How data is helping us unravel the mysteries of the brain | Steve McCarroll

70,430 views ใƒป 2018-09-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Shlomo Adam ืขืจื™ื›ื”: Sigal Tifferet
00:12
Nine years ago,
0
12785
1704
ืœืคื ื™ ืชืฉืข ืฉื ื™ื
00:14
my sister discovered lumps in her neck and arm
1
14513
3101
ืื—ื•ืชื™ ื’ื™ืœืชื” ื’ื•ืฉื™ื ื‘ืฆื•ื•ืืจื” ื•ื‘ื–ืจื•ืขื”
00:17
and was diagnosed with cancer.
2
17638
1760
ื•ืื•ื‘ื—ืŸ ืืฆืœื” ืกืจื˜ืŸ.
00:20
From that day, she started to benefit
3
20985
3199
ื”ื—ืœ ืžืื•ืชื• ื™ื•ื ื”ื™ื ื”ืคื™ืงื” ืชื•ืขืœืช
ืžื”ื”ื‘ื ื” ืฉื”ืžื“ืข ืจื›ืฉ ื‘ื ื•ื’ืข ืœืกืจื˜ืŸ.
00:24
from the understanding that science has of cancer.
4
24208
3115
ื‘ื›ืœ ืคืขื ืฉื”ืœื›ื” ืœืจื•ืคืื™ื,
00:28
Every time she went to the doctor,
5
28206
2099
ื”ื ืžื“ื“ื• ืžื•ืœืงื•ืœื•ืช ืžืกื•ื™ืžื•ืช
00:30
they measured specific molecules
6
30329
2194
00:32
that gave them information about how she was doing
7
32547
2881
ืฉื ืชื ื• ืœื”ื ืžื™ื“ืข ืขืœ ืžืฆื‘ื”
00:35
and what to do next.
8
35452
1309
ื•ืขืœ ืžื” ืฉื™ืฉ ืœืขืฉื•ืช ื‘ื”ืžืฉืš.
ืืคืฉืจื•ื™ื•ืช ืจืคื•ืื™ื•ืช ื—ื“ืฉื•ืช ื ืขืฉื• ื–ืžื™ื ื•ืช ืžื™ื“ื™ ื›ืžื” ืฉื ื™ื.
00:38
New medical options became available every few years.
9
38095
3666
ื›ื•ืœื ืจืื• ืฉื”ื™ื ื ืื‘ืงืช ื‘ื’ื‘ื•ืจื”
00:43
Everyone recognized that she was struggling heroically
10
43070
4318
ื‘ืžื—ืœื” ื‘ื™ื•ืœื•ื’ื™ืช.
00:47
with a biological illness.
11
47412
1728
00:50
This spring, she received an innovative new medical treatment
12
50847
3657
ื‘ืื‘ื™ื‘ ื”ื–ื”, ื”ื™ื ืงื™ื‘ืœื” ื˜ื™ืคื•ืœ ืจืคื•ืื™ ื—ื“ืฉื ื™ ื‘ืžืกื’ืจืช ื ื™ืกื•ื™ ืจืคื•ืื™.
00:54
in a clinical trial.
13
54528
1202
00:55
It dramatically knocked back her cancer.
14
55754
2224
ื”ื˜ื™ืคื•ืœ ื”ื ื—ื™ืœ ืœืกืจื˜ืŸ ืžืคืœื” ื ื™ืฆื—ืช.
ืขื ืžื™ ืœื“ืขืชื›ื ืื‘ืœื” ื‘ื—ื’ ื”ื”ื•ื“ื™ื” ื”ืงืจื•ื‘?
00:59
Guess who I'm going to spend this Thanksgiving with?
15
59446
2552
ืขื ืื—ื•ืชื™ ืฉื•ืคืขืช ื”ื—ื™ื™ื,
01:02
My vivacious sister,
16
62022
2267
ืฉืขื•ืฉื” ืคืขื™ืœื•ืช ื’ื•ืคื ื™ืช ื™ื•ืชืจ ืžืžื ื™,
01:04
who gets more exercise than I do,
17
64313
2629
01:06
and who, like perhaps many people in this room,
18
66966
2859
ื•ืฉื›ืžื• ืจื‘ื™ื ื›ืืŸ ื‘ืื•ืœื, ื›ื ืจืื”,
01:09
increasingly talks about a lethal illness
19
69849
2292
ืžื“ื‘ืจืช ื™ื•ืชืจ ื•ื™ื•ืชืจ ืขืœ ืžื—ืœื” ืงื˜ืœื ื™ืช
ื‘ืœืฉื•ืŸ ืขื‘ืจ.
01:12
in the past tense.
20
72165
1263
01:14
Science can, in our lifetimes -- even in a decade --
21
74614
3863
ื”ืžื“ืข ื‘ื—ื™ื™ื ื•, ื•ืื•ืœื™ ืืฃ ื‘ืขืฉื•ืจ ื”ืงืจื•ื‘,
01:18
transform what it means to have a specific illness.
22
78501
3207
ื™ืฉื ื” ืืช ื”ืžืฉืžืขื•ืช ืฉืœ ื”ื™ื•ืช ื—ื•ืœื” ื‘ืžืฉื”ื•.
ืื‘ืœ ืœื ื‘ื›ืœ ื”ืžื—ืœื•ืช.
01:24
But not for all illnesses.
23
84055
1534
01:27
My friend Robert and I were classmates in graduate school.
24
87375
3722
ื—ื‘ืจื™, ืจื•ื‘ืจื˜, ื•ืื ื™ ืœืžื“ื ื• ื‘ื™ื—ื“ ืœืชื•ืืจ ืฉื ื™.
ืจื•ื‘ืจื˜ ื”ื™ื” ื—ื›ื,
01:31
Robert was smart,
25
91121
1801
01:32
but with each passing month,
26
92946
1477
ืื‘ืœ ืขื ื›ืœ ื—ื•ื“ืฉ ืฉื—ืœืฃ,
01:34
his thinking seemed to become more disorganized.
27
94447
3154
ื ืจืื” ืฉื—ืฉื™ื‘ืชื• ื”ืœื›ื” ื•ื ืขืฉืชื” ืžืคื•ื–ืจืช.
ื”ื•ื ื ืฉืจ ืžื”ืœื™ืžื•ื“ื™ื, ื”ืฉื™ื’ ืขื‘ื•ื“ื” ื‘ื—ื ื•ืช...
01:38
He dropped out of school, got a job in a store ...
28
98241
3198
01:41
But that, too, became too complicated.
29
101463
2218
ืื‘ืœ ื’ื ื–ื” ื ื”ื™ื” ืžืกื•ื‘ืš ืžื“ื™ ืขื‘ื•ืจื•.
01:44
Robert became fearful and withdrawn.
30
104559
2945
ืจื•ื‘ืจื˜ ื ืขืฉื” ืžืคื•ื—ื“ ื•ืžืกื•ื’ืจ.
01:48
A year and a half later, he started hearing voices
31
108281
2381
ื›ืขื‘ื•ืจ ืฉื ื” ื•ื—ืฆื™ ื”ื•ื ื”ื—ืœ ืœืฉืžื•ืข ืงื•ืœื•ืช
01:50
and believing that people were following him.
32
110686
2197
ื•ืœื”ืืžื™ืŸ ืฉืขื•ืงื‘ื™ื ืื—ืจื™ื•.
01:52
Doctors diagnosed him with schizophrenia,
33
112907
2722
ื”ืจื•ืคืื™ื ืื‘ื—ื ื• ืืฆืœื• ืกื›ื™ื–ื•ืคืจื ื™ื”,
01:55
and they gave him the best drug they could.
34
115653
2120
ื•ื ืชื ื• ืœื• ืืช ื”ืชืจื•ืคื” ื”ื›ื™ ื˜ื•ื‘ื” ืฉื™ื›ืœื• ืœืชืช.
01:57
That drug makes the voices somewhat quieter,
35
117797
3008
ื”ืชืจื•ืคื” ื”ืฉืชื™ืงื” ืžืขื˜ ืืช ื”ืงื•ืœื•ืช,
02:00
but it didn't restore his bright mind or his social connectedness.
36
120829
3989
ืื‘ืœ ืœื ืฉื™ืงืžื” ืืช ืžื•ื—ื• ื”ื—ื“ ืื• ืืช ื”ื—ื‘ืจื•ืชื™ื•ืช ืฉืœื•.
