40
132438
2285
今天我都不知道去哪里找到他。
02:15
If he watches this,
41
135593
1479
如果他看到这个演讲,
02:17
I hope he'll find me.
42
137962
1628
我希望他会来找我。
02:22
Why does medicine have so much to offer my sister,
43
142639
4107
为什么医学可以对我妹妹 有如此大的帮助,
02:27
and so much less to offer millions of people like Robert?
44
147540
4210
但对像罗伯特那样的 数百万人却无能为力呢?
02:32
The need is there.
45
152952
1290
需求就在那里。
02:34
The World Health Organization estimates that brain illnesses
46
154266
3153
世界卫生组织估计
02:37
like schizophrenia, bipolar disorder and major depression
47
157443
4115
像精神分裂症,双相情感障碍和 重度抑郁症之类的大脑疾病
02:41
are the world's largest cause of lost years of life and work.
48
161582
4971
是世界上导致寿命折损和 工作能力丧失的最主要原因。
02:47
That's in part because these illnesses often strike early in life,
49
167807
3561
一定程度上是因为这些疾病 经常发生在生命早期,
02:51
in many ways, in the prime of life,
50
171392
2181
往往也是生命的黄金时期,
02:53
just as people are finishing their educations, starting careers,
51
173597
4464
就在人们完成学业,开始职业发展,
02:58
forming relationships and families.
52
178085
2279
形成稳定关系和家庭的时期。
03:00
These illnesses can result in suicide;
53
180388
2829
这些疾病会引发自杀;
03:03
they often compromise one's ability to work at one's full potential;
54
183907
4567
它们经常会导致人们无法 充分发挥自己的潜能;
03:09
and they're the cause of so many tragedies harder to measure:
55
189767
3455
它们也导致了很多难以估量的悲剧:
03:13
lost relationships and connections,
56
193246
2438
失去人际关系,
03:15
missed opportunities to pursue dreams and ideas.
57
195708
3039
错过追求梦想和实现理想的机会。
03:19
These illnesses limit human possibilities
58
199533
3005
这些疾病限制了人类的可能性,
03:22
in ways we simply cannot measure.
59
202562
2154
我们却无法衡量这种损失。
03:27
We live in an era in which there's profound medical progress
60
207493
4016
我们生活的时代,在很多其他领域
03:31
on so many other fronts.
61
211533
1811
已经实现了巨大的医疗进步。
03:33
My sister's cancer story is a great example,
62
213368
2547
我妹妹的故事 就是一个很好的例子,
03:35
and we could say the same of heart disease.
63
215939
2062
对于心脏病,我们同样可以做到。
像他汀类的药物可以预防 数百万例心脏病发作和中风。
03:38
Drugs like statins will prevent millions of heart attacks and strokes.
64
218025
3585
03:43
When you look at these areas of profound medical progress
65
223047
2945
当你留心观察我们生活中 这些有着深远的
03:46
in our lifetimes,
66
226016
1464
医疗进步的领域,
03:47
they have a narrative in common:
67
227504
1674
它们都有一个共同的特点:
03:50
scientists discovered molecules that matter to an illness,
68
230067
4548
科学家发现了与疾病有关的分子,
03:54
they developed ways to detect and measure those molecules in the body,
69
234639
4679
发明了检测和测量体内分子的方法,
04:00
and they developed ways to interfere with those molecules
70
240492
2778
并开发了用其他分子,也就是药物,
04:03
using other molecules -- medicines.
71
243294
2048
来干扰这些分子的方法。
04:05
It's a strategy that has worked again and again and again.
72
245921
4020
这是一种不断重复的策略。
04:11
But when it comes to the brain, that strategy has been limited,
73
251403
3642
但涉及到大脑时, 这个策略的作用受到了限制,
04:15
because today, we don't know nearly enough, yet,
74
255069
4602
因为今天,我们对大脑如何工作的
04:19
about how the brain works.
75
259695
1852
了解还很有限。
04:22
We need to learn which of our cells matter to each illness,
76
262526
4266
我们需要知道哪个细胞与疾病有关,
04:26
and which molecules in those cells matter to each illness.
