How data is helping us unravel the mysteries of the brain | Steve McCarroll

70,507 views

2018-09-24 ・ TED


New videos

How data is helping us unravel the mysteries of the brain | Steve McCarroll

70,507 views ・ 2018-09-24

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

λ²ˆμ—­: μš©κ΄€ κ³  κ²€ν† : Jihyeon J. Kim
00:12
Nine years ago,
0
12785
1704
9λ…„ 전에
00:14
my sister discovered lumps in her neck and arm
1
14513
3101
제 여동생은 μžμ‹ μ˜ λͺ©κ³Ό νŒ”μ— μžˆλŠ” ν˜Ήμ„ λ°œκ²¬ν–ˆκ³ 
00:17
and was diagnosed with cancer.
2
17638
1760
진단해본 κ²°κ³Ό μ•”μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
00:20
From that day, she started to benefit
3
20985
3199
κ·Έλ‚ λΆ€ν„°, κ·Έλ…€λŠ” ν˜œνƒμ„ λ°›κΈ° μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.
00:24
from the understanding that science has of cancer.
4
24208
3115
과학이 암에 λŒ€ν•΄ νŒŒμ•…ν•œ μ •λ³΄λ‘œλΆ€ν„°μš”.
00:28
Every time she went to the doctor,
5
28206
2099
κ·Έλ…€κ°€ μ˜μ‚¬λ₯Ό μ°Ύμ•„ 갈 λ•Œλ§ˆλ‹€
00:30
they measured specific molecules
6
30329
2194
그듀은 νŠΉμ •ν•œ λΆ„μžλ₯Ό μΈ‘μ •ν–ˆμŠ΅λ‹ˆλ‹€.
00:32
that gave them information about how she was doing
7
32547
2881
κ·Έ λΆ„μžλŠ” κ·Έλ“€μ—κ²Œ κ·Έλ…€κ°€ μ–΄λ–»κ²Œ μ§€λƒˆλŠ”μ§€ μ•Œλ €μ£Όμ—ˆμŠ΅λ‹ˆλ‹€.
00:35
and what to do next.
8
35452
1309
μ•žμœΌλ‘œ 무엇을 할지도 μ•Œλ €μ£Όμ—ˆμ£ .
00:38
New medical options became available every few years.
9
38095
3666
μƒˆλ‘œμš΄ μ˜ν•™μ  μ˜΅μ…˜λ“€μ΄ λͺ‡ λ…„ λ§ˆλ‹€ λ“±μž₯ν–ˆμŠ΅λ‹ˆλ‹€.
00:43
Everyone recognized that she was struggling heroically
10
43070
4318
λͺ¨λ“  μ‚¬λžŒλ“€μ€ κ·Έλ…€κ°€ μ˜μ—°ν•˜κ²Œ νˆ¬μŸν•˜κ³  μžˆλŠ” μ€„λ‘œ μ•Œμ•˜μŠ΅λ‹ˆλ‹€.
00:47
with a biological illness.
11
47412
1728
생물학적 μ§ˆλ³‘κ³Όμš”.
00:50
This spring, she received an innovative new medical treatment
12
50847
3657
μ˜¬ν•΄ λ΄„, κ·Έλ…€λŠ” ν˜μ‹ μ μΈ μ˜ν•™ 치료λ₯Ό λ°›μ•˜μŠ΅λ‹ˆλ‹€.
00:54
in a clinical trial.
13
54528
1202
μž„μƒ μ‹œν—˜μœΌλ‘œμš”.
00:55
It dramatically knocked back her cancer.
14
55754
2224
κ·Έ μΉ˜λ£ŒλŠ” 극적으둜 κ·Έλ…€μ˜ 암을 λ¬Όλ¦¬μ³€μŠ΅λ‹ˆλ‹€.
00:59
Guess who I'm going to spend this Thanksgiving with?
15
59446
2552
μ œκ°€ 이 기쁨을 λˆ„κ΅¬μ™€ ν•¨κ»˜ν•˜λ € ν•˜λŠ”μ§€ 맞좰 λ³΄μ‹œκ² μ–΄μš”?
01:02
My vivacious sister,
16
62022
2267
제 λͺ…λž‘ν•œ μ—¬λ™μƒμž…λ‹ˆλ‹€.
01:04
who gets more exercise than I do,
17
64313
2629
저보닀 더 많이 μš΄λ™ν•˜κ³ ,
01:06
and who, like perhaps many people in this room,
18
66966
2859
μ•„λ§ˆ 이곳에 μžˆλŠ” λ§Žμ€ λΆ„λ“€μ²˜λŸΌ
01:09
increasingly talks about a lethal illness
19
69849
2292
치λͺ…적인 μ§ˆλ³‘μ— λŒ€ν•΄ 갈수둝 자주 μ–˜κΈ°ν•˜λŠ” μ—¬λ™μƒμ΄μš”.
01:12
in the past tense.
20
72165
1263
κ³Όκ±° μ‹œμ œλ‘œ 말이죠.
01:14
Science can, in our lifetimes -- even in a decade --
21
74614
3863
과학은, λ†€λžκ²Œλ„ 10λ…„ μ•ˆμ— 우리의 μ‚Άμ—μ„œ
01:18
transform what it means to have a specific illness.
22
78501
3207
νŠΉμ • μ§ˆλ³‘μ˜ 의미λ₯Ό λ°”κΏ€ 수 μžˆμŠ΅λ‹ˆλ‹€.
01:24
But not for all illnesses.
23
84055
1534
ν•˜μ§€λ§Œ μ„Έμƒμ˜ λͺ¨λ“  μ§ˆλ³‘μ€ μ•„λ‹ˆκ² μ£ .
01:27
My friend Robert and I were classmates in graduate school.
24
87375
3722
λ‘œλ²„νŠΈμ™€ μ €λŠ” λŒ€ν•™μ› μΉœκ΅¬μ˜€μŠ΅λ‹ˆλ‹€.
01:31
Robert was smart,
25
91121
1801
λ‘œλ²„νŠΈλŠ” λ˜‘λ˜‘ν–ˆμ§€λ§Œ
01:32
but with each passing month,
26
92946
1477
λͺ‡ 달이 μ§€λ‚˜μž
01:34
his thinking seemed to become more disorganized.
27
94447
3154
그의 생각이 쀑심을 μžƒλŠ” κ²ƒμ²˜λŸΌ λ³΄μ˜€μŠ΅λ‹ˆλ‹€.
01:38
He dropped out of school, got a job in a store ...
28
98241
3198
κ·ΈλŠ” 학ꡐλ₯Ό κ·Έλ§Œλ‘κ³ , κ°€κ²Œμ—μ„œ 일을 ν–ˆμŠ΅λ‹ˆλ‹€.
01:41
But that, too, became too complicated.
29
101463
2218
ν•˜μ§€λ§Œ κ·Έ 일도 λ„ˆλ¬΄ λ³΅μž‘ν•΄μ‘ŒμŠ΅λ‹ˆλ‹€.
01:44
Robert became fearful and withdrawn.
30
104559
2945
λ‘œλ²„νŠΈλŠ” 겁이 λ§Žμ•„μ‘Œκ³ , λ‚΄μ„±μ μœΌλ‘œ λ³€ν–ˆμŠ΅λ‹ˆλ‹€
01:48
A year and a half later, he started hearing voices
31
108281
2381
1λ…„ 6κ°œμ›” 후에, κ·ΈλŠ” λͺ©μ†Œλ¦¬λ₯Ό λ“£κΈ° μ‹œμž‘ν–ˆκ³ 
01:50
and believing that people were following him.
32
110686
2197
μ‚¬λžŒλ“€μ΄ κ·Έλ₯Ό 따라 λ‹€λ‹Œλ‹€κ³  λ―ΏκΈ° μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.
01:52
Doctors diagnosed him with schizophrenia,
33
112907
2722
μ˜μ‚¬λ“€μ€ κ·Έκ°€ μ •μ‹  뢄열증이 μžˆλ‹€κ³  μ§„λ‹¨ν–ˆκ³ 
01:55
and they gave him the best drug they could.
34
115653
2120
ν•  수 μžˆλŠ” μ΅œμ„ μ˜ 약을 μ²˜λ°©ν–ˆμŠ΅λ‹ˆλ‹€.
01:57
That drug makes the voices somewhat quieter,
35
117797
3008
약은 λͺ©μ†Œλ¦¬λ“€μ„ μ–΄λŠ 정도 μ‘°μš©ν•˜κ²Œ λ§Œλ“€μ—ˆμ§€λ§Œ
02:00
but it didn't restore his bright mind or his social connectedness.
36
120829
3989
그의 밝은 λ§ˆμŒμ΄λ‚˜ μ‚¬νšŒμ  μœ λŒ€κ°μ„ νšŒλ³΅μ‹œν‚€μ§„ λͺ»ν–ˆμŠ΅λ‹ˆλ‹€.
02:06
Robert struggled to remain connected
37
126270
1856
λ‘œλ²„νŠΈλŠ” 학ꡐ, 직μž₯, 그리고 μΉœκ΅¬λ“€κ³Ό
02:08
to the worlds of school and work and friends.