02:06
Robert struggled to remain connected
37
126270
1856
ืจื•ื‘ืจื˜ ื ืื‘ืง ื›ื“ื™ ืœื”ื™ืฉืืจ ืžื—ื•ื‘ืจ
ืœืขื•ืœืžื•ืช ื”ืœื™ืžื•ื“ื™ื, ื”ืขื‘ื•ื“ื” ื•ื”ื—ื‘ืจื™ื.
02:08
to the worlds of school and work and friends.
38
128150
2857
ื”ื•ื ื”ืœืš ื•ื”ืชืจื—ืง,
02:11
He drifted away,
39
131031
1383
02:12
and today I don't know where to find him.
40
132438
2285
ื•ื”ื™ื•ื ืื™ื ื ื™ ื™ื•ื“ืข ืื™ืคื” ื”ื•ื.
02:15
If he watches this,
41
135593
1479
ืื ื”ื•ื ืฆื•ืคื” ื‘ื–ื”,
02:17
I hope he'll find me.
42
137962
1628
ืื ื™ ืžืงื•ื•ื” ืฉื”ื•ื ื™ืžืฆื ืื•ืชื™.
02:22
Why does medicine have so much to offer my sister,
43
142639
4107
ืžื“ื•ืข ื™ื›ื•ืœื” ื”ืจืคื•ืื” ืœื”ืฆื™ืข ืœืื—ื•ืชื™ ื›ื” ื”ืจื‘ื”,
02:27
and so much less to offer millions of people like Robert?
44
147540
4210
ื•ื›ื” ืคื—ื•ืช ืœืžื™ืœื™ื•ื ื™ ืื ืฉื™ื ื›ืžื• ืจื•ื‘ืจื˜?
02:32
The need is there.
45
152952
1290
ื”ืฆื•ืจืš ืงื™ื™ื.
02:34
The World Health Organization estimates that brain illnesses
46
154266
3153
ืืจื’ื•ืŸ ื”ื‘ืจื™ืื•ืช ื”ืขื•ืœืžื™ ืžืขืจื™ืš ืฉืžื—ืœื•ืช ืฉืœ ื”ืžื•ื—,
02:37
like schizophrenia, bipolar disorder and major depression
47
157443
4115
ื›ืžื• ืกื›ื™ื–ื•ืคืจื ื™ื”, ื”ืคืจืขื” ื“ื•-ืงื•ื˜ื‘ื™ืช ื•ื“ื›ืื•ืŸ ื—ืžื•ืจ
02:41
are the world's largest cause of lost years of life and work.
48
161582
4971
ื”ื ื”ื’ื•ืจื ื”ืขื™ืงืจื™ ื‘ืขื•ืœื ืœืื•ื‘ื“ืŸ ืฉื ื•ืช ื—ื™ื™ื ื•ืขื‘ื•ื“ื”.
02:47
That's in part because these illnesses often strike early in life,
49
167807
3561
ื—ืœืงื™ืช, ื–ื” ืžืฉื•ื ืฉืžื—ืœื•ืช ืืœื” ืžื›ื•ืช ื‘ื“"ื› ื‘ืฉืœื‘ ืžื•ืงื“ื ื‘ื—ื™ื™ื,
02:51
in many ways, in the prime of life,
50
171392
2181
ื‘ืžื•ื‘ื ื™ื ืจื‘ื™ื - ื‘ืื‘ื™ื‘ ื”ื—ื™ื™ื,
02:53
just as people are finishing their educations, starting careers,
51
173597
4464
ื‘ื“ื™ื•ืง ื›ืฉืื ืฉื™ื ืžืกื™ื™ืžื™ื ืืช ื”ืœื™ืžื•ื“ื™ื, ืคื•ืชื—ื™ื ื‘ืงืจื™ื™ืจื”,
ื™ื•ืฆืจื™ื ืžืขืจื›ื•ืช-ื™ื—ืกื™ื ื•ืžืงื™ืžื™ื ืžืฉืคื—ื•ืช.
02:58
forming relationships and families.
52
178085
2279
03:00
These illnesses can result in suicide;
53
180388
2829
ื”ืžื—ืœื•ืช ื”ืืœื” ืขืœื•ืœื•ืช ืœื”ืกืชื™ื™ื ื‘ื”ืชืื‘ื“ื•ืช;
03:03
they often compromise one's ability to work at one's full potential;
54
183907
4567
ื”ืŸ ื‘ื“"ื› ืคื•ื’ืขื•ืช ื‘ื™ื›ื•ืœืช ืœืžืžืฉ ืืช ืžืœื•ื ื”ืคื•ื˜ื ืฆื™ืืœ ื‘ืขื‘ื•ื“ื”;
03:09
and they're the cause of so many tragedies harder to measure:
55
189767
3455
ื•ื”ืŸ ื’ื•ืจืžื•ืช ืœื˜ืจื’ื“ื™ื•ืช ืจื‘ื•ืช ืžื›ืคื™ ืฉื ื™ืชืŸ ืœืฉืขืจ:
ืื•ื‘ื“ืŸ ืฉืœ ืžืขืจื›ื•ืช-ื™ื—ืกื™ื ื•ืงืฉืจื™ื,
03:13
lost relationships and connections,
56
193246
2438
03:15
missed opportunities to pursue dreams and ideas.
57
195708
3039
ื”ื—ืžืฆืช ื”ื–ื“ืžื ื•ื™ื•ืช ืœื”ื’ืฉืžืช ื—ืœื•ืžื•ืช ื•ืœืžื™ืžื•ืฉ ืจืขื™ื•ื ื•ืช.
03:19
These illnesses limit human possibilities
58
199533
3005
ื”ืžื—ืœื•ืช ื”ืืœื” ืžื’ื‘ื™ืœื•ืช ืืช ื”ืืคืฉืจื•ื™ื•ืช ื”ืื ื•ืฉื™ื•ืช
03:22
in ways we simply cannot measure.
59
202562
2154
ื‘ื“ืจื›ื™ื ืฉืคืฉื•ื˜ ืื™ื ื ื• ืžืกื•ื’ืœื™ื ืœืžื“ื•ื“.
03:27
We live in an era in which there's profound medical progress
60
207493
4016
ืื ื• ื—ื™ื™ื ื‘ืชืงื•ืคื” ืฉืœ ืงื™ื“ืžื” ืจืคื•ืื™ืช ืื“ื™ืจื”
03:31
on so many other fronts.
61
211533
1811
ื‘ื”ืจื‘ื” ืžืื“ ื—ื–ื™ืชื•ืช ืื—ืจื•ืช.
03:33
My sister's cancer story is a great example,
62
213368
2547
ืกื™ืคื•ืจ ื”ืกืจื˜ืŸ ืฉืœ ืื—ื•ืชื™ ื”ื•ื ื“ื•ื’ืžื” ื ื”ื“ืจืช ืœื›ืš,
03:35
and we could say the same of heart disease.
63
215939
2062
ื•ืืคืฉืจ ืœื•ืžืจ ื–ืืช ื’ื ืขืœ ืžื—ืœื•ืช ื”ืœื‘:
ืชืจื•ืคื•ืช ื›ืžื• ืกื˜ื˜ื™ื ื™ื ื™ืžื ืขื• ืžื™ืœื™ื•ื ื™ ื”ืชืงืคื™-ืœื‘ ื•ืื™ืจื•ืขื™ ืฉื‘ืฅ.
03:38
Drugs like statins will prevent millions of heart attacks and strokes.
64
218025
3585
ื›ืฉืจื•ืื™ื ืืช ื”ืชื—ื•ืžื™ื ื”ืืœื” ืฉืœ ื”ืงื™ื“ืžื” ื”ืจืคื•ืื™ืช ื”ื’ื“ื•ืœื”
03:43
When you look at these areas of profound medical progress
65
223047
2945
ืฉืื™ืจืขื” ืขื•ื“ ื‘ื™ืžื™ ื—ื™ื™ื ื•,
03:46
in our lifetimes,
66
226016
1464
03:47
they have a narrative in common:
67
227504
1674
ื™ืฉ ืœื›ื•ืœื ื ืจื˜ื™ื‘ ืžืฉื•ืชืฃ:
ืžื“ืขื ื™ื ื’ื™ืœื• ืžื•ืœืงื•ืœื•ืช ื‘ืขืœื•ืช ื—ืฉื™ื‘ื•ืช ื‘ืžื—ืœื” ืžืกื•ื™ืžืช,
03:50
scientists discovered molecules that matter to an illness,
68
230067
4548
03:54
they developed ways to detect and measure those molecules in the body,
69
234639
4679
ืคื™ืชื—ื• ื“ืจื›ื™ื ืœื’ืœื•ืช ื•ืœืžื“ื•ื“ ื‘ื’ื•ืฃ ืืช ื”ืžื•ืœืงื•ืœื•ืช ื”ืืœื”,
04:00
and they developed ways to interfere with those molecules
70
240492
2778
ื•ืคื™ืชื—ื• ื“ืจื›ื™ ื”ืชืขืจื‘ื•ืช ื‘ืžื•ืœืงื•ืœื•ืช ืืœื”
04:03
using other molecules -- medicines.