77
266816
3570
这些细胞中的哪些分子 对哪种疾病起到了关键作用。
04:31
And that's the mission I want to tell you about today.
78
271058
2651
这就是我今天要向各位介绍的使命。
04:34
My lab develops technologies with which we try to turn the brain
79
274781
3809
我的实验室开发了可以把大脑问题
04:38
into a big-data problem.
80
278614
1700
转变为大数据问题的技术。
04:40
You see, before I became a biologist, I worked in computers and math,
81
280338
3536
在成为生物学家前, 我的工作围绕着电脑和数学,
04:43
and I learned this lesson:
82
283898
1324
从中我有了这样的收获:
04:46
wherever you can collect vast amounts of the right kinds of data
83
286365
4184
只要你能收集到关于某个系统功能的
04:50
about the functioning of a system,
84
290573
2030
大量正确的数据,
04:53
you can use computers in powerful new ways
85
293365
3618
你就可以在电脑上用强大的新方法
04:57
to make sense of that system and learn how it works.
86
297007
3225
搞清楚该系统及其工作原理。
05:00
Today, big-data approaches are transforming
87
300256
2522
今天,大数据方法正在改变
05:02
ever-larger sectors of our economy,
88
302802
2483
我们经济中规模越来越大的部门,
05:05
and they could do the same in biology and medicine, too.
89
305309
3286
它们也可以在生物和医学上有所作为。
05:08
But you have to have the right kinds of data.
90
308619
2557
但你必须得有正确的数据。
05:11
You have to have data about the right things.
91
311200
2259
你必须得到真正想要的数据。
05:13
And that often requires new technologies and ideas.
92
313917
3865
而这通常依赖于新的技术和想法。
05:18
And that is the mission that animates the scientists in my lab.
93
318815
3494
这就是我实验室里的科学家们的使命。
05:23
Today, I want to tell you two short stories from our work.
94
323251
2974
今天,我想要告诉各位 我们工作中的两个小故事。
05:27
One fundamental obstacle we face
95
327427
3104
在试图把大脑转化为大数据问题时,
05:30
in trying to turn the brain into a big-data problem
96
330555
2660
摆在我们面前的一个基本障碍是,
05:33
is that our brains are composed of and built from billions of cells.
97
333946
4538
我们的大脑由数十亿细胞组成。
05:39
And our cells are not generalists; they're specialists.
98
339246
3859
这些细胞不是多面手,它们是专家。
05:43
Like humans at work,
99
343129
2089
就如人们在工作中一样,
05:45
they specialize into thousands of different cellular careers,
100
345242
5274
它们分别擅长于 成千上万不同的细胞职业,
05:50
or cell types.
101
350540
1367
或细胞类型。
05:52
In fact, each of the cell types in our body
102
352796
2571
事实上,我们可以围绕 身体的每个细胞类型
05:55
could probably give a lively TED Talk
103
355391
1878
在TED上做一场有关它们工作原理的
05:57
about what it does at work.
104
357293
1542
生动的演讲。
06:00
But as scientists, we don't even know today
105
360422
2370
但作为科学家,我们今天甚至还不知道
06:02
how many cell types there are,
106
362816
1907
总共有多少细胞类型,
06:04
and we don't know what the titles of most of those talks would be.
107
364747
3277
也不知道大部分演讲的标题是什么。
06:11
Now, we know many important things about cell types.
108
371809
2970
我们已经了解了关于细胞类型的 很多重要的信息。
06:14
They can differ dramatically in size and shape.
109
374803
2751
它们的大小和形状有很大的差异。
06:17
One will respond to a molecule that the other doesn't respond to,
110
377578
4135
有些会对某个分子 产生反应,另一些则不会,
06:21
they'll make different molecules.
111
381737
1794
它们会制造不同的分子。
06:23
But science has largely been reaching these insights
112
383555
2521
但是科学在很大程度上 是以一种特别的方式
06:26
in an ad hoc way, one cell type at a time,
113
386100
2943
来得到这些见解的, 一次一种细胞类型,
06:29
one molecule at a time.
114
389067
1486
一次一种分子。
06:31
We wanted to make it possible to learn all of this quickly and systematically.