38
128150
2857
관계λ₯Ό μœ μ§€ν•˜λŠ” 것이 λ²„κ±°μ› μŠ΅λ‹ˆλ‹€.
02:11
He drifted away,
39
131031
1383
κ·ΈλŠ” μ†Œμ™Έλ˜μ—ˆμ£ .
02:12
and today I don't know where to find him.
40
132438
2285
κ·Έλž˜μ„œ μ˜€λŠ˜λ‚  μ €λŠ” κ·Έλ₯Ό μ–΄λ””μ„œ 찾아야할지 λͺ¨λ₯΄κ² μŠ΅λ‹ˆλ‹€.
02:15
If he watches this,
41
135593
1479
λ§Œμ•½ κ·Έκ°€ 이 λ™μ˜μƒμ„ λ³Έλ‹€λ©΄
02:17
I hope he'll find me.
42
137962
1628
μ €λ₯Ό 찾아와주길 λ°”λžλ‹ˆλ‹€.
02:22
Why does medicine have so much to offer my sister,
43
142639
4107
μ™œ μ˜ν•™μ€ 제 μ—¬λ™μƒμ—κ²Œ κ·Έλ ‡κ²Œλ‚˜ λ§Žμ€ 것듀을 μ£Όμ—ˆμœΌλ©΄μ„œ
02:27
and so much less to offer millions of people like Robert?
44
147540
4210
λ‘œλ²„νŠΈκ°™μ€ μˆ˜λ§Žμ€ μ‚¬λžŒλ“€μ—κ²ŒλŠ” κ·Έλ ‡κ²Œ ν•˜μ§€ λͺ»ν•œ κ²ƒμΌκΉŒμš”?
02:32
The need is there.
45
152952
1290
그듀은 도움이 ν•„μš”ν•©λ‹ˆλ‹€.
02:34
The World Health Organization estimates that brain illnesses
46
154266
3153
세계 보건 기ꡬ의 μ˜ˆμΈ‘μ— λ”°λ₯΄λ©΄
02:37
like schizophrenia, bipolar disorder and major depression
47
157443
4115
정신뢄열증, 쑰울증과 μ‹¬κ°ν•œ 우울증과 같은 μ •μ‹ μ§ˆν™˜λ“€μ΄
02:41
are the world's largest cause of lost years of life and work.
48
161582
4971
μ„Έκ³„μ—μ„œ μ‚¬λžŒλ“€μ˜ λͺ©μˆ¨κ³Ό 삢을 μ•—μ•„κ°„ κ°€μž₯ 큰 μš”μΈμΌ 수 μžˆλ‹€κ³  ν•©λ‹ˆλ‹€.
02:47
That's in part because these illnesses often strike early in life,
49
167807
3561
κ·Έ μ΄μœ λŠ” μ΄λŸ¬ν•œ μ§ˆλ³‘μ΄ 우리 μ‚Άμ˜ μ΄ˆκΈ°μ— λ‚˜νƒ€λ‚  뿐만 μ•„λ‹ˆλΌ,
02:51
in many ways, in the prime of life,
50
171392
2181
이 μ§ˆλ³‘λ“€μ΄ λ‚˜νƒ€λ‚˜λŠ” 방식이
02:53
just as people are finishing their educations, starting careers,
51
173597
4464
μ˜λ¬΄κ΅μœ‘μ„ 마치고, 직업을 κ°€μ Έ 일을 μ‹œμž‘ν•˜κ³ ,
02:58
forming relationships and families.
52
178085
2279
μ‚¬λžŒμ„ λ§Œλ‚˜κ³  가정을 κΎΈλ¦¬λŠ” μΌλ§ŒνΌμ΄λ‚˜ μžμ—°μŠ€λŸ½κΈ° λ•Œλ¬Έμ΄μ£ .
03:00
These illnesses can result in suicide;
53
180388
2829
μ΄λŸ¬ν•œ 병듀은 μžμ‚΄μ„ μ΄ˆλž˜ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
03:03
they often compromise one's ability to work at one's full potential;
54
183907
4567
μš°λ¦¬κ°€ 잠재λ ₯을 λ°œνœ˜ν•  수 μ—†κ²Œ λ°©ν•΄ν•˜λ©°
03:09
and they're the cause of so many tragedies harder to measure:
55
189767
3455
헀아릴 수 없이 λ§Žμ€ 비극을 μΌμœΌν‚΅λ‹ˆλ‹€.
03:13
lost relationships and connections,
56
193246
2438
관계와 λ§Œλ‚¨μ˜ λ‹¨μ ˆ,
03:15
missed opportunities to pursue dreams and ideas.
57
195708
3039
꿈과 아이디어λ₯Ό 이룰 기회λ₯Ό μžƒμ–΄λ²„λ¦¬λŠ” 일듀을 예둜 λ“€ 수 있죠.
03:19
These illnesses limit human possibilities
58
199533
3005
이 병듀은 μ‚¬λžŒλ“€μ˜ 잠재λ ₯을 μ œν•œμ‹œν‚΅λ‹ˆλ‹€.
03:22
in ways we simply cannot measure.
59
202562
2154
저희가 μ‰½κ²Œ μ•Œ 수 μ—†λŠ” λ°©λ²•λ“€λ‘œ 말이죠.
03:27
We live in an era in which there's profound medical progress
60
207493
4016
μš°λ¦¬λŠ” μ˜ν•™μ΄ μ—¬λŸ¬ λ°©λ©΄μ—μ„œ μ‹¬λ„μžˆκ²Œ λ°œμ „ν•˜λŠ” μ‹œλŒ€μ— μ‚΄κ³  μžˆμŠ΅λ‹ˆλ‹€
03:31
on so many other fronts.
61
211533
1811
03:33
My sister's cancer story is a great example,
62
213368
2547
제 λ™μƒμ˜ 암이야기가 쒋은 예이죠.
03:35
and we could say the same of heart disease.
63
215939
2062
심μž₯μ§ˆν™˜λ„ λ§ˆμ°¬κ°€μ§€μž…λ‹ˆλ‹€.
03:38
Drugs like statins will prevent millions of heart attacks and strokes.
64
218025
3585
μŠ€νƒ€ν‹΄κ³Ό 같은 약듀은 μˆ˜λ§Žμ€ μ’…λ₯˜μ˜ 심μž₯ μ§ˆν™˜κ³Ό λ‡Œμ‘Έμ€‘μ„ μΉ˜λ£Œν•  κ²ƒμž…λ‹ˆλ‹€.
03:43
When you look at these areas of profound medical progress
65
223047
2945
μš°λ¦¬κ°€ μ‚¬λŠ” λ™μ•ˆ μΌμ–΄λ‚œ μ˜ν•™μ  λ°œμ „μ˜ μ—¬λŸ¬ λΆ„μ•Όλ₯Ό 생각해보면,
03:46
in our lifetimes,
66
226016
1464
03:47
they have a narrative in common:
67
227504
1674
그것듀은 곡톡점이 λ§ŽμŠ΅λ‹ˆλ‹€.
03:50
scientists discovered molecules that matter to an illness,
68
230067
4548
κ³Όν•™μžλ“€μ€ νŠΉμ • μ§ˆλ³‘κ³Ό κ΄€λ ¨λœ λΆ„μžλ“€μ„ λ°œκ²¬ν–ˆκ³ 
03:54
they developed ways to detect and measure those molecules in the body,
69
234639
4679
λͺΈμ†μ˜ λΆ„μžλ“€μ„ νƒμ§€ν•˜κ³  μΈ‘μ •ν•˜λŠ” 법을 κ°œλ°œν–ˆμœΌλ©°
04:00
and they developed ways to interfere with those molecules
70
240492
2778
λ‹€λ₯Έ λΆ„μžλ₯Ό μ‚¬μš©ν•˜μ—¬
κ·Έ λΆ„μžλ₯Ό λ°©ν•΄ν•˜λŠ” 방법 λ˜ν•œ κ°œλ°œν•΄λƒˆμŠ΅λ‹ˆλ‹€. 약이죠.
04:03
using other molecules -- medicines.
71
243294
2048
04:05
It's a strategy that has worked again and again and again.
72
245921
4020
이것은 계속 λ°˜λ³΅ν•΄μ˜€λ˜ κ³„λž΅μž…λ‹ˆλ‹€.
04:11
But when it comes to the brain, that strategy has been limited,
73
251403
3642
ν•˜μ§€λ§Œ 이 κ³„λž΅λ“€μ„ λ‡Œμ— μ μš©ν•˜κΈ΄ νž˜λ“­λ‹ˆλ‹€.
04:15
because today, we don't know nearly enough, yet,
74
255069
4602
μ™œλƒν•˜λ©΄ ν˜„μž¬λ‘œμ„  λ‡Œκ°€ μ–΄λ–»κ²Œ μž‘λ™ν•˜λŠ”μ§€
04:19
about how the brain works.
75
259695
1852
μΆ©λΆ„νžˆ μ•Œμ§€ λͺ»ν•˜κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
04:22
We need to learn which of our cells matter to each illness,
76
262526
4266
μš°λ¦¬λŠ” μ–΄λ–€ 세포듀이 μ§ˆλ³‘μ— 영ν–₯을 μ£ΌλŠ”μ§€,
04:26
and which molecules in those cells matter to each illness.