71
243294
2048
ื‘ืขื–ืจืช ืžื•ืœืงื•ืœื•ืช ืื—ืจื•ืช: ืชืจื•ืคื•ืช.
04:05
It's a strategy that has worked again and again and again.
72
245921
4020
ื–ืืช ืฉื™ื˜ื” ืฉื”ืฆืœื™ื—ื” ืคืขื ืื—ืจ ืคืขื.
04:11
But when it comes to the brain, that strategy has been limited,
73
251403
3642
ืื‘ืœ ื‘ื›ืœ ื”ื ื•ื’ืข ืœืžื•ื—, ื”ืฉื™ื˜ื” ื”ื–ืืช ื ื•ืชืจื” ืžื•ื’ื‘ืœืช,
ื›ื™ ื›ื™ื•ื ืื™ื ื• ื™ื•ื“ืขื™ื ืžืกืคื™ืง, ืขื“ื™ื™ืŸ,
04:15
because today, we don't know nearly enough, yet,
74
255069
4602
04:19
about how the brain works.
75
259695
1852
ืขืœ ืื•ืคืŸ ืคืขื•ืœืชื• ืฉืœ ื”ืžื•ื—.
04:22
We need to learn which of our cells matter to each illness,
76
262526
4266
ืขืœื™ื ื• ืœืœืžื•ื“ ืžื”ื ื”ืชืื™ื ื”ื—ืฉื•ื‘ื™ื ื‘ื›ืœ ืžื—ืœื”,
04:26
and which molecules in those cells matter to each illness.
77
266816
3570
ื•ืื™ืœื• ืžื•ืœืงื•ืœื•ืช ื‘ืชืื™ื ืืœื” ื—ืฉื•ื‘ื•ืช ื‘ื›ืœ ืžื—ืœื”.
ื•ื–ืืช ื”ืฉืœื™ื—ื•ืช ืฉื‘ืจืฆื•ื ื™ ืœืชืืจ ืœื›ื ื”ื™ื•ื.
04:31
And that's the mission I want to tell you about today.
78
271058
2651
04:34
My lab develops technologies with which we try to turn the brain
79
274781
3809
ื”ืžืขื‘ื“ื” ืฉืœื™ ืžืคืชื—ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืฉื‘ืขื–ืจืชืŸ ืื ื• ืžื ืกื™ื ืœื”ืคื•ืš ืืช ื”ืžื•ื—
04:38
into a big-data problem.
80
278614
1700
ืœื‘ืขื™ื™ืช ื ืชื•ื ื™-ืขืชืง ("ื‘ื™ื’ ื“ืื˜ื”").
04:40
You see, before I became a biologist, I worked in computers and math,
81
280338
3536
ื›ื™ ืœืคื ื™ ืฉื”ืคื›ืชื™ ืœื‘ื™ื•ืœื•ื’, ืขื‘ื“ืชื™ ื‘ืžื—ืฉื‘ื™ื ื•ื‘ืžืชืžื˜ื™ืงื”,
04:43
and I learned this lesson:
82
283898
1324
ื•ื–ื” ื”ืœืงื— ืฉืœืžื“ืชื™:
04:46
wherever you can collect vast amounts of the right kinds of data
83
286365
4184
ื›ืฉืจื•ืฆื™ื ืœืืกื•ืฃ ื›ืžื•ื™ื•ืช ืขืฆื•ืžื•ืช ืฉืœ ื ืชื•ื ื™ื ืžื”ืกื•ื’ ื”ื ื›ื•ืŸ
04:50
about the functioning of a system,
84
290573
2030
ื‘ื ื•ื’ืข ืœืชืคืงื•ื“ื” ืฉืœ ืžืขืจื›ืช,
04:53
you can use computers in powerful new ways
85
293365
3618
ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื™ื ื‘ื“ืจื›ื™ื ื—ื“ืฉื•ืช ื•ืจื‘ื•ืช-ืขื•ืฆืžื”
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืžืขืจื›ืช ื•ืœืœืžื•ื“ ื›ื™ืฆื“ ื”ื™ื ืคื•ืขืœืช.
04:57
to make sense of that system and learn how it works.
86
297007
3225
ื”ื™ื•ื, ื”ื’ื™ืฉื•ืช ื”ื ื•ื’ืขื•ืช ืœื ืชื•ื ื™-ืขืชืง
05:00
Today, big-data approaches are transforming
87
300256
2522
ืžืฉื ื•ืช ื—ืœืงื™ื ื’ื“ืœื™ื ื•ื”ื•ืœื›ื™ื ืžื”ื›ืœื›ืœื” ืฉืœื ื•,
05:02
ever-larger sectors of our economy,
88
302802
2483
05:05
and they could do the same in biology and medicine, too.
89
305309
3286
ื•ื‘ื›ื•ื—ืŸ ืœืขืฉื•ืช ื–ืืช ื’ื ื‘ื‘ื™ื•ืœื•ื’ื™ื” ื•ื‘ืจืคื•ืื”.
05:08
But you have to have the right kinds of data.
90
308619
2557
ืื‘ืœ ื—ืฉื•ื‘ ืฉื™ื”ื™ื• ื”ื ืชื•ื ื™ื ืžื”ืกื•ื’ ื”ื ื›ื•ืŸ.
ื—ืฉื•ื‘ ืฉื™ื”ื™ื• ื”ื ืชื•ื ื™ื ื”ืงืฉื•ืจื™ื ืœื“ื‘ืจื™ื ื”ื ื›ื•ื ื™ื.
05:11
You have to have data about the right things.
91
311200
2259
05:13
And that often requires new technologies and ideas.
92
313917
3865
ื•ืœืขืชื™ื ืงืจื•ื‘ื•ืช ื–ื” ื“ื•ืจืฉ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ื•ืจืขื™ื•ื ื•ืช ื—ื“ืฉื™ื.
05:18
And that is the mission that animates the scientists in my lab.
93
318815
3494
ื–ื• ื”ืฉืœื™ื—ื•ืช ืฉืžืคื™ื—ื” ืจื•ื—-ื—ื™ื™ื ื‘ื—ื•ืงืจื™ื ื‘ืžืขื‘ื“ื” ืฉืœื™.
05:23
Today, I want to tell you two short stories from our work.
94
323251
2974
ื”ื™ื•ื ื‘ืจืฆื•ื ื™ ืœืกืคืจ ืœื›ื ืฉื ื™ ืกื™ืคื•ืจื™ื ืงืฆืจื™ื ืžืขื‘ื•ื“ืชื ื•.
05:27
One fundamental obstacle we face
95
327427
3104
ืื—ื“ ื”ืžื›ืฉื•ืœื™ื ื”ื™ืกื•ื“ื™ื™ื ืฉื™ืฉ ืœื ื•
05:30
in trying to turn the brain into a big-data problem
96
330555
2660
ื‘ื ืกื™ื•ืŸ ืœื”ืคื•ืš ืืช ื”ืžื•ื— ืœื‘ืขื™ื™ืช ื ืชื•ื ื™-ืขืชืง
05:33
is that our brains are composed of and built from billions of cells.
97
333946
4538
ื”ื•ื ืฉืžื•ื—ื ื• ืžื•ืจื›ื‘ ื•ื‘ื ื•ื™ ืžืžื™ืœื™ืืจื“ื™ ืชืื™ื.
ื•ื”ืชืื™ื ื”ืืœื” ืื™ื ื ืจื‘-ืชื›ืœื™ืชื™ื™ื ืืœื ื™ื™ื—ื•ื“ื™ื™ื.
05:39
And our cells are not generalists; they're specialists.
98
339246
3859
ื›ืžื• ื‘ื ื™-ืื“ื ื‘ืขื‘ื•ื“ื”,
05:43
Like humans at work,
99
343129
2089
ื”ื ืžืชืžื™ื™ื ื™ื ืœืืœืคื™ ืงืจื™ื™ืจื•ืช ืชืื™ื•ืช ืฉื•ื ื•ืช,
05:45
they specialize into thousands of different cellular careers,
100
345242
5274
05:50
or cell types.
101
350540
1367
ืื• ืกื•ื’ื™ ืชืื™ื.