115
391854
4731
我们希望能够快速、 系统地学习所有这些知识。
06:37
Now, until recently, it was the case
116
397673
1748
一直以来,如果你想要
06:39
that if you wanted to inventory all of the molecules
117
399445
3076
对大脑或任何器官的所有分子
06:42
in a part of the brain or any organ,
118
402545
2925
进行编目,
06:45
you had to first grind it up into a kind of cellular smoothie.
119
405494
3954
你得先把这些细胞研磨成 奶昔一样的浆状。
06:50
But that's a problem.
120
410678
1230
但这就是问题了。
06:52
As soon as you've ground up the cells,
121
412737
2538
一旦你已经把细胞磨碎了,
06:55
you can only study the contents of the average cell --
122
415299
3511
你就只能在平均水平上研究细胞——
06:58
not the individual cells.
123
418834
1595
无法得到单个细胞的信息。
07:01
Imagine if you were trying to understand how a big city like New York works,
124
421182
3709
假设你想搞清楚像纽约 这样的大城市是如何运转的,
07:04
but you could only do so by reviewing some statistics
125
424915
2542
但只能通过查看纽约居民的
07:07
about the average resident of New York.
126
427481
2029
平均统计数据。
07:10
Of course, you wouldn't learn very much,
127
430637
1979
当然,这样一来你得到的 信息就很有限了,
07:12
because everything that's interesting and important and exciting
128
432640
3000
因为有趣,重要,让人激动的一切
07:15
is in all the diversity and the specializations.
129
435664
2732
都蕴藏在多样性和专门化中。
07:18
And the same thing is true of our cells.
130
438420
2606
我们的细胞也同样如此。
07:21
And we wanted to make it possible to study the brain not as a cellular smoothie
131
441050
4750
我想要让研究大脑不像研究奶昔那样,
07:25
but as a cellular fruit salad,
132
445824
2478
而像研究水果沙拉,
07:28
in which one could generate data about and learn from
133
448326
2604
这样就能从每一片水果中
07:30
each individual piece of fruit.
134
450954
1838
得到数据进行学习。
07:34
So we developed a technology for doing that.
135
454253
2718
于是我们为此开发了一种技术。
07:36
You're about to see a movie of it.
136
456995
1729
下面展示的就是关于它的影片。
07:41
Here we're packaging tens of thousands of individual cells,
137
461477
4028
我们打包了成千上万的单个细胞,
07:45
each into its own tiny water droplet
138
465529
2923
每一个都拥有包裹自身的小水滴,
07:48
for its own molecular analysis.
139
468476
2211
以用来做自身的分子分析。
07:51
When a cell lands in a droplet, it's greeted by a tiny bead,
140
471921
4123
当一个细胞降落在一个小液滴上时, 就会接触到一个小珠子,
07:56
and that bead delivers millions of DNA bar code molecules.
141
476068
3694
而这个珠子能传递 数百万个DNA条码分子。
08:01
And each bead delivers a different bar code sequence
142
481115
3308
每一个珠子都向不同的细胞
08:04
to a different cell.
143
484447
1243
传递不同的条形码序列。
08:06
We incorporate the DNA bar codes
144
486884
2581
我们将DNA条码整合到
08:09
into each cell's RNA molecules.
145
489489
3058
每个细胞的RNA分子中。
08:12
Those are the molecular transcripts it's making
146
492571
2836
这些是它用来完成工作的
08:15
of the specific genes that it's using to do its job.
147
495431
3103
特定基因的分子转录信息。
08:19
And then we sequence billions of these combined molecules
148
499383
4207
然后我们对数十亿的 组合分子进行测序,
08:24
and use the sequences to tell us
149
504532
2498
并利用这些序列来了解
08:27
which cell and which gene
150
507054
2602
每个分子分别来自于
08:29
every molecule came from.
151
509680
1540
哪个细胞和哪个基因。
08:32
We call this approach "Drop-seq," because we use droplets
152
512561
3292
我们称这种方法为“液滴测序”, 因为我们使用液滴
08:35
to separate the cells for analysis,
153
515877
2575
分离细胞来做分析,
08:38
and we use DNA sequences to tag and inventory
154
518476
3445
我们使用DNA序列来标记、编目
08:41
and keep track of everything.
