How data is helping us unravel the mysteries of the brain | Steve McCarroll
70,391 views ・ 2018-09-24
請雙擊下方英文字幕播放視頻。
譯者: Lilian Chiu
審譯者: congmei Han
00:12
Nine years ago,
0
12785
1704
九年前,
00:14
my sister discovered lumps
in her neck and arm
1
14513
3101
我姐姐發現她的頸部
和手臂上有腫塊,
00:17
and was diagnosed with cancer.
2
17638
1760
經診斷為癌症。
00:20
From that day, she started to benefit
3
20985
3199
她自那天起開始受惠於
00:24
from the understanding
that science has of cancer.
4
24208
3115
科學對於癌症的了解。
00:28
Every time she went to the doctor,
5
28206
2099
每次她去看醫生,
00:30
they measured specific molecules
6
30329
2194
他們測量了特定的分子,
00:32
that gave them information
about how she was doing
7
32547
2881
從中得到的資訊可以知道她的狀況
00:35
and what to do next.
8
35452
1309
及接下來要做什麼。
00:38
New medical options
became available every few years.
9
38095
3666
每過數年,都有新的
醫療方法可以選用。
00:43
Everyone recognized
that she was struggling heroically
10
43070
4318
大家都意識到她在艱苦地奮力掙脫
00:47
with a biological illness.
11
47412
1728
某種生物疾病。
00:50
This spring, she received
an innovative new medical treatment
12
50847
3657
今年春天,她接受
一項創新醫學治療的
00:54
in a clinical trial.
13
54528
1202
臨床試驗。
00:55
It dramatically knocked back her cancer.
14
55754
2224
它戲劇化地擊退了她的癌症。
00:59
Guess who I'm going to spend
this Thanksgiving with?
15
59446
2552
猜猜我今年的感恩節
要跟誰一起過?
我那快活的姐姐,
01:02
My vivacious sister,
16
62022
2267
01:04
who gets more exercise than I do,
17
64313
2629
她做的運動比我還多,
01:06
and who, like perhaps
many people in this room,
18
66966
2859
她也和這間房間中許多人一樣,
01:09
increasingly talks about a lethal illness
19
69849
2292
越來越會去談這種致命的疾病,
01:12
in the past tense.
20
72165
1263
用過去式來談。
01:14
Science can, in our lifetimes --
even in a decade --
21
74614
3863
科學能夠在我們的一生中
——甚至在十年內——
01:18
transform what it means
to have a specific illness.
22
78501
3207
改變「患上一種特定疾病」的意義。
01:24
But not for all illnesses.
23
84055
1534
但並非所有疾病都是如此。
01:27
My friend Robert and I
were classmates in graduate school.
24
87375
3722
我和我的朋友勞勃
是研究所的同學。
01:31
Robert was smart,
25
91121
1801
勞勃很聰明,
01:32
but with each passing month,
26
92946
1477
但隨著每個月過去,
01:34
his thinking seemed to become
more disorganized.
27
94447
3154
他的思考似乎變得越來越零亂。
01:38
He dropped out of school,
got a job in a store ...
28
98241
3198
他退學了,在一間店
找到一份工作……
01:41
But that, too, became too complicated.
29
101463
2218
但連那工作也變得太複雜。
01:44
Robert became fearful and withdrawn.
30
104559
2945
勞勃變得害怕和退縮。
01:48
A year and a half later,
he started hearing voices
31
108281
2381
一年半後,他開始有幻聽,
01:50
and believing that people
were following him.
32
110686
2197
相信有人在跟蹤他。
01:52
Doctors diagnosed him with schizophrenia,
33
112907
2722
醫生診斷出他得了精神分裂症,
01:55
and they gave him
the best drug they could.
34
115653
2120
他們給了他最好的藥。
01:57
That drug makes the voices
somewhat quieter,
35
117797
3008
那種藥讓他的幻聽情況減緩了,
02:00
but it didn't restore his bright mind
or his social connectedness.
36
120829
3989
但卻無法恢復他聰明的大腦
或是他的社會連結。
02:06
Robert struggled to remain connected
37
126270
1856
勞勃非常努力地維持
02:08
to the worlds of school
and work and friends.
38
128150
2857
和學校、工作,
及朋友世界的連結。
他慢慢遠離了,
02:11
He drifted away,
39
131031
1383
02:12
and today I don't know where to find him.