05:52
In fact, each of the cell types in our body
102
352796
2571
ืœืžืขืฉื”, ื›ืœ ืื—ื“ ืžืกื•ื’ื™ ื”ืชืื™ื ื‘ื’ื•ืคื ื•
05:55
could probably give a lively TED Talk
103
355391
1878
ืžืกื•ื’ืœ ื›ื ืจืื” ืœืชืช ื”ืจืฆืืช TED ืžืขื ื™ื™ื ืช
05:57
about what it does at work.
104
357293
1542
ืขืœ ืžื” ืฉื”ื•ื ืขื•ืฉื” ื‘ืขื‘ื•ื“ื”.
06:00
But as scientists, we don't even know today
105
360422
2370
ืื‘ืœ ื›ืžื“ืขื ื™ื, ืืคื™ืœื• ืื™ื ื ื• ื™ื•ื“ืขื™ื
06:02
how many cell types there are,
106
362816
1907
ื›ืžื” ืกื•ื’ื™ ืชืื™ื ื™ืฉื ื,
06:04
and we don't know what the titles of most of those talks would be.
107
364747
3277
ื•ืื™ื ื ื• ื™ื•ื“ืขื™ื ืžื” ืชื”ื™ื™ื ื” ื”ื›ื•ืชืจื•ืช ืฉืœ ืจื•ื‘ ื”ื”ืจืฆืื•ืช ื”ืืœื”.
06:11
Now, we know many important things about cell types.
108
371809
2970
ื™ื“ื•ืขื™ื ืœื ื• ื“ื‘ืจื™ื ืจื‘ื™ื ื•ื—ืฉื•ื‘ื™ื ืื•ื“ื•ืช ืกื•ื’ื™ ืชืื™ื.
06:14
They can differ dramatically in size and shape.
109
374803
2751
ื”ื ืขืฉื•ื™ื™ื ืœื”ื™ื•ืช ืฉื•ื ื™ื ืขื“ ืžืื“ ื‘ื’ื•ื“ืœ ื•ื‘ืฆื•ืจื”.
06:17
One will respond to a molecule that the other doesn't respond to,
110
377578
4135
ืชื ืื—ื“ ืขืฉื•ื™ ืœื”ื’ื™ื‘ ืœืžื•ืœืงื•ืœื” ืฉืชื ืื—ืจ - ืœื,
06:21
they'll make different molecules.
111
381737
1794
ื”ื ืžื™ื™ืฆืจื™ื ืžื•ืœืงื•ืœื•ืช ืฉื•ื ื•ืช.
06:23
But science has largely been reaching these insights
112
383555
2521
ืื‘ืœ ื”ืžื“ืข ื”ื’ื™ืข ื‘ืื•ืคืŸ ื›ืœืœื™ ืœืชื•ื‘ื ื•ืช ื”ืืœื”
ื‘ืื•ืคืŸ ื ืงื•ื“ืชื™, ืกื•ื’ ืชื ืื—ืจ ืกื•ื’ ืชื,
06:26
in an ad hoc way, one cell type at a time,
113
386100
2943
ืžื•ืœืงื•ืœื” ืื—ืจ ืžื•ืœืงื•ืœื”.
06:29
one molecule at a time.
114
389067
1486
06:31
We wanted to make it possible to learn all of this quickly and systematically.
115
391854
4731
ืจืฆื™ื ื• ืœืืคืฉืจ ืœืœืžื•ื“ ืืช ื›ืœ ื–ื” ื‘ืžื”ื™ืจื•ืช ื•ื‘ืื•ืคืŸ ืžืขืจื›ืชื™.
06:37
Now, until recently, it was the case
116
397673
1748
ืขื“ ืœืื—ืจื•ื ื”, ื”ืžืฆื‘ ื”ื™ื”,
06:39
that if you wanted to inventory all of the molecules
117
399445
3076
ืฉืื ืจืฆื™ืชื ืจืฉื™ืžืช-ืžืฆืื™ ืฉืœ ื›ืœ ื”ืžื•ืœืงื•ืœื•ืช
06:42
in a part of the brain or any organ,
118
402545
2925
ื‘ื—ืœืง ืฉืœ ื”ืžื•ื— ืื• ื›ืœ ืื™ื‘ืจ ืฉื”ื•ื,
06:45
you had to first grind it up into a kind of cellular smoothie.
119
405494
3954
ื”ื™ื” ืฆืจื™ืš ืงื•ื“ื ื›ืœ ืœื˜ื—ื•ืŸ ืื•ืชื• ืœืžืขื™ืŸ ืฉื™ื™ืง ืชืื™ื.
06:50
But that's a problem.
120
410678
1230
ืื‘ืœ ื–ืืช ื‘ืขื™ื”.
06:52
As soon as you've ground up the cells,
121
412737
2538
ื›ืฉื˜ื•ื—ื ื™ื ื™ื—ื“ ืืช ื›ืœ ื”ืชืื™ื,
06:55
you can only study the contents of the average cell --
122
415299
3511
ืืคืฉืจ ืœื—ืงื•ืจ ืืช ืชื•ื›ื ื• ืฉืœ ื”ืชื ื”ืžืžื•ืฆืข ื‘ืœื‘ื“,
06:58
not the individual cells.
123
418834
1595
ื•ืœื ืฉืœ ื”ืชืื™ื ื”ืฉื•ื ื™ื.
ื ื ื™ื— ืฉื”ื™ื™ืชื ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืื™ืš ืขื•ื‘ื“ืช ืขื™ืจ ื’ื“ื•ืœื” ื›ืžื• ื ื™ื•-ื™ื•ืจืง,
07:01
Imagine if you were trying to understand how a big city like New York works,
124
421182
3709
07:04
but you could only do so by reviewing some statistics
125
424915
2542
ื•ื™ื›ื•ืœืชื ืœืกืงื•ืจ ืจืง ื›ืžื” ื ืชื•ื ื™ื ืกื˜ื˜ื™ืกื˜ื™ื™ื
07:07
about the average resident of New York.
126
427481
2029
ืื•ื“ื•ืช ื”ืชื•ืฉื‘ ื”ื ื™ื•-ื™ื•ืจืงื™ ื”ืžืžื•ืฆืข.
07:10
Of course, you wouldn't learn very much,
127
430637
1979
ื‘ืจื•ืจ ืฉืœื ื”ื™ื™ืชื ืœื•ืžื“ื™ื ื”ืจื‘ื”,
07:12
because everything that's interesting and important and exciting
128
432640
3000
ื›ื™ ื›ืœ ืžื” ืฉืžืขื ื™ื™ืŸ, ื—ืฉื•ื‘ ื•ืžืœื”ื™ื‘
07:15
is in all the diversity and the specializations.
129
435664
2732
ืžืฆื•ื™ ื‘ืžื’ื•ื•ืŸ ื•ื‘ืชื—ื•ืžื™ ื”ื”ืชืžื—ื•ืช.
07:18
And the same thing is true of our cells.
130
438420
2606
ื›ืš ื’ื ืขื ื”ืชืื™ื ืฉืœื ื•.
ืจืฆื™ื ื• ืœืืคืฉืจ ืืช ืœื™ืžื•ื“ ื”ืžื•ื— ืœื ื›ืฉื™ื™ืง ืฉืœ ืชืื™ื
07:21
And we wanted to make it possible to study the brain not as a cellular smoothie
131
441050
4750
07:25
but as a cellular fruit salad,
132
445824
2478
ืืœื ื›ืกืœื˜-ืคื™ืจื•ืช ืฉืœ ืชืื™ื,
07:28
in which one could generate data about and learn from
133
448326
2604
ื›ืฉืืคืฉืจ ืœื”ืคื™ืง ื ืชื•ื ื™ื ื•ืœืœืžื•ื“
07:30
each individual piece of fruit.
134
450954
1838
ืžื›ืœ ืคื™ืกืช ืคืจื™ ื‘ื•ื“ื“ืช.
07:34
So we developed a technology for doing that.
135
454253
2718
ื•ืœื›ืŸ ืคื™ืชื—ื ื• ืœืฉื ื›ืš ื˜ื›ื ื•ืœื•ื’ื™ื”.
07:36
You're about to see a movie of it.
136
456995
1729
ืžื™ื“ ืชืจืื• ืกืจื˜ื•ืŸ ืฉืœื”.
07:41
Here we're packaging tens of thousands of individual cells,
137
461477
4028
ื›ืืŸ ืื ื• ืื•ืจื–ื™ื ืขืฉืจื•ืช ืืœืคื™ ืชืื™ื ืฉื•ื ื™ื
07:45
each into its own tiny water droplet
138
465529
2923
ื›ืœ ืื—ื“ ื‘ื˜ื™ืคืช-ืžื™ื ื–ืขื™ืจื” ืžืฉืœื•
07:48
for its own molecular analysis.