77
266816
3570
κ·Έ 세포 속 μ–΄λ–€ λΆ„μžκ°€ μ§ˆλ³‘μ— 영ν–₯을 μ£ΌλŠ”μ§€ λ°°μ›Œμ•Ό ν•©λ‹ˆλ‹€.
04:31
And that's the mission I want to tell you about today.
78
271058
2651
이것이 μ˜€λŠ˜λ‚  μ œκ°€ μ—¬λŸ¬λΆ„λ“€κ³Ό μ΄μ•ΌκΈ°ν•˜κ³  싢은 μˆ™μ œμž…λ‹ˆλ‹€.
04:34
My lab develops technologies with which we try to turn the brain
79
274781
3809
μ €μ˜ 연ꡬ싀은 λ‡Œλ₯Ό λΉ… 데이터 ν”„λ‘œκ·Έλž¨μœΌλ‘œ
04:38
into a big-data problem.
80
278614
1700
λ°”κΎΈλŠ” κΈ°μˆ μ„ μ—°κ΅¬ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
04:40
You see, before I became a biologist, I worked in computers and math,
81
280338
3536
μ €λŠ” μƒλ¬Όν•™μžκ°€ 되기 전에, 컴퓨터와 μˆ˜ν•™μ„ μœ΅ν•©ν•˜λŠ” 일을 ν•˜μ˜€κ³ ,
04:43
and I learned this lesson:
82
283898
1324
ν•œ 가지 κ΅ν›ˆμ„ λ°°μ› μŠ΅λ‹ˆλ‹€.
04:46
wherever you can collect vast amounts of the right kinds of data
83
286365
4184
μ–΄λ–€ 뢄야든지 μ‹œμŠ€ν…œμ— λŒ€ν•œ μ˜¬λ°”λ₯Έ 데이터λ₯Ό μΆ©λΆ„νžˆ μˆ˜μ§‘ν•  수 μžˆλ‹€λ©΄,
04:50
about the functioning of a system,
84
290573
2030
04:53
you can use computers in powerful new ways
85
293365
3618
μ»΄ν“¨ν„°λŠ” κ°•λ ₯ν•˜κ³  μƒˆλ‘œμš΄ 도ꡬ가 될 수 있고,
04:57
to make sense of that system and learn how it works.
86
297007
3225
μ‹œμŠ€ν…œμ˜ μž‘λ™ 방식을 배우고 μ΄ν•΄ν•˜λ„λ‘ λ„μ™€μ€€λ‹€λŠ” 것이죠.
05:00
Today, big-data approaches are transforming
87
300256
2522
μ˜€λŠ˜λ‚ , 빅데이터 μ ‘κ·Ό 방식은
05:02
ever-larger sectors of our economy,
88
302802
2483
우리 경제의 큰 뢀문을 λ³€ν™”μ‹œν‚€κ³  있으며,
05:05
and they could do the same in biology and medicine, too.
89
305309
3286
생물학과 μ˜ν•™λΆ„μ•Όμ—μ„œλ„ 큰 뢀문을 λ³€ν™”μ‹œν‚¬ 수 μžˆμŠ΅λ‹ˆλ‹€.
05:08
But you have to have the right kinds of data.
90
308619
2557
ν•˜μ§€λ§Œ 그러기 μœ„ν•΄μ„œλŠ” μ μ ˆν•œ 데이터가 ν•„μš”ν•©λ‹ˆλ‹€.
05:11
You have to have data about the right things.
91
311200
2259
μš°λ¦¬λŠ” μ˜¬λ°”λ₯Έ 데이터λ₯Ό 가지고 μžˆμ–΄μ•Ό ν•˜λ©°
05:13
And that often requires new technologies and ideas.
92
313917
3865
μƒˆλ‘œμš΄ 기술과 아이디어가 ν•„μš”ν•©λ‹ˆλ‹€.
05:18
And that is the mission that animates the scientists in my lab.
93
318815
3494
이것이 제 μ—°κ΅¬μ‹€μ˜ κ³Όν•™μžλ“€μ„ μ›€μ§μ΄κ²Œ λ§Œλ“  μˆ™μ œμž…λ‹ˆλ‹€.
05:23
Today, I want to tell you two short stories from our work.
94
323251
2974
였늘, 저희 μ—°κ΅¬μ˜ 두 가지 일화λ₯Ό κ°„λž΅νžˆ μ†Œκ°œν•˜κ² μŠ΅λ‹ˆλ‹€.
05:27
One fundamental obstacle we face
95
327427
3104
λ‡Œλ₯Ό λΉ… 데이터 ν”„λ‘œκ·Έλž¨μœΌλ‘œ λ°”κΎΈλ €κ³  ν•˜λŠ” κ³Όμ •μ—μ„œ
05:30
in trying to turn the brain into a big-data problem
96
330555
2660
저희가 μ§λ©΄ν•œ ν•˜λ‚˜μ˜ 근본적인 λ¬Έμ œλŠ”
05:33
is that our brains are composed of and built from billions of cells.
97
333946
4538
우리의 λ‡Œκ°€ μˆ˜μ‹­μ–΅ 개의 μ„Έν¬λ‘œ κ΅¬μ„±λ˜μ–΄ μžˆλ‹€λŠ” μ‚¬μ‹€μ΄μ—ˆμŠ΅λ‹ˆλ‹€.
05:39
And our cells are not generalists; they're specialists.
98
339246
3859
그리고 우리 세포듀은 λ‹€μž¬λ‹€λŠ₯ν•œ 일꾼이 μ•„λ‹ˆλΌ
전문가에 κ°€κΉμŠ΅λ‹ˆλ‹€.
05:43
Like humans at work,
99
343129
2089
직μž₯μ—μ„œμ˜ μ‚¬λžŒλ“€κ³Ό λ§ˆμ°¬κ°€μ§€λ‘œ
05:45
they specialize into thousands of different cellular careers,
100
345242
5274
세포듀은 수천 개의 λ‹€μ–‘ν•œ μ—…λ¬΄λ‚˜
νŠΉμ • μ’…λ₯˜μ˜ 세포λ₯Ό μ „λ¬Έμ μœΌλ‘œ λ‹΄λ‹Ήν•©λ‹ˆλ‹€.
05:50
or cell types.
101
350540
1367
05:52
In fact, each of the cell types in our body
102
352796
2571
사싀 우리 λͺΈμ˜ 세포 각각은
05:55
could probably give a lively TED Talk
103
355391
1878
μžμ‹ λ“€μ΄ ν•˜λŠ” 업무λ₯Ό 주제둜
05:57
about what it does at work.
104
357293
1542
μƒμƒν•œ TED 강연을 ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
06:00
But as scientists, we don't even know today
105
360422
2370
ν•˜μ§€λ§Œ, κ³Όν•™μžλ‘œμ„œ μ €ν¬λŠ” μ˜€λŠ˜λ‚ κΉŒμ§€λ„
06:02
how many cell types there are,
106
362816
1907
λ‡Œμ— μ–Όλ§ˆλ‚˜ λ§Žμ€ μ’…λ₯˜μ˜ 세포가 있고
06:04
and we don't know what the titles of most of those talks would be.
107
364747
3277
각각의 세포듀이 μ–΄λ–€ 주제둜 강연을 할지 λͺ¨λ¦…λ‹ˆλ‹€.
06:11
Now, we know many important things about cell types.
108
371809
2970
ν˜„μž¬, μ €ν¬λŠ” 세포 μ’…λ₯˜μ— λŒ€ν•œ λ§Žμ€ μ€‘μš”ν•œ 정보λ₯Ό νŒŒμ•…ν–ˆμŠ΅λ‹ˆλ‹€.
06:14
They can differ dramatically in size and shape.
109
374803
2751
세포듀은 크기와 ν˜•νƒœκ°€ 맀우 λ‹€μ–‘ν•˜μ£ .
06:17
One will respond to a molecule that the other doesn't respond to,
110
377578
4135
ν•œ μ„Έν¬λŠ” μ–΄λ–€ λΆ„μžμ™€ λ°˜μ‘ν•˜λŠ”λ°, λ‹€λ₯Έ μ„Έν¬λŠ” κ·Έ λΆ„μžμ™€ λ°˜μ‘ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
06:21
they'll make different molecules.
111
381737
1794
이 두 μ„Έν¬λŠ” λ‹€λ₯Έ λΆ„μžλ₯Ό λ§Œλ“€κ² μ£ .
06:23
But science has largely been reaching these insights
112
383555
2521
ν•˜μ§€λ§Œ 과학은 이런 결과에 이λ₯΄κΈ°κΉŒμ§€ λ‹€μ–‘ν•œ κ°€λŠ₯성듀을 λ°°μ œν–ˆμŠ΅λ‹ˆλ‹€.
06:26
in an ad hoc way, one cell type at a time,
113
386100
2943
ν•œ λ²ˆμ— ν•œ 세포씩, ν•œ λ²ˆμ— ν•œ λΆ„μžμ”© λΆ„μ„ν•˜λ©΄μ„œ 말이죠.