40
132438
2285
現今,我不知道他身在何方。
02:15
If he watches this,
41
135593
1479
如果他看到這場演說,
02:17
I hope he'll find me.
42
137962
1628
我希望他會找到我。
02:22
Why does medicine have
so much to offer my sister,
43
142639
4107
為什麼醫學能幫助我姐姐這麼多,
02:27
and so much less to offer
millions of people like Robert?
44
147540
4210
對於數百萬名像勞勃這樣的人,
能幫上的忙卻少很多?
02:32
The need is there.
45
152952
1290
需求就在那裡。
02:34
The World Health Organization
estimates that brain illnesses
46
154266
3153
世界衛生組織估計,大腦疾病
02:37
like schizophrenia, bipolar disorder
and major depression
47
157443
4115
如精神分裂症、躁鬱症,
和重度憂鬱症,
02:41
are the world's largest cause
of lost years of life and work.
48
161582
4971
是世界上造成失去數年生命
以及工作的最大原因。
02:47
That's in part because these illnesses
often strike early in life,
49
167807
3561
有部分原因是因為這些疾病
經常出現在人生早期,
02:51
in many ways, in the prime of life,
50
171392
2181
在許多方面,是人生輝煌時期,
02:53
just as people are finishing
their educations, starting careers,
51
173597
4464
比如剛完成學業時,
剛開始職涯時,
02:58
forming relationships and families.
52
178085
2279
建立關係和家庭時。
03:00
These illnesses can result in suicide;
53
180388
2829
這些疾病可能會導致自殺;
03:03
they often compromise one's ability
to work at one's full potential;
54
183907
4567
經常影響患者的工作能力,
讓他們無法盡展潛能;
03:09
and they're the cause of so many
tragedies harder to measure:
55
189767
3455
這些疾病也造成
許多更難測量的悲劇:
03:13
lost relationships and connections,
56
193246
2438
失去人際關係和連結,
03:15
missed opportunities
to pursue dreams and ideas.
57
195708
3039
錯過追求夢想和理想的機會。
03:19
These illnesses limit human possibilities
58
199533
3005
這些疾病以我們無法測量的方式
03:22
in ways we simply cannot measure.
59
202562
2154
限制了人類的可能性。
03:27
We live in an era in which
there's profound medical progress
60
207493
4016
在我們所處的時代,
醫學的許多面向
都有著顯著的進步。
03:31
on so many other fronts.
61
211533
1811
03:33
My sister's cancer story
is a great example,
62
213368
2547
我姐姐的癌症故事
就是個很好的例子,
03:35
and we could say the same
of heart disease.
63
215939
2062
心臟疾病亦然。
像施德丁這類藥物,能夠預防
數百萬計個心臟病發和中風案例。
03:38
Drugs like statins will prevent
millions of heart attacks and strokes.
64
218025
3585
03:43
When you look at these areas
of profound medical progress
65
223047
2945
如果來探討一下
我們一生中這些有著重大
醫學進展的領域,
03:46
in our lifetimes,
66
226016
1464
03:47
they have a narrative in common:
67
227504
1674
會發現它們有個共通之處:
03:50
scientists discovered molecules
that matter to an illness,
68
230067
4548
科學家發現分子
對某種疾病的影響,
03:54
they developed ways to detect
and measure those molecules in the body,
69
234639
4679
他們開發出一些方法來偵測
和測量人體中的那些分子,
04:00
and they developed ways
to interfere with those molecules
70
240492
2778
他們還開發出一些方法,
用其他分子——即藥物——
來干預那些分子。
04:03
using other molecules -- medicines.
71
243294
2048
04:05
It's a strategy that has worked
again and again and again.
72
245921
4020
這個策略一直有效。
04:11
But when it comes to the brain,
that strategy has been limited,
73
251403
3642
但牽涉到大腦時,
這種策略就會受限了,
04:15
because today, we don't know
nearly enough, yet,
74
255069
4602
因為現今,我們對於
大腦如何運作,
04:19
about how the brain works.
75
259695
1852
所知還是不夠多。
04:22
We need to learn which of our cells
matter to each illness,
76
262526
4266
我們需要了解每一種疾病
和我們的哪些細胞有關,
04:26
and which molecules in those cells
matter to each illness.
77
266816
3570
以及每一種疾病和
那些細胞中的哪些分子有關。
04:31
And that's the mission
I want to tell you about today.