139
468476
2211
ืœืฆื•ืจืš ื ื™ืชื•ื— ืžื•ืœืงื•ืœืจื™ ื ืคืจื“.
07:51
When a cell lands in a droplet, it's greeted by a tiny bead,
140
471921
4123
ื›ืฉื”ืชื ืžื’ื™ืข ืœื˜ื™ืคืช ื”ืžื™ื, ื”ื•ื ืžืชืงื‘ืœ ืข"ื™ ื—ืจื•ื– ื–ืขื™ืจ,
ืฉืžืคื™ืง ืžื™ืœื™ื•ื ื™ ืžื•ืœืงื•ืœื•ืช ืฉืœ ื‘ืจืงื•ื“ ื“ื "ื.
07:56
and that bead delivers millions of DNA bar code molecules.
141
476068
3694
ื›ืœ ื—ืจื•ื– ืžืคื™ืง ืจืฆืฃ ืฉื•ื ื” ืฉืœ ื‘ืจืงื•ื“ ื“ื "ื
08:01
And each bead delivers a different bar code sequence
142
481115
3308
08:04
to a different cell.
143
484447
1243
ืœื›ืœ ืชื.
08:06
We incorporate the DNA bar codes
144
486884
2581
ืฉื™ืœื‘ื ื• ืืช ื‘ืจืงื•ื“ื™ ื”ื“ื "ื
08:09
into each cell's RNA molecules.
145
489489
3058
ื‘ืžื•ืœืงื•ืœื•ืช ื”ืจื "ื ืฉืœ ื›ืœ ืชื.
08:12
Those are the molecular transcripts it's making
146
492571
2836
ืืœื• ื”ืจื™ืฉื•ืžื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ืฉื”ื•ื ื™ื•ืฆืจ
08:15
of the specific genes that it's using to do its job.
147
495431
3103
ืขื‘ื•ืจ ื”ื’ื ื™ื ื”ืžืกื•ื™ืžื™ื ืฉื‘ืืžืฆืขื•ืชื ื”ื•ื ืžื‘ืฆืข ืืช ืชืคืงื™ื“ื•.
08:19
And then we sequence billions of these combined molecules
148
499383
4207
ื•ืื– ืื ื• ืžืจืฆืคื™ื ืžื™ืœื™ืืจื“ื™ ืžื•ืœืงื•ืœื•ืช ืžืฉื•ืœื‘ื•ืช ื›ืืœื”
08:24
and use the sequences to tell us
149
504532
2498
ื•ื”ืจืฆืคื™ื ืื•ืžืจื™ื ืœื ื•
ืื™ื–ื• ืžื•ืœืงื•ืœื” ื”ื’ื™ืขื” ืžื›ืœ ืชื ื•ื›ืœ ื’ืŸ.
08:27
which cell and which gene
150
507054
2602
08:29
every molecule came from.
151
509680
1540
08:32
We call this approach "Drop-seq," because we use droplets
152
512561
3292
ืื ื• ืžื›ื ื™ื ื’ื™ืฉื” ื–ื• "ื“ืจื•ืค-ืกื™ืง", ื›ื™ ืื ื• ืžืฉืชืžืฉื™ื ื‘ื˜ื™ืคื•ืช
08:35
to separate the cells for analysis,
153
515877
2575
ื›ื“ื™ ืœื”ืคืจื™ื“ ืืช ื”ืชืื™ื ืœืฆื•ืจืš ื ื™ืชื•ื—,
08:38
and we use DNA sequences to tag and inventory
154
518476
3445
ื•ื‘ืจืฆืคื™ ื”ื“ื "ื ื›ื“ื™ ืœืชื™ื™ื’ ื•ืœื”ื›ื™ืŸ ืจืฉื™ืžืช ืžืฆืื™
08:41
and keep track of everything.
155
521945
1488
ื›ื“ื™ ืœืขืงื•ื‘ ืื—ืจื™ ื”ื›ืœ.
08:44
And now, whenever we do an experiment,
156
524727
1976
ื•ืขื›ืฉื™ื•, ื›ืฉืื ื• ืขื•ืจื›ื™ื ื ื™ืกื•ื™,
08:46
we analyze tens of thousands of individual cells.
157
526727
3243
ืื ื• ืžื ืชื—ื™ื ืขืฉืจื•ืช ืืœืคื™ ืชืื™ื ืฉื•ื ื™ื.
ื•ื”ื™ื•ื, ื‘ืชื—ื•ื ื”ืžื“ืข ื”ื–ื”,
08:51
And today in this area of science,
158
531018
2624
08:53
the challenge is increasingly how to learn as much as we can
159
533666
4931
ื”ื•ืœืš ื•ื’ื“ืœ ื”ืืชื’ืจ ืœืœืžื•ื“ ื›ื›ืœ ืฉื ื•ื›ืœ
08:58
as quickly as we can
160
538621
1872
ืžื”ืจ ื›ื›ืœ ืฉื ื•ื›ืœ
09:00
from these vast data sets.
161
540517
1738
ืžืžืขืจื›ื™ ื”ื ืชื•ื ื™ื ื”ืขื ืงื™ื™ื ื”ืืœื”.
09:04
When we were developing Drop-seq, people used to tell us,
162
544914
2770
ื›ืฉืคื™ืชื—ื ื• ืืช ื”"ื“ืจื•ืค-ืกื™ืง", ืืžืจื• ืœื ื•,
09:07
"Oh, this is going to make you guys the go-to for every major brain project."
163
547708
4804
"ื–ื” ื™ื”ืคื•ืš ืืชื›ื ืœื›ืชื•ื‘ืช ืœื›ืœ ืžื™ื–ื ื’ื“ื•ืœ ืฉืงืฉื•ืจ ืœืžื•ื—."
09:13
That's not how we saw it.
164
553257
1544
ืื ื• ืจืื™ื ื• ื–ืืช ืื—ืจืช.
09:14
Science is best when everyone is generating lots of exciting data.
165
554825
4531
ื”ืžื“ืข ื”ื•ื ื‘ืžื™ื˜ื‘ื• ื›ืฉื›ื•ืœื ืžืคื™ืงื™ื ื”ืžื•ืŸ ื ืชื•ื ื™ื ืžืœื”ื™ื‘ื™ื.
ืื– ื›ืชื‘ื ื• ืกืคืจ-ื”ื•ืจืื•ืช ื‘ืŸ 25 ืขืžื•ื“ื™ื,
09:20
So we wrote a 25-page instruction book,
166
560197
3214
09:23
with which any scientist could build their own Drop-seq system from scratch.
167
563435
4578
ืฉื‘ืขื–ืจืชื• ื™ื›ื•ืœ ื›ืœ ืžื“ืขืŸ ืœื‘ื ื•ืช ืžืขืจื›ืช "ื“ืจื•ืค-ืกื™ืง" ืžื”ื”ืชื—ืœื”.
ืกืคืจ ื”ื”ื•ืจืื•ืช ื”ื–ื” ื”ื•ืจื“ ืžืืชืจ ื”ืžืขื‘ื“ื” ืฉืœื ื•
09:28
And that instruction book has been downloaded from our lab website
168
568037
3697
09:31
50,000 times in the past two years.
169
571758
2965
50,000 ืคืขื ื‘ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช.
09:35
We wrote software that any scientist could use
170
575598
3052
ื›ืชื‘ื ื• ืชื•ื›ื ื” ืฉื‘ื” ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื›ืœ ืžื“ืขืŸ
09:38
to analyze the data from Drop-seq experiments,
171
578674
2898
ื›ื“ื™ ืœื ืชื— ื ืชื•ื ื™ื ืžื ื™ืกื•ื™ื™ "ื“ืจื•ืค-ืกื™ืง",
09:41
and that software is also free,
172
581596
1715
ื•ื’ื ื”ืชื•ื›ื ื” ื”ื™ื ื—ื™ื ืžื™ืช,
09:43
and it's been downloaded from our website 30,000 times in the past two years.
173
583335
4388
ื•ื”ื™ื ื”ื•ืจื“ื” ืžื”ืืชืจ ืฉืœื ื• 30,000 ืคืขื ื‘ืฉื ืชื™ื™ื ื”ืื—ืจื•ื ื•ืช.
09:48
And hundreds of labs have written us about discoveries that they've made
174
588328
4979
ื•ืžืื•ืช ืžืขื‘ื“ื•ืช ื›ืชื‘ื• ืœื ื• ืขืœ ื”ืชื’ืœื™ื•ืช ืฉืœื”ืŸ
09:53
using this approach.