06:29
one molecule at a time.
114
389067
1486
06:31
We wanted to make it possible to learn all of this quickly and systematically.
115
391854
4731
μ €ν¬λŠ” 이런 λͺ¨λ“  것듀을 λΉ λ₯΄κ³  μ²΄κ³„μ μœΌλ‘œ 배울 수 있길 μ›ν–ˆμŠ΅λ‹ˆλ‹€.
06:37
Now, until recently, it was the case
116
397673
1748
μ΅œκ·ΌκΉŒμ§€λŠ” λ§Œμ•½ 당신이 우리의 λ‡Œ λ˜λŠ” λ‹€λ₯Έ μž₯κΈ°λ“€μ˜
06:39
that if you wanted to inventory all of the molecules
117
399445
3076
06:42
in a part of the brain or any organ,
118
402545
2925
λͺ¨λ“  λΆ„μžλ“€μ„ λΆ„λ₯˜ν•˜κ³  μ‹Άλ‹€λ©΄,
06:45
you had to first grind it up into a kind of cellular smoothie.
119
405494
3954
λ¨Όμ € 그것을 κ°ˆμ•„ 세포 μŠ€λ¬΄λ””λ₯Ό λ§Œλ“€μ–΄μ•Όλ§Œ ν–ˆμŠ΅λ‹ˆλ‹€.
06:50
But that's a problem.
120
410678
1230
이것이 λ¬Έμ œμ˜€μŠ΅λ‹ˆλ‹€.
06:52
As soon as you've ground up the cells,
121
412737
2538
세포λ₯Ό κ°ˆμ•„λ†“λŠ” μˆœκ°„,
06:55
you can only study the contents of the average cell --
122
415299
3511
μ—¬λŸ¬λΆ„μ€ 였직 μ„Έν¬μ˜ 평균 정보λ₯Ό μ—°κ΅¬ν•΄μ•Όλ§Œ ν•©λ‹ˆλ‹€.
06:58
not the individual cells.
123
418834
1595
각각의 세포λ₯Ό 연ꡬ할 순 μ—†μ£ .
07:01
Imagine if you were trying to understand how a big city like New York works,
124
421182
3709
λ§Œμ•½ μ—¬λŸ¬λΆ„μ΄ λ‰΄μš•μ²˜λŸΌ κ±°λŒ€ν•œ λ„μ‹œλ₯Ό μ—°κ΅¬ν•˜λŠ”λ°
07:04
but you could only do so by reviewing some statistics
125
424915
2542
λ‰΄μš• μ‹œλ―Όλ“€μ˜ 평균적인 ν†΅κ³„λ§Œ μ‚¬μš©ν•  수 μžˆλ‹€λ©΄
07:07
about the average resident of New York.
126
427481
2029
μ–΄λ–€ 심정일지 μƒμƒν•΄λ³΄μ„Έμš”.
07:10
Of course, you wouldn't learn very much,
127
430637
1979
λ¬Όλ‘  λ”±νžˆ 배울 점이 μ—†μŠ΅λ‹ˆλ‹€.
07:12
because everything that's interesting and important and exciting
128
432640
3000
μ™œλƒν•˜λ©΄ ν₯λ―Έλ‘­κ³ , μ€‘μš”ν•˜κ³ , μž¬λ―ΈμžˆλŠ” λͺ¨λ“  것듀은
07:15
is in all the diversity and the specializations.
129
435664
2732
λ‹€μ–‘μ„±κ³Ό 전문성에 있기 λ•Œλ¬Έμ΄μ£ .
07:18
And the same thing is true of our cells.
130
438420
2606
μΈκ°„μ˜ 세포도 λ§ˆμ°¬κ°€μ§€μž…λ‹ˆλ‹€.
07:21
And we wanted to make it possible to study the brain not as a cellular smoothie
131
441050
4750
μ €ν¬λŠ” μΈκ°„μ˜ λ‡Œλ₯Ό 세포 μŠ€λ¬΄λ””λ₯Ό ν†΅ν•΄μ„œλ³΄λ‹¨,
07:25
but as a cellular fruit salad,
132
445824
2478
각각의 과일 쑰각에 λŒ€ν•œ 정보λ₯Ό νŒŒμ•…ν•˜κ³  배울 수 μžˆλŠ”
07:28
in which one could generate data about and learn from
133
448326
2604
07:30
each individual piece of fruit.
134
450954
1838
세포 μƒλŸ¬λ“œλ₯Ό 톡해 μ—°κ΅¬ν•˜κ³  μ‹Άμ—ˆμŠ΅λ‹ˆλ‹€.
07:34
So we developed a technology for doing that.
135
454253
2718
μ €ν¬λŠ” 이λ₯Ό μœ„ν•΄ ν•œ κΈ°μˆ μ„ κ°œλ°œν–ˆμŠ΅λ‹ˆλ‹€.
07:36
You're about to see a movie of it.
136
456995
1729
κ΄€λ ¨λœ μ˜μƒμ„ λ³΄μ‹œμ£ .
07:41
Here we're packaging tens of thousands of individual cells,
137
461477
4028
μ˜μƒμ—μ„œ, μ €ν¬λŠ” 수만 개의 세포듀을
07:45
each into its own tiny water droplet
138
465529
2923
μž‘μ€ λ¬Όλ°©μšΈμ— 포μž₯ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
07:48
for its own molecular analysis.
139
468476
2211
μ„Έν¬μ˜ λΆ„μžλ₯Ό λΆ„μ„ν•˜κΈ° μœ„ν•΄μ„œμ£ .
07:51
When a cell lands in a droplet, it's greeted by a tiny bead,
140
471921
4123
세포가 λ¬Όλ°©μšΈμ— λ‹ΏμœΌλ©΄ λ°˜μ‘μ„ 톡해 μž‘μ€ ꡬ슬둜 λ°”λ€Œκ³ ,
07:56
and that bead delivers millions of DNA bar code molecules.
141
476068
3694
κ·Έ κ΅¬μŠ¬μ€ 수백만 개의 DNA λ°”μ½”λ“œ λΆ„μžλ“€μ„ μš΄λ°˜ν•©λ‹ˆλ‹€.
08:01
And each bead delivers a different bar code sequence
142
481115
3308
그리고 각각의 κ΅¬μŠ¬μ€ μ „ν˜€ λ‹€λ₯Έ λ°”μ½”λ“œ μˆœμ„œλ₯Ό μš΄λ°˜ν•©λ‹ˆλ‹€.
08:04
to a different cell.
143
484447
1243
λ˜λ‹€λ₯Έ μ„Έν¬μ—κ²Œλ‘œμš”.
08:06
We incorporate the DNA bar codes
144
486884
2581
우리 λͺΈμ€ DNA λ°”μ½”λ“œλ₯Ό
08:09
into each cell's RNA molecules.
145
489489
3058
각 μ„Έν¬μ˜ RNA λΆ„μžλ“€λ‘œ ν†΅ν•©ν•©λ‹ˆλ‹€.
08:12
Those are the molecular transcripts it's making
146
492571
2836
RNAλŠ” μΌμ’…μ˜ λΆ„μž 섀계도인데,
08:15
of the specific genes that it's using to do its job.
147
495431
3103
세포가 μ—…λ¬΄μˆ˜ν–‰ λ•Œ μ‚¬μš©ν•˜λŠ” νŠΉμ • μœ μ „μžλ“€λ‘œ κ΅¬μ„±λ©λ‹ˆλ‹€.
08:19
And then we sequence billions of these combined molecules
148
499383
4207
κ·Έ ν›„ μ €ν¬λŠ” μˆ˜μ‹­μ–΅ 개의 ν†΅ν•©λœ λΆ„μžλ“€μ΄ μ–΄λ–»κ²Œ λ°°μ—΄λ˜μ–΄ μžˆλŠ”μ§€ 밝히고,
08:24
and use the sequences to tell us
149
504532
2498
이 λ°°μ—΄ μˆœμ„œλ₯Ό μ‚¬μš©ν•˜μ—¬
08:27
which cell and which gene
150
507054
2602
λΆ„μžλ“€μ΄ μ–΄λ–€ 세포, μ–΄λ–€ μœ μ „μžλ‘œλΆ€ν„° μ™”λŠ”μ§€
08:29
every molecule came from.
151
509680
1540
μ „λΆ€ μ•Œμ•„λƒ…λ‹ˆλ‹€.
08:32
We call this approach "Drop-seq," because we use droplets
152
512561
3292
μ €ν¬λŠ” 이 방법을 "물방울-λ°°μ—΄"이라고 λΆ€λ¦…λ‹ˆλ‹€.
세포뢄석을 μœ„ν•΄ κ°œλ³„μ²΄λ‘œ λΆ„λ¦¬ν•˜λŠ” κ³Όμ •μ—μ„œ λ¬Όλ°©μšΈμ„ μ‚¬μš©ν•˜κΈ° λ•Œλ¬Έμ΄μ£ .