155
521945
1488
和追踪所有信息。
08:44
And now, whenever we do an experiment,
156
524727
1976
每次做实验,
08:46
we analyze tens of thousands of individual cells.
157
526727
3243
我们都会分析数以万计的单细胞。
08:51
And today in this area of science,
158
531018
2624
当今,在这个科学领域,
08:53
the challenge is increasingly how to learn as much as we can
159
533666
4931
我们面临的挑战是如何尽可能多,
08:58
as quickly as we can
160
538621
1872
且尽可能快地从这些
09:00
from these vast data sets.
161
540517
1738
海量数据集中学习。
09:04
When we were developing Drop-seq, people used to tell us,
162
544914
2770
当我们发明液滴测序时,人们告诉我们,
09:07
"Oh, this is going to make you guys the go-to for every major brain project."
163
547708
4804
“哦,这将使你们的工作成为 每个主要大脑项目的首选。”
09:13
That's not how we saw it.
164
553257
1544
我们不是这样看的。
09:14
Science is best when everyone is generating lots of exciting data.
165
554825
4531
当每个人都产生大量令人兴奋的 数据时,科学就是最好的手段。
09:20
So we wrote a 25-page instruction book,
166
560197
3214
于是我们写了25页的指南,
09:23
with which any scientist could build their own Drop-seq system from scratch.
167
563435
4578
任何科学家都可以借此从零开始 开发他们自己的液滴测序技术。
09:28
And that instruction book has been downloaded from our lab website
168
568037
3697
这个指南过去两年在我们实验室网站的
09:31
50,000 times in the past two years.
169
571758
2965
下载次数为5万次。
09:35
We wrote software that any scientist could use
170
575598
3052
每个科学家还可以用我们编写的软件
09:38
to analyze the data from Drop-seq experiments,
171
578674
2898
来分析通过液滴测序得到的实验数据,
09:41
and that software is also free,
172
581596
1715
而这个软件也是免费的,
09:43
and it's been downloaded from our website 30,000 times in the past two years.
173
583335
4388
过去两年在我们的网站被下载了3万次。
09:48
And hundreds of labs have written us about discoveries that they've made
174
588328
4979
数百家实验室给我们写信, 介绍了他们使用这种方法
09:53
using this approach.
175
593331
1443
得到的发现。
09:54
Today, this technology is being used to make a human cell atlas.
176
594798
3560
今天,这项技术已经被用来 制作人类细胞图谱。
09:58
It will be an atlas of all of the cell types in the human body
177
598382
3354
它是人体所有细胞类型, 以及每个用来完成
10:01
and the specific genes that each cell type uses to do its job.
178
601760
3680
其工作的细胞类型的 特定基因的图谱。
10:08
Now I want to tell you about a second challenge that we face
179
608133
2876
现在我想谈一下把大脑问题
10:11
in trying to turn the brain into a big data problem.
180
611033
2448
转变为大数据问题所面临第二个挑战。
10:13
And that challenge is that we'd like to learn from the brains
181
613505
3279
那就是,我们需要研究
10:16
of hundreds of thousands of living people.
182
616808
2444
成千上万活人的大脑。
10:19
But our brains are not physically accessible while we're living.
183
619998
3704
但是我们还没有办法接触活体大脑。
10:24
But how can we discover molecular factors if we can't hold the molecules?
184
624895
3960
如果我们不能控制分子, 要如何发现分子因子呢?
10:30
An answer comes from the fact that the most informative molecules, proteins,
185
630352
4548
答案来自于信息最丰富的分子,蛋白质,
10:34
are encoded in our DNA,
186
634924
1782
它们编码在我们的DNA中,
10:36
which has the recipes our cells follow to make all of our proteins.
187
636730
4530
DNA携带了我们的细胞所遵循的食谱, 用来制造我们所有的蛋白质。
10:41
And these recipes vary from person to person to person
188
641999
4946
这些食谱的内容因人而异,
10:46
in ways that cause the proteins to vary from person to person
189
646969
3342
所制造的蛋白质会根据不同人的
10:50
in their precise sequence
190
650335
1787
精确序列而变化,
10:52
and in how much each cell type makes of each protein.