78
271058
2651
那是我今天想要跟各位談的使命。
04:34
My lab develops technologies
with which we try to turn the brain
79
274781
3809
我的實驗室開發一些技術,
試圖用這些技術把大腦
04:38
into a big-data problem.
80
278614
1700
轉為一個大數據問題。
04:40
You see, before I became a biologist,
I worked in computers and math,
81
280338
3536
在我成為生物學家之前,
我的工作和電腦及數學有關,
04:43
and I learned this lesson:
82
283898
1324
我學到的一課是:
04:46
wherever you can collect vast amounts
of the right kinds of data
83
286365
4184
只要你能夠收集到
大量恰當的資料,
04:50
about the functioning of a system,
84
290573
2030
關於運作一個系統的資料,
04:53
you can use computers in powerful new ways
85
293365
3618
你就可以用強大的
新方式來使用電腦,
去合理解釋那系統,
並了解它是如何運作的。
04:57
to make sense of that system
and learn how it works.
86
297007
3225
05:00
Today, big-data approaches
are transforming
87
300256
2522
現今,大數據方法正在轉變
05:02
ever-larger sectors of our economy,
88
302802
2483
我們經濟中越來越大的部分,
05:05
and they could do the same
in biology and medicine, too.
89
305309
3286
而在生物學和醫學方面,
這些方法也能產生同樣的轉變。
05:08
But you have to have
the right kinds of data.
90
308619
2557
但你得要找到對的資料。
05:11
You have to have data
about the right things.
91
311200
2259
你得要找到關於對的事物的資料。
05:13
And that often requires
new technologies and ideas.
92
313917
3865
而那通常會需要新科技和想法。
05:18
And that is the mission that animates
the scientists in my lab.
93
318815
3494
就是這個使命使我的
實驗室裡的科學家充滿活力。
05:23
Today, I want to tell you
two short stories from our work.
94
323251
2974
今天,我想分享兩個關於
我們工作上的簡短故事。
05:27
One fundamental obstacle we face
95
327427
3104
在嘗試將大腦轉為大數據問題時,
05:30
in trying to turn the brain
into a big-data problem
96
330555
2660
我們所面對的一個根本障礙
05:33
is that our brains are composed of
and built from billions of cells.
97
333946
4538
在於我們的大腦是由
數十億個細胞所組成和建成的。
05:39
And our cells are not generalists;
they're specialists.
98
339246
3859
而我們的細胞並不是
通才,它們是專家。
05:43
Like humans at work,
99
343129
2089
就像人類工作時一樣,
05:45
they specialize into thousands
of different cellular careers,
100
345242
5274
它們專攻數千種不同的細胞職業,
05:50
or cell types.
101
350540
1367
或細胞類型。
05:52
In fact, each of
the cell types in our body
102
352796
2571
事實上,在我們身體內的
每一種細胞類型
05:55
could probably give a lively TED Talk
103
355391
1878
都很可能成為一場
生動的 TED 演講,
05:57
about what it does at work.
104
357293
1542
討論它的工作是什麼。
06:00
But as scientists,
we don't even know today
105
360422
2370
但,身為科學家,
我們現今甚至還不知道
06:02
how many cell types there are,
106
362816
1907
有多少細胞類型存在,
06:04
and we don't know what the titles
of most of those talks would be.
107
364747
3277
而且我們不知道大部分
那些演講的題目會是什麼。
06:11
Now, we know many
important things about cell types.
108
371809
2970
現在,我們知道許多
關於細胞類型的重要資訊。
06:14
They can differ dramatically
in size and shape.
109
374803
2751
它們在大小和形狀上
可以有很大的差異。
06:17
One will respond to a molecule
that the other doesn't respond to,
110
377578
4135
這個細胞會對一個分子
做出反應,另一個細胞卻不會。
06:21
they'll make different molecules.
111
381737
1794
它們會製造出不同的分子。
06:23
But science has largely
been reaching these insights
112
383555
2521
但科學在很大程度上
是以特設的方式達到這些見解,
06:26
in an ad hoc way, one cell type at a time,
113
386100
2943
一次研究一個細胞類型,
一次研究一個分子。
06:29
one molecule at a time.
114
389067
1486
06:31
We wanted to make it possible to learn
all of this quickly and systematically.