175
593331
1443
ื‘ืืžืฆืขื•ืช ื”ื’ื™ืฉื” ื”ื–ืืช.
09:54
Today, this technology is being used to make a human cell atlas.
176
594798
3560
ื”ื™ื•ื, ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ืืช ืžืฉืžืฉืช ืœื”ื›ื ืช ืื˜ืœืก ืฉืœ ื”ืชืื™ื ื”ืื ื•ืฉื™ื™ื.
09:58
It will be an atlas of all of the cell types in the human body
177
598382
3354
ื”ืื˜ืœืก ื”ื–ื” ื™ืจืื” ืืช ื›ืœ ืกื•ื’ื™ ื”ืชืื™ื ื‘ื’ื•ืฃ ื”ืื ื•ืฉื™
10:01
and the specific genes that each cell type uses to do its job.
178
601760
3680
ื•ืืช ื”ื’ื ื™ื ื”ืกืคืฆื™ืคื™ื™ื ืฉื‘ื”ื ืžืฉืชืžืฉ ื›ืœ ืชื ืœื‘ื™ืฆื•ืข ืชืคืงื™ื“ื•.
ืขื›ืฉื™ื• ื‘ืจืฆื•ื ื™ ืœืกืคืจ ืœื›ื ืขื ืืชื’ืจ ื ื•ืกืฃ ืฉืœื ื•
10:08
Now I want to tell you about a second challenge that we face
179
608133
2876
ื‘ื ืกื™ื•ืŸ ืœื”ืคื•ืš ืืช ื”ืžื•ื— ืœื‘ืขื™ื™ืช ื ืชื•ื ื™-ืขืชืง.
10:11
in trying to turn the brain into a big data problem.
180
611033
2448
10:13
And that challenge is that we'd like to learn from the brains
181
613505
3279
ื”ืืชื’ืจ ื”ื•ื ืจืฆื•ื ื ื• ืœืœืžื•ื“ ืžื”ืžื•ื—ื•ืช
10:16
of hundreds of thousands of living people.
182
616808
2444
ืฉืœ ืžืื•ืช ืืœืคื™ ื‘ื ื™-ืื“ื ื—ื™ื™ื.
10:19
But our brains are not physically accessible while we're living.
183
619998
3704
ืื‘ืœ ื”ืžื•ื—ื•ืช ืฉืœื ื• ืื™ื ื ื ื’ื™ืฉื™ื ืคื™ื–ื™ืช ื›ืฉืื ื• ื‘ื—ื™ื™ื.
10:24
But how can we discover molecular factors if we can't hold the molecules?
184
624895
3960
ืื– ืื™ืš ื ื’ืœื” ื’ื•ืจืžื™ื ืžื•ืœืงื•ืœืจื™ื™ื ืื ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ืข ืœืžื•ืœืงื•ืœื•ืช?
10:30
An answer comes from the fact that the most informative molecules, proteins,
185
630352
4548
ื”ืชืฉื•ื‘ื” ื ืขื•ืฆื” ื‘ืขื•ื‘ื“ื” ืฉื”ืžื•ืœืงื•ืœื•ืช ื”ื›ื™ ืื™ื ืคื•ืจืžื˜ื™ื‘ื™ื•ืช, ื”ื—ืœื‘ื•ื ื™ื,
10:34
are encoded in our DNA,
186
634924
1782
ืžืงื•ื“ื“ื•ืช ื‘ื“ื "ื ืฉืœื ื•,
10:36
which has the recipes our cells follow to make all of our proteins.
187
636730
4530
ืฉืžื›ื™ืœ ืžืชื›ื•ื ื™ื ืฉืขืœ ืคื™ื”ื ื”ืชืื™ื ื™ื•ืฆืจื™ื ืืช ื”ื—ืœื‘ื•ื ื™ื ืฉืœื ื•.
10:41
And these recipes vary from person to person to person
188
641999
4946
ื”ืžืชื›ื•ื ื™ื ื”ืืœื” ืžืฉืชื ื™ื ืžืื“ื ืœืื“ื
10:46
in ways that cause the proteins to vary from person to person
189
646969
3342
ื‘ื“ืจื›ื™ื ืฉื’ื•ืจืžื•ืช ืœื—ืœื‘ื•ื ื™ื ืœื”ืฉืชื ื•ืช ืžืื“ื ืœืื“ื
10:50
in their precise sequence
190
650335
1787
ืžื‘ื—ื™ื ืช ื”ืจืฆืฃ ื”ืžื“ื•ื™ืง
ื•ื›ืžื•ืช ื”ื—ืœื‘ื•ืŸ ืฉื›ืœ ืกื•ื’ ืชื ืžื™ื™ืฆืจ.
10:52
and in how much each cell type makes of each protein.
191
652146
3151
10:56
It's all encoded in our DNA, and it's all genetics,
192
656441
3393
ื”ื›ืœ ืžืงื•ื“ื“ ื‘ื“ื "ื, ื›ืœ ื–ื” ื”ื•ื ื’ื ื˜ื™ืงื”,
10:59
but it's not the genetics that we learned about in school.
193
659858
2817
ืื‘ืœ ืœื ื”ื’ื ื˜ื™ืงื” ืฉืœืžื“ื ื• ื‘ื‘ื™ืช-ื”ืกืคืจ.
11:03
Do you remember big B, little b?
194
663572
1983
ื–ื•ื›ืจื™ื ืืช ื”ืื•ืชื™ื•ืช ื”ื’ื“ื•ืœื•ืช ื•ื”ืงื˜ื ื•ืช ื‘ื“ื "ื?
11:06
If you inherit big B, you get brown eyes?
195
666260
2400
ืฉืื ื™ืจืฉืชื B ื’ื“ื•ืœื”, ืชื”ื™ื™ื ื” ืœื›ื ืขื™ื ื™ื™ื ื—ื•ืžื•ืช?
ื–ื” ืคืฉื•ื˜.
11:09
It's simple.
196
669085
1223
11:11
Very few traits are that simple.
197
671451
3173
ืžืขื˜ ืžืื“ ืชื›ื•ื ื•ืช ื”ืŸ ืขื“ ื›ื“ื™ ื›ืš ืคืฉื•ื˜ื•ืช.
ืืคื™ืœื• ืฆื‘ืข ื”ืขื™ื ื™ื™ื ืžื•ื›ืชื‘ ืข"ื™ ื”ืจื‘ื” ื™ื•ืชืจ ืžืืฉืจ ืžื•ืœืงื•ืœืช ืคื™ื’ืžื ื˜ ื‘ื•ื“ื“ืช.
11:15
Even eye color is shaped by much more than a single pigment molecule.
198
675232
4725
11:20
And something as complex as the function of our brains
199
680861
4250
ื•ืžืฉื”ื• ื›ื” ืžื•ืจื›ื‘ ื›ืžื• ืชืคืงื•ื“ ื”ืžื•ื—
ื ืงื‘ืข ืข"ื™ ื™ื—ืกื™ ื”ื’ื•ืžืœื™ืŸ ื‘ื™ืŸ ืืœืคื™ ื’ื ื™ื.
11:25
is shaped by the interaction of thousands of genes.
200
685135
3247
11:28
And each of these genes varies meaningfully
201
688406
2340
ื•ื›ืœ ืื—ื“ ืžื”ื’ื ื™ื ื”ืืœื” ืฉื•ื ื” ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™ ืืฆืœ ื›ืœ ืื“ื,
11:30
from person to person to person,
202
690770
1838
11:32
and each of us is a unique combination of that variation.
203
692632
3517
ื•ื›ืœ ืื—ื“ ืžืื™ืชื ื• ื”ื•ื ืฉื™ืœื•ื‘ ื™ื™ื—ื•ื“ื™ ืฉืœ ืฉื•ึนื ื•ึผืช ื–ื•.
11:37
It's a big data opportunity.
204
697419
2216
ื–ืืช ื”ื–ื“ืžื ื•ืช ืขื‘ื•ืจ ื’ื™ืฉืช ื ืชื•ื ื™ ื”ืขืชืง.
ื•ื”ื™ื•ื, ื™ื•ืชืจ ื•ื™ื•ืชืจ ืžืชืืคืฉืจืช ืงื™ื“ืžื”
11:40
And today, it's increasingly possible to make progress
205
700214
3176
11:43
on a scale that was never possible before.
206
703414
2796
ื‘ื”ื™ืงืฃ ืฉืœื ื”ื™ื” ืืคืฉืจื™ ืขื“ ื›ื”.