191
652146
3151
而且每个细胞类型对每种 蛋白质的影响程度不同。
10:56
It's all encoded in our DNA, and it's all genetics,
192
656441
3393
这些信息全都编码在我们的 DNA中,都是可遗传的,
10:59
but it's not the genetics that we learned about in school.
193
659858
2817
但这不是我们在学校学到的遗传。
11:03
Do you remember big B, little b?
194
663572
1983
你还记得大B,小b吗?
11:06
If you inherit big B, you get brown eyes?
195
666260
2400
如果继承了大B,你就有棕色的眼睛?
11:09
It's simple.
196
669085
1223
原理很简单。
11:11
Very few traits are that simple.
197
671451
3173
很少有这样简单的特征。
11:15
Even eye color is shaped by much more than a single pigment molecule.
198
675232
4725
即便塑造眼睛颜色的因素也要 比单一色素分子多很多。
11:20
And something as complex as the function of our brains
199
680861
4250
像我们大脑功能那样复杂的东西
11:25
is shaped by the interaction of thousands of genes.
200
685135
3247
是由上千个基因的相互作用塑造的。
11:28
And each of these genes varies meaningfully
201
688406
2340
每一个基因在人与人之间
11:30
from person to person to person,
202
690770
1838
都有显著的差异,
11:32
and each of us is a unique combination of that variation.
203
692632
3517
我们每个人都是这种变异的独特组合。
11:37
It's a big data opportunity.
204
697419
2216
这是大数据的机会。
11:40
And today, it's increasingly possible to make progress
205
700214
3176
今天,我们越来越有可能
11:43
on a scale that was never possible before.
206
703414
2796
在史无前例的规模上取得进展。
11:46
People are contributing to genetic studies
207
706234
2405
参与遗传研究的人数
11:48
in record numbers,
208
708663
1594
创下了记录,
11:51
and scientists around the world are sharing the data with one another
209
711085
4087
全球各地的科学家彼此分享数据
11:55
to speed progress.
210
715196
1571
以加速取得进展。
11:57
I want to tell you a short story about a discovery we recently made
211
717514
3239
我想通过一个简短的故事 介绍一下我们最近
12:00
about the genetics of schizophrenia.
212
720777
1894
在精神分裂遗传学方面的发现。
12:03
It was made possible by 50,000 people from 30 countries,
213
723506
4596
该发现包含了来自30多个 国家的5万人贡献的DNA,
12:08
who contributed their DNA to genetic research on schizophrenia.
214
728126
4700
用来进行精神分裂的遗传研究。
12:14
It had been known for several years
215
734406
2096
很多年前我们就知道,
12:16
that the human genome's largest influence on risk of schizophrenia
216
736526
4111
人类基因组对患上 精神分裂症风险的最大影响
12:20
comes from a part of the genome
217
740661
1802
来自我们的部分基因组,
12:22
that encodes many of the molecules in our immune system.
218
742487
3344
这些基因组编码了我们 免疫系统中的很多分子。
12:25
But it wasn't clear which gene was responsible.
219
745855
3034
但目前还不清楚哪个基因起了作用。
12:29
A scientist in my lab developed a new way to analyze DNA with computers,
220
749746
4040
我实验室的科学家开发了一个 使用电脑分析DNA的新方法,
12:33
and he discovered something very surprising.
221
753810
3095
他发现了一些让人惊讶的事情。
12:36
He found that a gene called "complement component 4" --
222
756929
3251
他发现了一个被称为 补体成分4的基因——
12:40
it's called "C4" for short --
223
760204
1799
简称为C4——
12:43
comes in dozens of different forms in different people's genomes,
224
763036
3889
在不同人的基因组中 有几十种不同的形式,
12:46
and these different forms make different amounts
225
766949
3197
这些不同的形式会产出我们大脑中
12:50
of C4 protein in our brains.