115
391854
4731
我們想快速、有系統地了解全部。
06:37
Now, until recently, it was the case
116
397673
1748
直到近期,如果你想記錄
06:39
that if you wanted to inventory
all of the molecules
117
399445
3076
出現在部分大腦
或任何器官中的所有分子,
06:42
in a part of the brain or any organ,
118
402545
2925
06:45
you had to first grind it up
into a kind of cellular smoothie.
119
405494
3954
你得要先把它磨成
一種細胞奶昔。
06:50
But that's a problem.
120
410678
1230
但那就是問題。
06:52
As soon as you've ground up the cells,
121
412737
2538
一旦你研磨了細胞,
06:55
you can only study the contents
of the average cell --
122
415299
3511
你就只能研究細胞的平均內容,
06:58
not the individual cells.
123
418834
1595
而不是個別的細胞。
07:01
Imagine if you were trying to understand
how a big city like New York works,
124
421182
3709
想像一下,如果你嘗試了解
紐約般的大城市是怎樣運作 ,
07:04
but you could only do so
by reviewing some statistics
125
424915
2542
但你卻只能透過檢視
關於紐約一般居民的
07:07
about the average resident of New York.
126
427481
2029
一些統計數字來了解。
07:10
Of course, you wouldn't learn very much,
127
430637
1979
當然,你無法了解非常多,
07:12
because everything that's interesting
and important and exciting
128
432640
3000
因為所有有趣、重要,
且讓人興奮的東西
07:15
is in all the diversity
and the specializations.
129
435664
2732
都存在於多樣性
以及特別專門化當中。
07:18
And the same thing is true of our cells.
130
438420
2606
至於我們的細胞,也是一樣的。
我們研究大腦想要
研究的不是細胞奶昔,
07:21
And we wanted to make it possible to study
the brain not as a cellular smoothie
131
441050
4750
07:25
but as a cellular fruit salad,
132
445824
2478
而是細胞水果沙拉,
07:28
in which one could generate
data about and learn from
133
448326
2604
我們可以從每一片水果
07:30
each individual piece of fruit.
134
450954
1838
產生資料並從中學習。
07:34
So we developed
a technology for doing that.
135
454253
2718
所以我們開發了
一項科技來做這件事。
07:36
You're about to see a movie of it.
136
456995
1729
接下來你們會看到
一段關於它的影片。
07:41
Here we're packaging
tens of thousands of individual cells,
137
461477
4028
在這裡,我們把數萬個
個別的細胞包裝在一起,
07:45
each into its own tiny water droplet
138
465529
2923
成為它自己的小水滴,
07:48
for its own molecular analysis.
139
468476
2211
供它自己的分子分析用。
07:51
When a cell lands in a droplet,
it's greeted by a tiny bead,
140
471921
4123
當一個細胞進入一滴水,
一個小珠子會迎接它,
07:56
and that bead delivers millions
of DNA bar code molecules.
141
476068
3694
那個小珠子會傳遞
數百萬個 DNA 條碼分子。
08:01
And each bead delivers
a different bar code sequence
142
481115
3308
而每一個小珠子會傳遞
一組不同的條碼序列
08:04
to a different cell.
143
484447
1243
給一個不同的細胞。
08:06
We incorporate the DNA bar codes
144
486884
2581
我們將這 DNA 條碼併入
08:09
into each cell's RNA molecules.
145
489489
3058
每一個細胞的 RNA 分子。
08:12
Those are the molecular
transcripts it's making
146
492571
2836
RNA 分子是它在
製造的分子抄本,
08:15
of the specific genes
that it's using to do its job.
147
495431
3103
內容是它工作時所用到的特定基因。
08:19
And then we sequence billions
of these combined molecules
148
499383
4207
接著,我們將數十億個
這類的結合分子排序,
08:24
and use the sequences to tell us
149
504532
2498
用序列來告訴我們
08:27
which cell and which gene
150
507054
2602
每個分子是來自
哪個細胞及哪個基因。
08:29
every molecule came from.
151
509680
1540
08:32
We call this approach "Drop-seq,"
because we use droplets
152
512561
3292
我們把這個方法稱為
「液滴測序」,因為我們用液滴
08:35
to separate the cells for analysis,
153
515877
2575
來將細胞分離,供分析用,
08:38
and we use DNA sequences
to tag and inventory
154
518476
3445
且我們用 DNA 序列
來做標籤和目錄,
08:41
and keep track of everything.