08:35
to separate the cells for analysis,
153
515877
2575
08:38
and we use DNA sequences to tag and inventory
154
518476
3445
λ˜ν•œ DNA 배열을 μ΄μš©ν•˜μ—¬ λͺ¨λ“  것듀을 λͺ…λͺ…ν•˜κ³ ,
08:41
and keep track of everything.
155
521945
1488
λΆ„λ₯˜ν•˜κ³ , μΆ”μ ν•˜κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
08:44
And now, whenever we do an experiment,
156
524727
1976
그리고 ν˜„μž¬, μ‹€ν—˜μ„ ν•˜λ €κ³  마음만 먹으면
08:46
we analyze tens of thousands of individual cells.
157
526727
3243
μ €ν¬λŠ” μ–Έμ œλ“ μ§€λΌλ„ 수만 개의 κ°œλ³„ 세포듀을 뢄석할 수 μžˆμŠ΅λ‹ˆλ‹€.
08:51
And today in this area of science,
158
531018
2624
μ˜€λŠ˜λ‚  이 λΆ„μ•Όμ˜ κ³Όν•™μ—μ„œ
08:53
the challenge is increasingly how to learn as much as we can
159
533666
4931
점점 λ– μ˜€λ₯΄λŠ” λ„μ „κ³Όμ œκ°€ μžˆμŠ΅λ‹ˆλ‹€.
이 λ°©λŒ€ν•œ μ–‘μ˜ 데이터λ₯Ό 톡해
08:58
as quickly as we can
160
538621
1872
κ°€λŠ₯ν•œ 많이, κ°€λŠ₯ν•œ 빨리 지식을 μ–»λŠ” 방법을 μ°ΎλŠ” 것이죠.
09:00
from these vast data sets.
161
540517
1738
09:04
When we were developing Drop-seq, people used to tell us,
162
544914
2770
물방울-배열법을 κ°œλ°œν–ˆμ„ λ•Œ, μ‚¬λžŒλ“€μ€ μ΄λ ‡κ²Œ λ§ν–ˆμŠ΅λ‹ˆλ‹€.
09:07
"Oh, this is going to make you guys the go-to for every major brain project."
163
547708
4804
"였, 이건 λͺ¨λ“  μ£Όμš” λ‡Œ 연ꡬ ν”„λ‘œμ νŠΈμ—μ„œ μžλ„€λ“€μ„ μ£Όλͺ©ν•˜κ²Œ λ§Œλ“€κ±°μ•Ό."
이건 μ €ν¬μ˜ 관점과 λ‹¬λžμŠ΅λ‹ˆλ‹€.
09:13
That's not how we saw it.
164
553257
1544
09:14
Science is best when everyone is generating lots of exciting data.
165
554825
4531
과학이 κ°€μž₯ κ³Όν•™λ‹€μš΄ μˆœκ°„μ€ λͺ¨λ“  μ‚¬λžŒλ“€μ΄ ν₯미둜운 데이터λ₯Ό
수많이 λ§Œλ“€μ–΄λ‚Ό λ•Œμž…λ‹ˆλ‹€.
09:20
So we wrote a 25-page instruction book,
166
560197
3214
κ·Έλž˜μ„œ μ €ν¬λŠ” 25μž₯짜리 μ§€λ„μ„œλ₯Ό λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€.
09:23
with which any scientist could build their own Drop-seq system from scratch.
167
563435
4578
μ–΄λŠ κ³Όν•™μžλΌλ„ 사전지식 없이 μžμ‹ λ§Œμ˜ 물방울-λ°°μ—΄ μ‹œμŠ€ν…œμ„ λ§Œλ“€ 수 μžˆλ„λ‘ 말이죠.
09:28
And that instruction book has been downloaded from our lab website
168
568037
3697
μ§€λ‚œ 2λ…„κ°„ 이 μ§€λ„μ„œλŠ” 저희 μ—°κ΅¬μ†Œ μ›Ήμ‚¬μ΄νŠΈλ₯Ό 톡해
09:31
50,000 times in the past two years.
169
571758
2965
5만 번 정도 λ‹€μš΄λ‘œλ“œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
09:35
We wrote software that any scientist could use
170
575598
3052
μ €ν¬λŠ” 물방울-λ°°μ—΄ μ‹€ν—˜μ—μ„œ 얻은 데이터λ₯Ό λΆ„μ„ν•˜κΈ° μœ„ν•΄μ„œλΌλ©΄
09:38
to analyze the data from Drop-seq experiments,
171
578674
2898
μ–΄λŠ κ³Όν•™μžλΌλ„ μ‚¬μš©ν•  수 μžˆλŠ” μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό κ°œλ°œν–ˆμŠ΅λ‹ˆλ‹€.
09:41
and that software is also free,
172
581596
1715
λ¬Όλ‘  μ†Œν”„νŠΈμ›¨μ–΄λŠ” 무료이고,
09:43
and it's been downloaded from our website 30,000 times in the past two years.
173
583335
4388
μ§€λ‚œ 2λ…„κ°„ 저희 μ›Ήμ‚¬μ΄νŠΈλ₯Ό 톡해 3만 번 정도 λ‹€μš΄λ‘œλ“œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
09:48
And hundreds of labs have written us about discoveries that they've made
174
588328
4979
그리고 μˆ˜λ§Žμ€ μ—°κ΅¬μ†Œκ°€ 이 방법을 톡해 얻은 λ°œκ²¬λ“€μ„
09:53
using this approach.
175
593331
1443
μ €ν¬μ—κ²Œ μ „ν•˜κ³  있죠.
09:54
Today, this technology is being used to make a human cell atlas.
176
594798
3560
μ˜€λŠ˜λ‚ , 이 κΈ°μˆ μ€ 인간 세포지도λ₯Ό μ œμž‘ν•˜λŠ”λ° μ‚¬μš©λ˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
09:58
It will be an atlas of all of the cell types in the human body
177
598382
3354
이것은 μΈκ°„μ—κ²Œ μžˆλŠ” 세포쒅λ₯˜λ₯Ό λͺ¨λ‘ ν‘œμ‹œν•œ 지도가 될 것이고,
10:01
and the specific genes that each cell type uses to do its job.
178
601760
3680
세포듀이 역할을 μˆ˜ν–‰ν•˜λ©° μ‚¬μš©ν•˜λŠ” νŠΉμ • μœ μ „μžλ₯Ό μ•Œλ €μ€„ κ²ƒμž…λ‹ˆλ‹€.
10:08
Now I want to tell you about a second challenge that we face
179
608133
2876
이제 λ‡Œλ₯Ό 빅데이터 ν”„λ‘œκ·Έλž¨μœΌλ‘œ λ°”κΏ€ λ•Œ,
저희가 μ§λ©΄ν•œ 두 번째 λ¬Έμ œμ μ„ λ§μ”€λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
10:11
in trying to turn the brain into a big data problem.
180
611033
2448
10:13
And that challenge is that we'd like to learn from the brains
181
613505
3279
κ·Έ λ¬Έμ œμ μ€ 저희가 μˆ˜λ§Žμ€ μ‚΄μ•„μžˆλŠ” μ‚¬λžŒλ“€μ˜ λ‡Œλ₯Ό
10:16
of hundreds of thousands of living people.
182
616808
2444
연ꡬ해야 λœλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
10:19
But our brains are not physically accessible while we're living.
183
619998
3704
ν•˜μ§€λ§Œ, μ‚΄μ•„μžˆλŠ” μΈκ°„μ˜ λ‡Œμ—λŠ” 물리적으둜 μ ‘κ·Όν•˜κΈ° μ–΄λ ΅μ£ .
10:24
But how can we discover molecular factors if we can't hold the molecules?
184
624895
3960
λ§Œμ•½ λΆ„μžλ“€μ„ 얻을 수 μ—†λ‹€λ©΄, μ–΄λ–»κ²Œ λΆ„μžμ— λŒ€ν•΄ μ•Œμ•„λ‚Ό 수 μžˆμ„κΉŒμš”?
10:30
An answer comes from the fact that the most informative molecules, proteins,
185
630352
4548
닡은 정보가 λ§Žμ€ λΆ„μžμ™€ λ‹¨λ°±μ§ˆλ“€μ΄
우리의 DNA에 μž…λ ₯λ˜μ–΄μžˆλ‹€λŠ” μ‚¬μ‹€λ‘œλΆ€ν„° μ™”μŠ΅λ‹ˆλ‹€.
10:34
are encoded in our DNA,
186
634924
1782
10:36
which has the recipes our cells follow to make all of our proteins.
187
636730
4530
DNAλŠ” 우리 세포듀이 λ‹¨λ°±μ§ˆμ„ λ§Œλ“€ λ•Œ λ°˜λ“œμ‹œ μ‚¬μš©ν•˜λŠ” μš”λ¦¬λ²•μ΄κΈ° λ•Œλ¬Έμ΄μ£ .
10:41
And these recipes vary from person to person to person
188
641999
4946
이 μš”λ¦¬λ²•μ€ μ‚¬λžŒλ§ˆλ‹€ λ‹€λ¦…λ‹ˆλ‹€.