226
770170
2242
不同数量的C4蛋白质。
12:52
And he found that the more C4 protein our genes make,
227
772957
3985
他发现我们的基因 产生的C4蛋白质越多,
12:56
the greater our risk for schizophrenia.
228
776966
2112
患精神分裂的风险就越高。
12:59
Now, C4 is still just one risk factor in a complex system.
229
779919
4907
目前,C4只是一个 复杂系统中的风险因素之一。
13:04
This isn't big B,
230
784850
1989
这不是大B,
13:06
but it's an insight about a molecule that matters.
231
786863
3557
但这是一个对重要分子的洞察。
13:11
Complement proteins like C4 were known for a long time
232
791492
3637
像C4那样的补体分子因它们 在免疫系统中的角色
13:15
for their roles in the immune system,
233
795153
1953
很早就被人了解,
13:17
where they act as a kind of molecular Post-it note
234
797130
2778
它们扮演着类似便利贴的角色,
13:19
that says, "Eat me."
235
799932
1580
写着,“吃我”。
13:22
And that Post-it note gets put on lots of debris
236
802475
2667
这些便利贴被放在我们身体的
13:25
and dead cells in our bodies
237
805166
2357
很多废弃物和死细胞上,
13:27
and invites immune cells to eliminate them.
238
807547
2490
邀请免疫细胞去清除它们。
13:30
But two colleagues of mine found that the C4 Post-it note
239
810779
3539
但我们的两个同事发现C4便利贴
13:35
also gets put on synapses in the brain
240
815183
3298
也被贴到了大脑的突触上面,
13:38
and prompts their elimination.
241
818505
1864
促进了这些突触连接消失。
13:41
Now, the creation and elimination of synapses is a normal part
242
821154
3266
突触的创造和消除是 人类发展和学习的
13:44
of human development and learning.
243
824444
1854
正常部分。
13:46
Our brains create and eliminate synapses all the time.
244
826322
2921
我们的大脑一直在创造和消除突触。
13:49
But our genetic results suggest that in schizophrenia,
245
829921
2960
但我们的遗传研究结果表明, 在精神分裂过程中,
13:52
the elimination process may go into overdrive.
246
832905
3233
这个清除可能在超速运行。
13:57
Scientists at many drug companies tell me they're excited about this discovery,
247
837185
3929
很多医药公司的科学家告诉我, 他们对这个发现感到非常兴奋,
14:01
because they've been working on complement proteins for years
248
841138
3239
因为他们在免疫系统的 补体分子上已经
14:04
in the immune system,
249
844401
1540
花费了数年功夫,
14:05
and they've learned a lot about how they work.
250
845965
2206
对这些分子的工作原理 也有了更深入的了解。
14:08
They've even developed molecules that interfere with complement proteins,
251
848885
3894
他们甚至开发了分子来干预补体分子,
14:12
and they're starting to test them in the brain as well as the immune system.
252
852803
3607
并在大脑和免疫系统中进行测试。
14:17
It's potentially a path toward a drug that might address a root cause
253
857124
4721
这可能是一种去除根本病因的药物,
14:21
rather than an individual symptom,
254
861869
2649
而不只针对单个症状,
14:24
and we hope very much that this work by many scientists over many years
255
864542
4048
我们非常希望许多科学家 多年来所做的工作
14:28
will be successful.
256
868614
1152
能够成功。
14:31
But C4 is just one example
257
871689
3014
但C4只是数据驱动的 科学方法的一个例子,
14:34
of the potential for data-driven scientific approaches
258
874727
3112
有可能在存在了几个世纪的
14:37
to open new fronts on medical problems that are centuries old.
259
877863
3903
医疗问题上开辟新的战线。
14:42
There are hundreds of places in our genomes
260
882144
2745
在我们的基因组中有数百个地方
14:44
that shape risk for brain illnesses,
261
884913
2585
存在影响大脑疾病的风险,
14:47
and any one of them could lead us to the next molecular insight
262
887522
4066
它们中的任何一个都能带给我们
14:51
about a molecule that matters.
263
891612
2020
关于下一个重要分子的洞见。
14:53
And there are hundreds of cell types that use these genes in different combinations.