ืื ืฉื™ื ืชื•ืจืžื™ื ืœืžื—ืงืจ ื”ื’ื ื˜ื™
11:46
People are contributing to genetic studies
207
706234
2405
11:48
in record numbers,
208
708663
1594
ื‘ืžืกืคืจื™ ืฉื™ื,
ื•ืžื“ืขื ื™ื ื‘ื›ืœ ื”ืขื•ืœื ื—ื•ืœืงื™ื ื‘ื™ื ื™ื”ื ื ืชื•ื ื™ื
11:51
and scientists around the world are sharing the data with one another
209
711085
4087
ื›ื“ื™ ืœื”ืื™ืฅ ืืช ื”ื”ืชืงื“ืžื•ืช.
11:55
to speed progress.
210
715196
1571
11:57
I want to tell you a short story about a discovery we recently made
211
717514
3239
ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืกื™ืคื•ืจ ืงืฆืจ ืขืœ ืชื’ืœื™ืช ืฉื’ื™ืœื™ื ื• ืœืื—ืจื•ื ื”
12:00
about the genetics of schizophrenia.
212
720777
1894
ื‘ื ื•ื’ืข ืœื’ื ื˜ื™ืงื” ืฉืœ ื”ืกื›ื™ื–ื•ืคืจื ื™ื”.
12:03
It was made possible by 50,000 people from 30 countries,
213
723506
4596
ื”ื™ื ื”ืชืืคืฉืจื” ื”ื•ื“ื•ืช ืœ-50,000 ืื™ืฉ ืž-30 ืžื“ื™ื ื•ืช,
ืฉืชืจืžื• ืžื”ื“ื "ื ืฉืœื”ื ืœื—ืงืจ ื”ื’ื ื˜ื™ ืฉืœ ื”ืกื›ื™ื–ื•ืคืจื ื™ื”.
12:08
who contributed their DNA to genetic research on schizophrenia.
214
728126
4700
12:14
It had been known for several years
215
734406
2096
ืžื–ื” ื›ืžื” ืฉื ื™ื ื™ื“ื•ืข
12:16
that the human genome's largest influence on risk of schizophrenia
216
736526
4111
ืฉื”ืกื™ื›ื•ืŸ ืœืกื›ื™ื–ื•ืคืจื ื™ื” ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื‘ื’ื ื•ื ื”ืื ื•ืฉื™
12:20
comes from a part of the genome
217
740661
1802
ืžืงื•ืจื• ื‘ื—ืœืง ื‘ื’ื ื•ื
12:22
that encodes many of the molecules in our immune system.
218
742487
3344
ืฉืžืงื•ื“ื“ ืจื‘ื•ืช ืžื”ืžื•ืœืงื•ืœื•ืช ื‘ืžืขืจื›ืช ื”ื—ื™ืกื•ื ื™ืช ืฉืœื ื•.
12:25
But it wasn't clear which gene was responsible.
219
745855
3034
ืื‘ืœ ืœื ื”ื™ื” ื‘ืจื•ืจ ืžื™ื”ื• ื”ื’ืŸ ื”ืื—ืจืื™ ืœื›ืš.
12:29
A scientist in my lab developed a new way to analyze DNA with computers,
220
749746
4040
ืžื“ืขืŸ ื‘ืžืขื‘ื“ื” ืฉืœื™ ืคื™ืชื— ื“ืจืš ื—ื“ืฉื” ืœื ื™ืชื•ื— ื“ื "ื ื‘ืขื–ืจืช ืžื—ืฉื‘,
12:33
and he discovered something very surprising.
221
753810
3095
ื•ื”ื•ื ื’ื™ืœื” ื“ื‘ืจ ืžืคืชื™ืข ื‘ื™ื•ืชืจ.
12:36
He found that a gene called "complement component 4" --
222
756929
3251
ื”ื•ื ื’ื™ืœื” ืฉื’ืŸ ื‘ืฉื "ืžืจื›ื™ื‘ ืžืฉืœื™ื 4"
ืื• ื‘ืงื™ืฆื•ืจ "ืกื™4" --
12:40
it's called "C4" for short --
223
760204
1799
ืžื•ืคื™ืข ื‘ืขืฉืจื•ืช ืฆื•ืจื•ืช ืฉื•ื ื•ืช ื‘ื’ื ื•ืžื™ื ืฉืœ ืื ืฉื™ื ืฉื•ื ื™ื,
12:43
comes in dozens of different forms in different people's genomes,
224
763036
3889
12:46
and these different forms make different amounts
225
766949
3197
ื•ื”ืฆื•ืจื•ืช ื”ืฉื•ื ื•ืช ื”ืืœื” ื™ื•ืฆืจื•ืช ื›ืžื•ื™ื•ืช ืฉื•ื ื•ืช
ืฉืœ ื—ืœื‘ื•ืŸ ืกื™4 ื‘ืžื•ื—.
12:50
of C4 protein in our brains.
226
770170
2242
12:52
And he found that the more C4 protein our genes make,
227
772957
3985
ื”ื•ื ืžืฆื ืฉื›ื›ืœ ืฉื”ื’ื ื™ื ืฉืœื ื• ืžื™ื™ืฆืจื™ื ื™ื•ืชืจ ื—ืœื‘ื•ืŸ ืกื™4,
12:56
the greater our risk for schizophrenia.
228
776966
2112
ื›ืš ื’ื“ืœ ื”ืกื™ื›ื•ืŸ ืœืกื›ื™ื–ื•ืคืจื ื™ื”.
12:59
Now, C4 is still just one risk factor in a complex system.
229
779919
4907
ื”ืกื™4 ื”ื•ื ืจืง ื’ื•ืจื-ืกื™ื›ื•ืŸ ืื—ื“ ื‘ืžืขืจื›ืช ืžื•ืจื›ื‘ืช.
13:04
This isn't big B,
230
784850
1989
ืœื ืžื“ื•ื‘ืจ ื‘ืชื›ื•ื ื” ื’ื ื˜ื™ืช ืคืฉื•ื˜ื”,
13:06
but it's an insight about a molecule that matters.
231
786863
3557
ืืœื ื‘ืชื•ื‘ื ื” ืœื’ื‘ื™ ืžื•ืœืงื•ืœื” ื—ืฉื•ื‘ื”.
13:11
Complement proteins like C4 were known for a long time
232
791492
3637
ื—ืœื‘ื•ื ื™ื ืžืฉืœื™ืžื™ื ื›ืžื• ืกื™4 ืžื•ื›ืจื™ื ืžื–ื” ื–ืžืŸ ืจื‘
ื‘ืฉืœ ืชืคืงื™ื“ื™ื”ื ื‘ืžืขืจื›ืช ื”ื—ื™ืกื•ื ื™ืช,
13:15
for their roles in the immune system,
233
795153
1953
ืฉื‘ื” ื”ื ืžืชืคืงื“ื™ื ื›ืคืชืงื™ื-ื“ื‘ื™ืงื™ื ืžื•ืœืงื•ืœืจื™ื™ื
13:17
where they act as a kind of molecular Post-it note
234
797130
2778
13:19
that says, "Eat me."
235
799932
1580
ืฉืžื•ื“ื™ืขื™ื, "ืื™ื›ืœื• ืื•ืชื™".
13:22
And that Post-it note gets put on lots of debris
236
802475
2667
ืคืชืง ื“ื‘ื™ืง ื›ื–ื” ื ืฆืžื“ ืœื›ืœ ืžื™ื ื™ ืฉืืจื™ื•ืช ื•ืชืื™ื ืžืชื™ื ื‘ื’ื•ืคื ื•
13:25
and dead cells in our bodies
237
805166
2357
13:27
and invites immune cells to eliminate them.
238
807547
2490
ื•ื”ื•ื ืžื–ืžื™ืŸ ืืช ืชืื™ ื”ืžืขืจื›ืช ื”ื—ื™ืกื•ื ื™ืช ืœื—ืกืœ ืื•ืชื.
13:30
But two colleagues of mine found that the C4 Post-it note
239
810779
3539
ืื‘ืœ ืฉื ื™ื™ื ืžืขืžื™ืชื™ ื’ื™ืœื• ืฉืคืชืงื™ ื”ืกื™4
ืžื•ืฆืžื“ื™ื ื’ื ืœืกื™ื ืคืกื•ืช ื‘ืžื•ื—
13:35
also gets put on synapses in the brain
240
815183
3298
13:38
and prompts their elimination.
241
818505
1864
ื•ืžื–ืžื™ื ื™ื ืืช ื—ื™ืกื•ืœืŸ.
ื™ืฆื™ืจื” ื•ื—ื™ืกื•ืœ ืฉืœ ืกื™ื ืคืกื•ืช ื”ื™ื ื—ืœืง ืชืงื™ืŸ
13:41
Now, the creation and elimination of synapses is a normal part
242
821154
3266
13:44
of human development and learning.