155
521945
1488
持續追蹤所有資訊。
08:44
And now, whenever we do an experiment,
156
524727
1976
現在,每當我們做一項實驗時,
08:46
we analyze tens of thousands
of individual cells.
157
526727
3243
我們會分析數萬個個別細胞。
08:51
And today in this area of science,
158
531018
2624
現今,在這個科學領域中,
08:53
the challenge is increasingly
how to learn as much as we can
159
533666
4931
挑戰漸漸變成是在於
要如何用這些巨大的資料集
08:58
as quickly as we can
160
538621
1872
盡可能快一點去多了解一點資訊。
09:00
from these vast data sets.
161
540517
1738
09:04
When we were developing Drop-seq,
people used to tell us,
162
544914
2770
當我們在開發液滴測序時,
人們會告訴我們:
09:07
"Oh, this is going to make you guys
the go-to for every major brain project."
163
547708
4804
「喔,這會讓你們成為每個重大的
大腦專案計畫必找的人。」
09:13
That's not how we saw it.
164
553257
1544
我們並不是這樣看待它的。
09:14
Science is best when everyone
is generating lots of exciting data.
165
554825
4531
人人都產生許多讓人興奮的
資料時,科學才能發揮得最好。
09:20
So we wrote a 25-page instruction book,
166
560197
3214
所以我們寫了一本
25 頁的教學手冊,
09:23
with which any scientist could build
their own Drop-seq system from scratch.
167
563435
4578
任何科學家都可以用它來從無到有
建立自家的液滴測序系統。
在過去兩年,
那本教學手冊的電子檔,
09:28
And that instruction book has been
downloaded from our lab website
168
568037
3697
09:31
50,000 times in the past two years.
169
571758
2965
已經被從我們實驗室的
網站下載了五萬次。
09:35
We wrote software
that any scientist could use
170
575598
3052
我們寫了一個軟體,
任何科學家都能使用它
09:38
to analyze the data
from Drop-seq experiments,
171
578674
2898
來分析來自液滴測序實驗的資料,
09:41
and that software is also free,
172
581596
1715
且這軟體是免費的。
09:43
and it's been downloaded from our website
30,000 times in the past two years.
173
583335
4388
這軟體在過去兩年間已被
從我們的網站下載了三萬次。
09:48
And hundreds of labs have written us
about discoveries that they've made
174
588328
4979
有數百間實驗室已寫信告訴我們
有關他們採用這個方法後的發現。
09:53
using this approach.
175
593331
1443
09:54
Today, this technology is being used
to make a human cell atlas.
176
594798
3560
現今,這項科技被用來做
人類細胞的圖解導覽。
09:58
It will be an atlas of all
of the cell types in the human body
177
598382
3354
它將會是人體內
所有細胞類型的圖解導覽,
10:01
and the specific genes
that each cell type uses to do its job.
178
601760
3680
另外還包含每一種細胞類型
在做其工作時會用到的特定基因。
10:08
Now I want to tell you about
a second challenge that we face
179
608133
2876
我現在想告訴各位,
我們在嘗試將大腦轉為
大數據問題時
所面臨的第二個挑戰。
10:11
in trying to turn the brain
into a big data problem.
180
611033
2448
10:13
And that challenge is that
we'd like to learn from the brains
181
613505
3279
這個挑戰就是,我們想要從
10:16
of hundreds of thousands of living people.
182
616808
2444
數十萬個活人的大腦學習。
10:19
But our brains are not physically
accessible while we're living.
183
619998
3704
但在我們還活著的時候,
並不能實體存取我們的大腦。
10:24
But how can we discover molecular factors
if we can't hold the molecules?
184
624895
3960
但是如果我們無法存取分子,
我們要如何發現分子因素?
10:30
An answer comes from the fact that
the most informative molecules, proteins,
185
630352
4548
答案來自一個事實:
資訊最豐富的分子,即蛋白質,
10:34
are encoded in our DNA,
186
634924
1782
被編碼在我們的 DNA 中,
10:36
which has the recipes our cells follow
to make all of our proteins.