10:46
in ways that cause the proteins to vary from person to person
189
646969
3342
κ·Έλ ‡κΈ° λ•Œλ¬Έμ— μ‚¬λžŒλ§ˆλ‹€ λ‹€λ₯Έ νŠΉμ§•λ“€μ΄ λ‚˜νƒ€λ‚˜μ£ .
10:50
in their precise sequence
190
650335
1787
λ‹¨λ°±μ§ˆμ˜ μˆœμ„œκ°€ λ―Έλ¬˜ν•˜κ²Œ λ‹€λ₯΄κ³ ,
10:52
and in how much each cell type makes of each protein.
191
652146
3151
각각의 세포 μœ ν˜•μ΄ λ§Œλ“œλŠ” νŠΉμ • λ‹¨λ°±μ§ˆμ˜ 양도 λ‹€λ₯΄μ£ .
10:56
It's all encoded in our DNA, and it's all genetics,
192
656441
3393
이 λͺ¨λ“  것이 DNA에 μž…λ ₯λ˜μ–΄ 있고, 이것은 곧 μœ μ „μž…λ‹ˆλ‹€.
10:59
but it's not the genetics that we learned about in school.
193
659858
2817
ν•˜μ§€λ§Œ μš°λ¦¬κ°€ ν•™κ΅μ—μ„œ 배운 μœ μ „κ³ΌλŠ” λ‹€λ₯΄μ£ .
11:03
Do you remember big B, little b?
194
663572
1983
B, bλ₯Ό κΈ°μ–΅ν•˜μ‹œλ‚˜μš”?
11:06
If you inherit big B, you get brown eyes?
195
666260
2400
Bλ₯Ό 가지고 νƒœμ–΄λ‚˜λ©΄, λˆˆλ™μžλŠ” κ°ˆμƒ‰μ΄κ² μ£ ?
11:09
It's simple.
196
669085
1223
이것은 κ°„λ‹¨ν•©λ‹ˆλ‹€.
11:11
Very few traits are that simple.
197
671451
3173
맀우 μ†Œμˆ˜μ˜ νŠΉμ§•λ§Œμ΄ μ΄λ ‡κ²Œ κ°„λ‹¨ν•©λ‹ˆλ‹€.
11:15
Even eye color is shaped by much more than a single pigment molecule.
198
675232
4725
심지어 λˆˆλ™μžμƒ‰μ‘°μ°¨ ν•˜λ‚˜μ˜ μ—Όμƒ‰λΆ„μžκ°€ μ•„λ‹Œ 훨씬 λ§Žμ€ λΆ„μžλ“€μ΄ λ§Œλ“€μ–΄λ‚΄λŠ” 것이죠.
11:20
And something as complex as the function of our brains
199
680861
4250
우리 λ‡Œμ˜ κΈ°λŠ₯λ§ŒνΌμ΄λ‚˜ λ³΅μž‘ν•œ 것은
11:25
is shaped by the interaction of thousands of genes.
200
685135
3247
수천 개의 μœ μ „μžκ°€ μƒν˜Έμž‘μš©ν•˜μ—¬ λ§Œλ“­λ‹ˆλ‹€.
11:28
And each of these genes varies meaningfully
201
688406
2340
그리고 각각의 μœ μ „μžλŠ” μƒλ‹Ήν•œ μ •λ„λ‘œ
11:30
from person to person to person,
202
690770
1838
μ‚¬λžŒλ§ˆλ‹€ λ‹€λ¦…λ‹ˆλ‹€.
11:32
and each of us is a unique combination of that variation.
203
692632
3517
μš°λ¦¬λŠ” κ·Έ λ‹€μ–‘μ„±μ˜ νŠΉλ³„ν•œ 결합인 μ…ˆμ΄μ£ .
11:37
It's a big data opportunity.
204
697419
2216
이제 빅데이터λ₯Ό μ‚¬μš©ν•  κΈ°νšŒμž…λ‹ˆλ‹€.
11:40
And today, it's increasingly possible to make progress
205
700214
3176
ν˜„μž¬, 과학이 λ°œμ „ν•  κ°€λŠ₯성이 점점 컀지고 μžˆμŠ΅λ‹ˆλ‹€.
11:43
on a scale that was never possible before.
206
703414
2796
μ „μ—λŠ” μ—†λ˜ μ—„μ²­λ‚œ 규λͺ¨λ‘œ 말이죠.
11:46
People are contributing to genetic studies
207
706234
2405
μœ μ „ 연ꡬ에 μ°Έκ°€ν•˜λŠ” μ‚¬λžŒλ“€μ˜ μˆ«μžλŠ”
11:48
in record numbers,
208
708663
1594
ν•΄λ§ˆλ‹€ 기둝을 κ°±μ‹ ν•˜κ³  있고,
11:51
and scientists around the world are sharing the data with one another
209
711085
4087
μ „ μ„Έκ³„μ˜ κ³Όν•™μžλ“€μ€ μ„œλ‘œ 정보λ₯Ό κ³΅μœ ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
11:55
to speed progress.
210
715196
1571
λ°œμ „μ„ μ΄‰μ§„ν•˜κΈ° μœ„ν•΄μ„œμš”.
11:57
I want to tell you a short story about a discovery we recently made
211
717514
3239
μ •μ‹ λΆ„μ—΄μ¦μ˜ μœ μ „μ— λŒ€ν•΄ 저희가 졜근 λ°œκ²¬ν•œ 것을
12:00
about the genetics of schizophrenia.
212
720777
1894
짧은 μ΄μ•ΌκΈ°λ‘œ μ „ν•΄λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€.
12:03
It was made possible by 50,000 people from 30 countries,
213
723506
4596
30개ꡭ의 5만 λͺ…μ˜ μ‚¬λžŒλ“€μ΄ 정신뢄열증 μœ μ „μ—°κ΅¬λ₯Ό μœ„ν•΄
12:08
who contributed their DNA to genetic research on schizophrenia.
214
728126
4700
DNAλ₯Ό 기증해주신 덕뢄에 이 μ—°κ΅¬λŠ” κ°€λŠ₯ν•  수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
12:14
It had been known for several years
215
734406
2096
인간 μœ μ „μžκ°€ 정신뢄열증 λ°œλ³‘μ— λ―ΈμΉ˜λŠ” κ°€μž₯ 큰 영ν–₯λ ₯은
12:16
that the human genome's largest influence on risk of schizophrenia
216
736526
4111
μ–΄λŠ μœ μ „μ²΄μ˜ ν•œ λΆ€λΆ„μœΌλ‘œλΆ€ν„° λ‚˜μ˜€κ³ ,
12:20
comes from a part of the genome
217
740661
1802
이 μœ μ „μ²΄λŠ” 인간 면역체계 속 λ§Žμ€ λΆ„μžλ“€μ„ μ½”λ“œν™”ν–ˆλ‹€λŠ” 사싀이
12:22
that encodes many of the molecules in our immune system.
218
742487
3344
μˆ˜λ…„κ°„ μ•Œλ €μ Έ μ™”μŠ΅λ‹ˆλ‹€.
12:25
But it wasn't clear which gene was responsible.
219
745855
3034
ν•˜μ§€λ§Œ, 그것이 μ–΄λ–€ μœ μ „μžμΈμ§€λŠ” λͺ…ν™•ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
12:29
A scientist in my lab developed a new way to analyze DNA with computers,
220
749746
4040
저희 μ—°κ΅¬μ‹€μ˜ ν•œ κ³Όν•™μžλŠ” μ»΄ν“¨ν„°λ‘œ DNAλ₯Ό λΆ„μ„ν•˜λŠ” μƒˆλ‘œμš΄ 방법을 발λͺ…ν–ˆκ³ ,
12:33
and he discovered something very surprising.
221
753810
3095
맀우 λ†€λΌμš΄ 사싀을 μ•Œμ•„λƒˆμŠ΅λ‹ˆλ‹€.
12:36
He found that a gene called "complement component 4" --
222
756929
3251
κ·ΈλŠ” "보체결합 4"라고 λΆˆλ¦¬λŠ” μœ μ „μžλ₯Ό λ°œκ²¬ν–ˆμŠ΅λ‹ˆλ‹€.
12:40
it's called "C4" for short --
223
760204
1799
짧게 "C4"라고 λΆ€λ₯΄λŠ”λ°μš”,
12:43
comes in dozens of different forms in different people's genomes,
224
763036
3889
κ·ΈλŠ” 이 μœ μ „μžκ°€ μ‚¬λžŒμ˜ μœ μ „μ²΄μ— 따라 μˆ˜μ‹­ 개의 λ‹€λ₯Έ ν˜•νƒœλ₯Ό 띄고,
12:46
and these different forms make different amounts
225
766949
3197
우리 λ‡Œ 속 C4λ‹¨λ°±μ§ˆμ˜ 양이 κ²°μ •ν•˜λŠ” 주체가
12:50
of C4 protein in our brains.
226
770170
2242
μœ μ „μž ν˜•νƒœμ˜ λ‹€μ–‘μ„±μž„μ„ λ°ν˜”μŠ΅λ‹ˆλ‹€.
12:52
And he found that the more C4 protein our genes make,
227
772957
3985
그리고, κ·ΈλŠ” 우리의 μœ μ „μžκ°€ 더 λ§Žμ€ C4λ‹¨λ°±μ§ˆμ„ λ§Œλ“€μ–΄λ‚Όμˆ˜λ‘
12:56
the greater our risk for schizophrenia.