264
893656
3987
有数百种细胞类型在不同的 组合中使用这些基因。
14:57
As we and other scientists work to generate
265
897667
2069
我和其他科学家合作生成了
14:59
the rest of the data that's needed
266
899760
2069
能够让我们获得所有信息的
15:01
and to learn all that we can from that data,
267
901853
2393
余下的部分数据,
15:04
we hope to open many more new fronts.
268
904270
2403
我们希望开辟更多的新战线。
15:08
Genetics and single-cell analysis are just two ways
269
908483
5079
遗传和单细胞分析只是试图将大脑
15:13
of trying to turn the brain into a big data problem.
270
913586
3767
转化为大数据问题的两种方式。
15:18
There is so much more we can do.
271
918424
2159
我们能做的事情太多了。
15:21
Scientists in my lab are creating a technology
272
921235
3074
我实验室的科学家正在开发一种技术
15:24
for quickly mapping the synaptic connections in the brain
273
924333
3196
来快速绘制大脑中的突触连接,
15:27
to tell which neurons are talking to which other neurons
274
927553
2938
以辨别哪些神经元在 与其他神经元交流,
15:30
and how that conversation changes throughout life and during illness.
275
930515
3996
以及这些交流在衰老和 疾病中是如何变化的。
15:35
And we're developing a way to test in a single tube
276
935467
4520
我们正在开发一种方法, 在单管道中测试
15:40
how cells with hundreds of different people's genomes
277
940011
2718
包含上百种人类基因的细胞
15:42
respond differently to the same stimulus.
278
942753
2170
如何对同样的刺激做出不同的反应。
15:46
These projects bring together people with diverse backgrounds
279
946248
4903
这些项目将拥有不同背景,
15:51
and training and interests --
280
951175
2493
不同教育和兴趣——
15:53
biology, computers, chemistry, math, statistics, engineering.
281
953692
5877
如生物、计算机、化学、数学、 统计学、工程学的人吸引到一起。
16:00
But the scientific possibilities rally people with diverse interests
282
960205
4232
科学的可能性让 兴趣各异的人聚集到一起,
16:04
into working intensely together.
283
964461
2235
共同努力工作。
16:08
What's the future that we could hope to create?
284
968871
2551
我们期待的未来是什么样呢?
16:12
Consider cancer.
285
972267
1350
想想癌症。
16:14
We've moved from an era of ignorance about what causes cancer,
286
974193
3922
我们已经走出对癌症致因 一无所知的时代,
16:18
in which cancer was commonly ascribed to personal psychological characteristics,
287
978139
6988
那时癌症常被归因于 个人的心理特征,
16:26
to a modern molecular understanding of the true biological causes of cancer.
288
986238
5395
而今天,对引发癌症真正的生物学原因, 我们已经有了现代分子层面的认识。
16:32
That understanding today leads to innovative medicine
289
992100
3074
这种认识引领了
16:35
after innovative medicine,
290
995198
1696
不断创新的医学,
16:36
and although there's still so much work to do,
291
996918
2839
尽管仍然有很多的工作要做,
16:39
we're already surrounded by people who have been cured of cancers
292
999781
3394
我们周围已经有很多人的癌症被治愈了,
16:43
that were considered untreatable a generation ago.
293
1003199
3269
而在一代人以前,这些癌症还 被认为是无药可治的。
16:48
And millions of cancer survivors like my sister
294
1008254
3376
数百万像我妹妹那样的癌症幸存者
16:51
find themselves with years of life that they didn't take for granted
295
1011654
4401
发现自己拥有了意外得到的
16:56
and new opportunities
296
1016079
1769
若干年生命,以及工作,快乐
16:57
for work and joy and human connection.
297
1017872
3930
和建立人际关系的新机遇。
17:03
That is the future that we are determined to create around mental illness --
298
1023358
4378
这就是我们决心围绕精神疾病 去创造的未来——
17:08
one of real understanding and empathy
299
1028581
4119
一个充满着真正的理解、共情
17:12
and limitless possibility.
300
1032724
1816
和无限可能的未来。
17:15
Thank you.
301
1035159
1190
谢谢。
17:16
(Applause)
302
1036374
4062
(鼓掌)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7