187
636730
4530
DNA 中有指南,我們的細胞會遵照
這些指南來製造我們的蛋白質。
10:41
And these recipes vary
from person to person to person
188
641999
4946
這些方法因人而異,
10:46
in ways that cause the proteins
to vary from person to person
189
646969
3342
結果造成蛋白質也會因人而異,
10:50
in their precise sequence
190
650335
1787
確切排列的順序有所不同,
10:52
and in how much each cell type
makes of each protein.
191
652146
3151
及每種細胞製造出
每種蛋白質的量也不同。
10:56
It's all encoded in our DNA,
and it's all genetics,
192
656441
3393
這些都編碼在我們的
DNA 中,都是遺傳的,
10:59
but it's not the genetics
that we learned about in school.
193
659858
2817
但這不是我們在學校
學到的遺傳學。
11:03
Do you remember big B, little b?
194
663572
1983
你們還記得大 B 和小 b 嗎?
11:06
If you inherit big B, you get brown eyes?
195
666260
2400
如果你遺傳了大 B,
你就有褐色的眼睛?
11:09
It's simple.
196
669085
1223
這很簡單。
11:11
Very few traits are that simple.
197
671451
3173
很少有特徵是那麼簡單的。
11:15
Even eye color is shaped by much more
than a single pigment molecule.
198
675232
4725
即使是眼睛的顏色,也要用到
遠超過單一色素分子來形成。
11:20
And something as complex
as the function of our brains
199
680861
4250
而我們的大腦功能複雜,
11:25
is shaped by the interaction
of thousands of genes.
200
685135
3247
由數千個基因交互作用而形成的。
11:28
And each of these genes
varies meaningfully
201
688406
2340
這些基因都因人而異,
11:30
from person to person to person,
202
690770
1838
且這些差異都是有意義的,
11:32
and each of us is a unique
combination of that variation.
203
692632
3517
且我們每個人都是
那差異的獨特組合。
11:37
It's a big data opportunity.
204
697419
2216
這是一個大數據的機會。
11:40
And today, it's increasingly
possible to make progress
205
700214
3176
現今,我們越來越
有可能取得進展,
11:43
on a scale that was never possible before.
206
703414
2796
達到前所未有的規模。
11:46
People are contributing to genetic studies
207
706234
2405
人們對遺傳研究的貢獻
11:48
in record numbers,
208
708663
1594
屢創新高,
11:51
and scientists around the world
are sharing the data with one another
209
711085
4087
全世界的科學家彼此分享資料,
11:55
to speed progress.
210
715196
1571
以加速進展。
11:57
I want to tell you a short story
about a discovery we recently made
211
717514
3239
我想向各位講一個小故事,
內容是我們近期
12:00
about the genetics of schizophrenia.
212
720777
1894
在遺傳學上關於
精神分裂症的發現。
12:03
It was made possible
by 50,000 people from 30 countries,
213
723506
4596
這個發現是由三十個國家
共五萬人的努力所達成,
12:08
who contributed their DNA
to genetic research on schizophrenia.
214
728126
4700
他們貢獻了他們的 DNA
作精神分裂症的遺傳研究。
12:14
It had been known for several years
215
734406
2096
數年來我們已經知道一件事,
12:16
that the human genome's largest influence
on risk of schizophrenia
216
736526
4111
即人類基因組對於
精神分裂症風險的最大影響
12:20
comes from a part of the genome
217
740661
1802
是來自基因組當中
12:22
that encodes many of the molecules
in our immune system.
218
742487
3344
為我們免疫系統中的分子
做編碼的那一部分。
12:25
But it wasn't clear which gene
was responsible.
219
745855
3034
但我們並不清楚
是哪一個基因在負責。
12:29
A scientist in my lab developed
a new way to analyze DNA with computers,
220
749746
4040
我實驗室中的一位科學家開發出了
一種新方法,用電腦來分析 DNA,
12:33
and he discovered something
very surprising.
221
753810
3095
且他有了很驚人的發現。
12:36
He found that a gene called
"complement component 4" --
222
756929
3251
他發現一個叫做
「補體成分 4」的基因——
12:40
it's called "C4" for short --
223
760204
1799
簡稱為「C4」——
12:43
comes in dozens of different forms
in different people's genomes,
224
763036
3889
它在不同人的基因組當中
有數十種不同的形態,
12:46
and these different forms
make different amounts
225
766949
3197
而這些不同的形態在我們的大腦中
製造出不同數量的 C4 蛋白質。
12:50
of C4 protein in our brains.