228
776966
2112
μ •μ‹ λΆ„μ—΄μ¦μ˜ μœ„ν—˜μ΄ λ†’μ•„μ§€λŠ” 것을 λ°œκ²¬ν–ˆμ£ .
12:59
Now, C4 is still just one risk factor in a complex system.
229
779919
4907
이제, C4λŠ” λ³΅μž‘ν•œ μ²΄κ³„μ†μ—μ„œ ν•œ 가지 μœ„ν—˜μš”μ†ŒμΌ λΏμž…λ‹ˆλ‹€.
13:04
This isn't big B,
230
784850
1989
이것은 Bκ°€ μ•„λ‹ˆμ£ .
13:06
but it's an insight about a molecule that matters.
231
786863
3557
ν•˜μ§€λ§Œ μ€‘μš”ν•œ λΆ„μžμ— λŒ€ν•΄ μ΄ν•΄ν•œ κ²ƒμž…λ‹ˆλ‹€.
13:11
Complement proteins like C4 were known for a long time
232
791492
3637
C4와 같은 λ³΄μ²΄λ‹¨λ°±μ§ˆμ€ 면역체계 μ†μ—μ„œ 일을 ν•œλ‹€λŠ” 사싀이
13:15
for their roles in the immune system,
233
795153
1953
μˆ˜λ…„κ°„ μ•Œλ €μ Έ μ™”μŠ΅λ‹ˆλ‹€.
13:17
where they act as a kind of molecular Post-it note
234
797130
2778
그듀은 μΌμ’…μ˜ λΆ„μž λ©”λͺ¨μ§€μ²˜λŸΌ ν–‰λ™ν•©λ‹ˆλ‹€.
13:19
that says, "Eat me."
235
799932
1580
"μ €λ₯Ό λ¨ΉμœΌμ„Έμš”."λΌλŠ” λ©”λͺ¨μ§€μš”.
13:22
And that Post-it note gets put on lots of debris
236
802475
2667
그리고 λ©”λͺ¨μ§€λŠ” 우리 λͺΈμ˜ μˆ˜λ§Žμ€ μž”ν•΄μ™€
13:25
and dead cells in our bodies
237
805166
2357
죽은 세포듀을 뒀집어 μ”λ‹ˆλ‹€.
13:27
and invites immune cells to eliminate them.
238
807547
2490
κ·Έ ν›„, 그것듀을 μ œκ±°ν•˜κΈ° μœ„ν•΄ 면역세포듀을 λΆ€λ₯΄μ£ .
13:30
But two colleagues of mine found that the C4 Post-it note
239
810779
3539
ν•˜μ§€λ§Œ, C4 λ©”λͺ¨μ§€λŠ” 우리 λ‡Œμ˜ μ‹œλƒ…μŠ€λ₯Ό 뒀집어 μ“΄ μ±„λ‘œ
13:35
also gets put on synapses in the brain
240
815183
3298
μžλ©Έμ„ μ΄‰μ§„ν•œλ‹€λŠ” 사싀을
13:38
and prompts their elimination.
241
818505
1864
제 λ™λ£Œ 두 λͺ…이 λ°ν˜”μŠ΅λ‹ˆλ‹€.
13:41
Now, the creation and elimination of synapses is a normal part
242
821154
3266
ν˜„μž¬, μΈκ°„μ˜ μ„±μž₯κ³Ό 배움에 μžˆμ–΄μ„œ μ‹œλƒ…μŠ€μ˜ 생성과 μ†Œλ©Έμ€
13:44
of human development and learning.
243
824444
1854
자주 μΌμ–΄λ‚˜λŠ” μΌμž…λ‹ˆλ‹€.
13:46
Our brains create and eliminate synapses all the time.
244
826322
2921
우리의 λ‡ŒλŠ” λ§€μˆœκ°„ μ‹œλƒ…μŠ€λ₯Ό μƒμ„±ν•˜κ³  μ œκ±°ν•©λ‹ˆλ‹€.
13:49
But our genetic results suggest that in schizophrenia,
245
829921
2960
ν•˜μ§€λ§Œ 인간은 정신뢄열증에 걸렸을 경우,
13:52
the elimination process may go into overdrive.
246
832905
3233
μ„Έν¬μ œκ±° 과정이 κΈ‰μ†λ„λ‘œ λΉ¨λΌμ§€λŠ”λ°, μ΄λŠ” μœ μ „μ˜ κ²°κ³Όμž…λ‹ˆλ‹€.
13:57
Scientists at many drug companies tell me they're excited about this discovery,
247
837185
3929
μ œμ•½νšŒμ‚¬μ˜ κ³Όν•™μžλ“€μ€ μ €μ—κ²Œ 이 발견이 정말 ν₯λ―Έλ‘­λ‹€κ³  λ§ν–ˆμŠ΅λ‹ˆλ‹€.
14:01
because they've been working on complement proteins for years
248
841138
3239
μ™œλƒν•˜λ©΄ 그듀은 μˆ˜λ…„κ°„ 면역체계 속 보체 λ‹¨λ°±μ§ˆμ— λŒ€ν•΄
14:04
in the immune system,
249
844401
1540
μ—°κ΅¬ν–ˆκΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
14:05
and they've learned a lot about how they work.
250
845965
2206
그듀은 λ‹¨λ°±μ§ˆμ΄ μ–΄λ–»κ²Œ μΌν•˜λŠ”μ§€ 많이 λ°°μ› μ£ .
14:08
They've even developed molecules that interfere with complement proteins,
251
848885
3894
μ‹¬μ§€μ–΄λŠ” 보체 λ‹¨λ°±μ§ˆμ„ λ°©ν•΄ν•˜λŠ” λΆ„μžλ₯Ό κ°œλ°œν•˜κΈ°λ„ ν–ˆμŠ΅λ‹ˆλ‹€.
14:12
and they're starting to test them in the brain as well as the immune system.
252
852803
3607
그리고 λ©΄μ—­μ²΄κ³„λΏλ§Œ μ•„λ‹ˆλΌ λ‡Œμ—μ„œλ„ 그것듀을 μ‹€ν—˜ν•˜κΈ° μ‹œμž‘ν–ˆμŠ΅λ‹ˆλ‹€.
14:17
It's potentially a path toward a drug that might address a root cause
253
857124
4721
이것은 κ°œλ³„μ μΈ 증상보닀 근본적인 원인을 ν•΄κ²°ν•˜λŠ” 약을 κ°œλ°œν•˜λŠ”λ°
14:21
rather than an individual symptom,
254
861869
2649
ν•˜λ‚˜μ˜ 잠재적인 길이 될 수 μžˆμŠ΅λ‹ˆλ‹€.
14:24
and we hope very much that this work by many scientists over many years
255
864542
4048
그리고 λ§Žμ€ κ³Όν•™μžλ“€μ΄ μˆ˜λ…„κ°„ λ…Έλ ₯ν•˜μ—¬ 이 일이 μ„±κ³΅μ μœΌλ‘œ λλ‚˜κΈ°λ₯Ό
14:28
will be successful.
256
868614
1152
κ°„μ ˆνžˆ μ›ν–ˆμŠ΅λ‹ˆλ‹€.
14:31
But C4 is just one example
257
871689
3014
ν•˜μ§€λ§Œ C4λŠ” 단지 데이터 기반의 과학적 μ‹œλ„λ“€μ΄
14:34
of the potential for data-driven scientific approaches
258
874727
3112
수 μ„ΈκΈ°λ™μ•ˆ 풀리지 μ•Šμ€ μ˜ν•™μ  λ¬Έμ œλ“€μ— μƒˆλ‘œμš΄ ν•΄κ²°λ°©μ•ˆμ„ μ œμ‹œν•˜λŠ”
14:37
to open new fronts on medical problems that are centuries old.
259
877863
3903
κ°€λŠ₯μ„±μ˜ ν•œ 가지 μ˜ˆμ‹œμΌ λΏμž…λ‹ˆλ‹€.
14:42
There are hundreds of places in our genomes
260
882144
2745
우리의 μœ μ „μ²΄ μ†μ—λŠ” λ‡Œμ§ˆν™˜μ„ μœ λ°œν•˜λŠ” 뢀뢄듀이 수많이 μžˆμŠ΅λ‹ˆλ‹€.
14:44
that shape risk for brain illnesses,
261
884913
2585
14:47
and any one of them could lead us to the next molecular insight
262
887522
4066
그리고 μœ μ „μ²΄μ˜ μ–΄λ–€ 뢀뢄이라도
μ€‘μš”ν•œ λΆ„μžμ— λŒ€ν•œ μƒˆλ‘œμš΄ 해석을 μš°λ¦¬μ—κ²Œ μ•Œλ €μ€„ 수 μžˆμŠ΅λ‹ˆλ‹€.
14:51
about a molecule that matters.
263
891612
2020
14:53
And there are hundreds of cell types that use these genes in different combinations.