226
770170
2242
12:52
And he found that the more
C4 protein our genes make,
227
772957
3985
他發現,我們的基因
製造越多的 C4 蛋白質,
12:56
the greater our risk for schizophrenia.
228
776966
2112
我們得到精神分裂症的
風險就越高。
12:59
Now, C4 is still just one risk factor
in a complex system.
229
779919
4907
C4 只是一個複雜
系統中的一個風險因子。
13:04
This isn't big B,
230
784850
1989
這不是大 B,
13:06
but it's an insight about
a molecule that matters.
231
786863
3557
但這是對於一個重要分子的洞見。
13:11
Complement proteins like C4
were known for a long time
232
791492
3637
像 C4 這樣的補體蛋白質
在免疫系統中所扮演的角色,
13:15
for their roles in the immune system,
233
795153
1953
我們很早就已經知道了。
13:17
where they act as a kind of
molecular Post-it note
234
797130
2778
在免疫系統中,
它們有點像是分子便利貼,
13:19
that says, "Eat me."
235
799932
1580
上面寫著「吃我」。
13:22
And that Post-it note
gets put on lots of debris
236
802475
2667
那便利貼被貼在我們體內的
13:25
and dead cells in our bodies
237
805166
2357
很多廢物以及死細胞上,
13:27
and invites immune cells
to eliminate them.
238
807547
2490
並會邀請免疫細胞來消滅它們。
13:30
But two colleagues of mine found
that the C4 Post-it note
239
810779
3539
但我的兩位同事發現,C4 便利貼
13:35
also gets put on synapses in the brain
240
815183
3298
也會被貼在大腦內的突觸上,
13:38
and prompts their elimination.
241
818505
1864
提醒要消滅它們。
13:41
Now, the creation and elimination
of synapses is a normal part
242
821154
3266
突觸的創造和消滅,
本來就是人類發展
和學習的正常部分。
13:44
of human development and learning.
243
824444
1854
13:46
Our brains create and eliminate
synapses all the time.
244
826322
2921
我們的大腦時時刻刻
都在創造和消滅突觸。
13:49
But our genetic results suggest
that in schizophrenia,
245
829921
2960
但我們的遺傳研究結果指出,
在精神分裂症的情況下,
13:52
the elimination process
may go into overdrive.
246
832905
3233
消減的過程可能進入高速狀態。
13:57
Scientists at many drug companies tell me
they're excited about this discovery,
247
837185
3929
許多藥品公司的科學家告訴我,
他們對這項發現感到很興奮,
14:01
because they've been working
on complement proteins for years
248
841138
3239
因為他們多年來一直研究
免疫系統中的補體蛋白質,
14:04
in the immune system,
249
844401
1540
14:05
and they've learned a lot
about how they work.
250
845965
2206
對於它們如何運作,
已有不少了解。
14:08
They've even developed molecules
that interfere with complement proteins,
251
848885
3894
他們甚至開發出用來
干預補體蛋白質的分子,
14:12
and they're starting to test them
in the brain as well as the immune system.
252
852803
3607
且他們已經開始在大腦
以及免疫系統中做測試。
14:17
It's potentially a path toward a drug
that might address a root cause
253
857124
4721
這是種潛在的方法,
或能做出治本的藥物,
14:21
rather than an individual symptom,
254
861869
2649
而不只是治療個別的症狀。
14:24
and we hope very much that this work
by many scientists over many years
255
864542
4048
我們非常希望這項由許多科學家
努力了許多年的研究
14:28
will be successful.
256
868614
1152
能夠成功。
14:31
But C4 is just one example
257
871689
3014
但 C4 只是一個例子,
14:34
of the potential for data-driven
scientific approaches
258
874727
3112
說明的確有可能用資料導向的方法
14:37
to open new fronts on medical problems
that are centuries old.
259
877863
3903
來為存在數百年的
醫學問題開拓新領域。
14:42
There are hundreds of places
in our genomes
260
882144
2745
在我們的基因組當中,
有數百個地方
14:44
that shape risk for brain illnesses,
261
884913
2585
會左右得到大腦疾病的風險,
14:47
and any one of them could lead us
to the next molecular insight
262
887522
4066
其中任何一個地方,
都可以引導我們
對於重要的分子產生新的洞見。
14:51
about a molecule that matters.
263
891612
2020
14:53
And there are hundreds of cell types that
use these genes in different combinations.
264
893656
3987
有數百種細胞類型會
以不同的組合方式使用這些基因。
14:57
As we and other scientists
work to generate
265
897667
2069
由於我們和其他科學家努力
14:59
the rest of the data that's needed
266
899760
2069
產生出其他需要的資料,
15:01
and to learn all that we can
from that data,
267
901853
2393
並盡可能多了解那些資料,
15:04
we hope to open many more new fronts.
268
904270
2403
我們希望能夠開拓更多的新領域。
15:08
Genetics and single-cell analysis
are just two ways
269
908483
5079
遺傳學和單細胞分析
只是嘗試將大腦
15:13
of trying to turn the brain
into a big data problem.
270
913586
3767
轉為大數據問題的兩種方式。
15:18
There is so much more we can do.
271
918424
2159
我們能做的還有更多。
15:21
Scientists in my lab
are creating a technology
272
921235
3074
我實驗室中的科學家
正在創造一項科技,
15:24
for quickly mapping the synaptic
connections in the brain
273
924333
3196
快速配對大腦中的突觸連結,
15:27
to tell which neurons are talking
to which other neurons
274
927553
2938
來判斷哪些神經元
在和哪些其他神經元交談,
15:30
and how that conversation changes
throughout life and during illness.
275
930515
3996
以及在一生中或在生病期間
這些對談會如何改變。
15:35
And we're developing a way
to test in a single tube
276
935467
4520
我們正在開發一種方式,
在單管中做測試,
針對數百個不同的人的基因組,
15:40
how cells with hundreds
of different people's genomes
277
940011
2718
15:42
respond differently to the same stimulus.
278
942753
2170
來了解在相同的刺激下
不同基因組的細胞會有何不同的反應。
15:46
These projects bring together
people with diverse backgrounds
279
946248
4903
這些專案計畫匯聚了各種人,
他們有不同的背景、
15:51
and training and interests --
280
951175
2493
訓練,及興趣——
15:53
biology, computers, chemistry,
math, statistics, engineering.
281
953692
5877
生物學、電腦、化學、
數學、統計學、工程學。
16:00
But the scientific possibilities
rally people with diverse interests
282
960205
4232
但科學的可能性把各種興趣的人
集合起來一起認真地工作。
16:04
into working intensely together.
283
964461
2235
16:08
What's the future
that we could hope to create?
284
968871
2551
我們希望能創造怎樣的未來?
16:12
Consider cancer.
285
972267
1350
想想癌症。
16:14
We've moved from an era of ignorance
about what causes cancer,
286
974193
3922
我們從一個對癌症
成因無知的時代——
16:18
in which cancer was commonly ascribed
to personal psychological characteristics,
287
978139
6988
把癌症普遍地歸因於
個人心理特徵,
16:26
to a modern molecular understanding
of the true biological causes of cancer.
288
986238
5395
到現今,我們對於癌症的真正
生物的成因有分子層面的了解。
16:32
That understanding today
leads to innovative medicine
289
992100
3074
現今這樣的了解,
帶來了醫學上持續不斷的創新,
16:35
after innovative medicine,
290
995198
1696
16:36
and although there's still
so much work to do,
291
996918
2839
雖然還有很多工作要做,
16:39
we're already surrounded by people
who have been cured of cancers
292
999781
3394
但我們身邊有很多人
經已戰勝癌症康復過來,
16:43
that were considered untreatable
a generation ago.
293
1003199
3269
在上個世代,他們的狀況
會被認為是無法醫治的。
16:48
And millions of cancer survivors
like my sister
294
1008254
3376
數百萬個像我姐姐般的
癌症存活者,
16:51
find themselves with years of life
that they didn't take for granted
295
1011654
4401
不再會把他們餘生
視為理所當然,
他們也會找到工作、
16:56
and new opportunities
296
1016079
1769
16:57
for work and joy and human connection.
297
1017872
3930
喜悅,以及與人連結的新契機,
17:03
That is the future that we are determined
to create around mental illness --
298
1023358
4378
我們很有決心想要為
心理疾病創造這樣的未來——
17:08
one of real understanding and empathy
299
1028581
4119
一個會有真正的了解、同理心,
17:12
and limitless possibility.
300
1032724
1816
及無限的可能性的未來。
17:15
Thank you.
301
1035159
1190
謝謝。
17:16
(Applause)
302
1036374
4062
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。