264
893656
3987
그리고 μˆ˜λ§Žμ€ μ’…λ₯˜μ˜ 세포듀이 μ„œλ‘œ λ‹€λ₯Έ λ°©μ‹μœΌλ‘œ μœ μ „μžλ“€μ„ μ‚¬μš©ν•˜μ£ .
14:57
As we and other scientists work to generate
265
897667
2069
저희와 λ‹€λ₯Έ κ³Όν•™μžλ“€μ€
14:59
the rest of the data that's needed
266
899760
2069
ν•„μˆ˜ 데이터λ₯Ό λ§ˆμ € μ™„μ„±ν•˜κ³ 
15:01
and to learn all that we can from that data,
267
901853
2393
λ°μ΄ν„°λ‘œλΆ€ν„° κ°€λŠ₯ν•œ λͺ¨λ“  것듀을 배운 ν›„,
15:04
we hope to open many more new fronts.
268
904270
2403
저희가 λ§Žμ€ 뢀뢄듀을 κ°œμ²™ν–ˆκΈΈ λ°”λžμŠ΅λ‹ˆλ‹€.
15:08
Genetics and single-cell analysis are just two ways
269
908483
5079
μœ μ „ν•™κ³Ό κ°œλ³„ 세포 뢄석법은 λ‡Œλ₯Ό λΉ…λ°μ΄ν„°μ˜ 문제둜 λ°”κΎΈλ €λŠ”
15:13
of trying to turn the brain into a big data problem.
270
913586
3767
두 가지 방법에 λΆˆκ³Όν•©λ‹ˆλ‹€.
15:18
There is so much more we can do.
271
918424
2159
μ‹œλ„ν•  수 μžˆλŠ” 방법은 아직 λ§ŽμŠ΅λ‹ˆλ‹€.
15:21
Scientists in my lab are creating a technology
272
921235
3074
저희 μ—°κ΅¬μ†Œμ˜ κ³Όν•™μžλ“€μ€ λ‡Œ μ†μ˜ μ‹œλƒ…μŠ€ 연결망을
15:24
for quickly mapping the synaptic connections in the brain
273
924333
3196
λΉ λ₯΄κ²Œ νŒŒμ•…ν•˜λŠ” κΈ°μˆ μ„ κ°œλ°œν–ˆμŠ΅λ‹ˆλ‹€.
15:27
to tell which neurons are talking to which other neurons
274
927553
2938
이 μ§€λ„λŠ” ν•œ λ‰΄λŸ°μ΄ μ–΄λ–€ λ‰΄λŸ°κ³Ό μ†Œν†΅ν•˜λŠ”μ§€,
15:30
and how that conversation changes throughout life and during illness.
275
930515
3996
μ‚΄μ•„κ°€λ©΄μ„œ λ˜λŠ” 병에 κ±Έλ¦° λ™μ•ˆμ—λŠ” 이 μ†Œν†΅μ΄ μ–΄λ–»κ²Œ λ³€ν•˜λŠ”μ§€ μ•Œλ €μ€λ‹ˆλ‹€.
15:35
And we're developing a way to test in a single tube
276
935467
4520
λ˜ν•œ μˆ˜λ§Žμ€ 인간 μœ μ „μ²΄μ˜ 세포듀이 같은 μžκ·Ήμ— μ–΄λ–»κ²Œ λ‹€λ₯΄κ²Œ λ°˜μ‘ν•˜λŠ”μ§€
15:40
how cells with hundreds of different people's genomes
277
940011
2718
단 ν•˜λ‚˜μ˜ μ‹€ν—˜κ΄€μ—μ„œ μ‹€ν—˜ν•  수 μžˆλŠ”
15:42
respond differently to the same stimulus.
278
942753
2170
κΈ°μˆ μ„ κ°œλ°œν•˜κΈ°λ„ ν–ˆμ£ .
15:46
These projects bring together people with diverse backgrounds
279
946248
4903
μ΄λŸ¬ν•œ ν”„λ‘œμ νŠΈλŠ” λ°°κ²½, κ΅μœ‘κ³Όμ •, 관심사가 μ„œλ‘œ λ‹€λ₯Έ μ‚¬λžŒλ“€μ΄
15:51
and training and interests --
280
951175
2493
μ„œλ‘œ λ§Œλ‚˜λ„λ‘ λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€.
15:53
biology, computers, chemistry, math, statistics, engineering.
281
953692
5877
그듀은 생물학, 컴퓨터학, ν™”ν•™, μˆ˜ν•™, 톡계학, 곡학 λΆ„μ•Όμ˜ μ‚¬λžŒλ“€μ΄μ£ .
16:00
But the scientific possibilities rally people with diverse interests
282
960205
4232
ν•˜μ§€λ§Œ, 과학적 κ°€λŠ₯성이 λ‹€μ–‘ν•œ λΆ„μ•Όμ˜ μ‚¬λžŒλ“€μ„ κ²°μ§‘μ‹œμΌœ
16:04
into working intensely together.
283
964461
2235
같이 μ—΄μ‹¬νžˆ μΌν•˜λ„λ‘ λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€.
16:08
What's the future that we could hope to create?
284
968871
2551
μš°λ¦¬κ°€ λ§Œλ“€κ³  싢은 λ―Έλž˜λŠ” μ–΄λ–€ λͺ¨μŠ΅μΌκΉŒμš”?
16:12
Consider cancer.
285
972267
1350
암을 μ˜ˆμ‹œλ‘œ λ“€κ² μŠ΅λ‹ˆλ‹€.
16:14
We've moved from an era of ignorance about what causes cancer,
286
974193
3922
개인의 심리적 νŠΉμ§• λ•Œλ¬Έμ— 암이 λ°œλ³‘ν•œλ‹€κ³  μ•Œλ €μ‘Œλ˜
16:18
in which cancer was commonly ascribed to personal psychological characteristics,
287
978139
6988
μ•” λ°œλ³‘ 원인에 λŒ€ν•œ λ¬΄μ§€μ˜ μ‹œλŒ€λ‘œλΆ€ν„° λ²—μ–΄λ‚˜
16:26
to a modern molecular understanding of the true biological causes of cancer.
288
986238
5395
μš°λ¦¬λŠ” μ•”μ˜ 생물학적 원인을 μ§„μ •μœΌλ‘œ νŒŒμ•…ν•˜λŠ” ν˜„λŒ€ λΆ„μžμ‹ μ΄ν•΄λ‘œ κ°€κ³  μžˆμŠ΅λ‹ˆλ‹€.
16:32
That understanding today leads to innovative medicine
289
992100
3074
μ˜€λŠ˜λ‚  μ΄λŸ¬ν•œ μ΄ν•΄λŠ” 획기적인 약을
16:35
after innovative medicine,
290
995198
1696
κ±°λ“­ν•΄μ„œ κ°œλ°œν•΄λ‚΄κ³  μžˆμŠ΅λ‹ˆλ‹€.
16:36
and although there's still so much work to do,
291
996918
2839
그리고 비둝 ν•  일이 많이 λ‚¨μ•˜μ§€λ§Œ,
16:39
we're already surrounded by people who have been cured of cancers
292
999781
3394
ν•œ μ„ΈλŒ€ μ „μ—λŠ” μΉ˜λ£Œκ°€ λΆˆκ°€λŠ₯ν•˜λ‹€κ³  μ—¬κ²¨μ‘Œλ˜ 암을
16:43
that were considered untreatable a generation ago.
293
1003199
3269
κ·Ήλ³΅ν•œ ν™˜μžλ“€μ΄ 우리 주변에 많이 있죠.
16:48
And millions of cancer survivors like my sister
294
1008254
3376
제 여동생과 같은 수백 만의 μ•” μƒμ‘΄μžλ“€μ€
16:51
find themselves with years of life that they didn't take for granted
295
1011654
4401
κ·Έλ“€μ—κ²Œ μ˜€μ§€ μ•Šμ„ 운λͺ…μ΄μ˜€λ˜ μˆ˜μ‹­ λ…„μ˜ μ‹œκ°„κ³Ό μƒˆλ‘œμš΄ κΈ°νšŒλ“€,
16:56
and new opportunities
296
1016079
1769
16:57
for work and joy and human connection.
297
1017872
3930
일, 기쁨과 μΈκ°„κ΄€κ³„μ˜ κΈ°νšŒλ“€μ„ λ§Œλ½ν•˜λ©° μ‚΄κ³  μžˆμŠ΅λ‹ˆλ‹€.
17:03
That is the future that we are determined to create around mental illness --
298
1023358
4378
이것이 저희가 이루고자 ν–ˆλ˜ μ •μ‹ μ§ˆν™˜μ˜ μƒˆλ‘œμš΄ λͺ¨μŠ΅μž…λ‹ˆλ‹€.
17:08
one of real understanding and empathy
299
1028581
4119
이것은 μ§„μ •ν•œ 이해와 곡감이고
17:12
and limitless possibility.
300
1032724
1816
λ¬΄ν•œν•œ κ°€λŠ₯μ„±μž…λ‹ˆλ‹€.
17:15
Thank you.
301
1035159
1190
κ°μ‚¬ν•©λ‹ˆλ‹€.
17:16
(Applause)
302
1036374
4062
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7