243
824444
1854
ืžื”ื”ืชืคืชื—ื•ืช ื•ื”ืœืžื™ื“ื” ื”ืื ื•ืฉื™ืช.
13:46
Our brains create and eliminate synapses all the time.
244
826322
2921
ืžื•ื—ื•ืชื™ื ื• ื™ื•ืฆืจื™ื ื•ืžื—ืกืœื™ื ืกื™ื ืคืกื•ืช ื›ืœ ื”ื–ืžืŸ.
13:49
But our genetic results suggest that in schizophrenia,
245
829921
2960
ืื‘ืœ ืœืคื™ ืชื•ืฆืื•ืช ื”ื—ืงืจ ื”ื’ื ื˜ื™ ืฉืœื ื• ื‘ืกื›ื™ื–ื•ืคืจื ื™ื”,
13:52
the elimination process may go into overdrive.
246
832905
3233
ืชื”ืœื™ืš ื”ื—ื™ืกื•ืœ ืขืœื•ืœ ืœืฆืืช ืžืฉืœื™ื˜ื”.
ืžื“ืขื ื™ื ื‘ื—ื‘ืจื•ืช ืชืจื•ืคื•ืช ืจื‘ื•ืช ืื•ืžืจื™ื ืœื™ ืฉื”ื ื ืจื’ืฉื™ื ืžืชื’ืœื™ืช ื–ื•,
13:57
Scientists at many drug companies tell me they're excited about this discovery,
247
837185
3929
ื›ื™ ื”ื ืขื•ื‘ื“ื™ื ื›ื‘ืจ ืฉื ื™ื ืขืœ ื—ืœื‘ื•ื ื™ื ืžืฉืœื™ืžื™ื
14:01
because they've been working on complement proteins for years
248
841138
3239
14:04
in the immune system,
249
844401
1540
ื‘ืžืขืจื›ืช ื”ื—ื™ืกื•ื ื™ืช,
14:05
and they've learned a lot about how they work.
250
845965
2206
ื•ื”ื ืœืžื“ื• ื”ืžื•ืŸ ืขืœ ืื•ืคืŸ ืคืขื•ืœืชื.
14:08
They've even developed molecules that interfere with complement proteins,
251
848885
3894
ื”ื ืืคื™ืœื• ืคื™ืชื—ื• ืžื•ืœืงื•ืœื•ืช ืฉืžืฉื‘ืฉื•ืช ืืช ืคืขื•ืœืช ื”ื—ืœื‘ื•ื ื™ื ื”ืžืฉืœื™ืžื™ื,
14:12
and they're starting to test them in the brain as well as the immune system.
252
852803
3607
ื•ื”ื ืžืชื—ื™ืœื™ื ืœื‘ื—ื•ืŸ ืื•ืชื ื‘ืžื•ื— ื•ื’ื ื‘ืžืขืจื›ืช ื”ื—ื™ืกื•ื ื™ืช.
ื™ืฉ ื›ืืŸ ืคื•ื˜ื ืฆื™ืืœ ืœืชืจื•ืคื” ืฉืชื˜ืคืœ ื‘ื’ื•ืจื ื™ืกื•ื“ื™
14:17
It's potentially a path toward a drug that might address a root cause
253
857124
4721
14:21
rather than an individual symptom,
254
861869
2649
ื‘ืžืงื•ื ื‘ืชืกืžื™ืŸ ืžืกื•ื™ื,
14:24
and we hope very much that this work by many scientists over many years
255
864542
4048
ื•ืื ื• ืžืงื•ื•ื™ื ืฉืขื‘ื•ื“ืชื ืžืจื•ื‘ืช ื”ืฉื ื™ื ื”ื–ื• ืฉืœ ืžื“ืขื ื™ื ืจื‘ื™ื
14:28
will be successful.
256
868614
1152
ืชื™ืฉื ืคืจื™.
14:31
But C4 is just one example
257
871689
3014
ืื‘ืœ ื”ืกื™4 ื”ื•ื ืจืง ื“ื•ื’ืžื” ืื—ืช
14:34
of the potential for data-driven scientific approaches
258
874727
3112
ืœืืคืฉืจื•ื™ื•ืช ื”ื’ืœื•ืžื•ืช ื‘ื’ื™ืฉื•ืช ืžื“ืขื™ื•ืช ืžื‘ื•ืกืกื•ืช-ื ืชื•ื ื™ื
14:37
to open new fronts on medical problems that are centuries old.
259
877863
3903
ืœืคืชื™ื—ืช ื—ื–ื™ืชื•ืช ื—ื“ืฉื•ืช ื‘ื‘ืขื™ื•ืช ืจืคื•ืื™ื•ืช ื‘ื ื•ืช ืžืื•ืช ืฉื ื™ื.
ื™ืฉ ื‘ื’ื ื•ื ืฉืœื ื• ืžืื•ืช ืžืงื•ืžื•ืช
14:42
There are hundreds of places in our genomes
260
882144
2745
14:44
that shape risk for brain illnesses,
261
884913
2585
ืฉืžืฉืคื™ืขื™ื ืขืœ ื”ืกื™ื›ื•ืŸ ืœืžื—ืœื•ืช ืžื•ื—,
14:47
and any one of them could lead us to the next molecular insight
262
887522
4066
ื•ื›ืœ ืื—ื“ ืžื”ื ืขืฉื•ื™ ืœื”ื ื™ื‘ ืืช ื”ืชื•ื‘ื ื” ื”ืžื•ืœืงื•ืœืจื™ืช ื”ื‘ืื”
14:51
about a molecule that matters.
263
891612
2020
ื‘ื ื•ื’ืข ืœืžื•ืœืงื•ืœื” ื—ืฉื•ื‘ื”.
14:53
And there are hundreds of cell types that use these genes in different combinations.
264
893656
3987
ื‘ื ื•ืกืฃ, ื™ืฉื ื ืžืื•ืช ืกื•ื’ื™ ืชืื™ื ืฉืžืฉืชืžืฉื™ื ื‘ื’ื ื™ื ืืœื” ื‘ืฉื™ืœื•ื‘ื™ื ืฉื•ื ื™ื.
14:57
As we and other scientists work to generate
265
897667
2069
ืื ื™ ื•ืžื“ืขื ื™ื ื ื•ืกืคื™ื ืขื•ื‘ื“ื™ื ืขืœ ื”ืคืงืช ืฉืืจ ื”ื ืชื•ื ื™ื ื”ื“ืจื•ืฉื™ื
14:59
the rest of the data that's needed
266
899760
2069
15:01
and to learn all that we can from that data,
267
901853
2393
ื•ืขืœ ืœื™ืžื•ื“ ื›ืœ ืžื” ืฉื ื•ื›ืœ ืœืœืžื•ื“ ืžื ืชื•ื ื™ื ืืœื”,
15:04
we hope to open many more new fronts.
268
904270
2403
ื•ืื ื• ืžืงื•ื•ื™ื ืœืคืชื•ื— ืขื•ื“ ื”ืจื‘ื” ื—ื–ื™ืชื•ืช ื—ื“ืฉื•ืช.
15:08
Genetics and single-cell analysis are just two ways
269
908483
5079
ื”ื’ื ื˜ื™ืงื” ื•ื ื™ืชื•ื— ื”ืชื ื”ื‘ื•ื“ื“ ื”ืŸ ืจืง ืฉืชื™ ื“ืจื›ื™ื
15:13
of trying to turn the brain into a big data problem.
270
913586
3767
ืœื ืกื•ืช ืœื”ืคื•ืš ืืช ื”ืžื•ื— ืœื‘ืขื™ื™ืช ื ืชื•ื ื™-ืขืชืง.
15:18
There is so much more we can do.
271
918424
2159
ื™ืฉ ืขื•ื“ ื“ื‘ืจื™ื ืจื‘ื™ื ืฉื ื•ื›ืœ ืœืขืฉื•ืช.
ืžื“ืขื ื™ื ื‘ืžืขื‘ื“ืชื™ ื™ื•ืฆืจื™ื ื˜ื›ื ื•ืœื•ื’ื™ื”
15:21
Scientists in my lab are creating a technology
272
921235
3074
15:24
for quickly mapping the synaptic connections in the brain
273
924333
3196
ืœืžื™ืคื•ื™ ืžื”ื™ืจ ืฉืœ ื”ื—ื™ื‘ื•ืจื™ื ื”ืกื™ื ืคื˜ื™ื™ื ื‘ืžื•ื—
15:27
to tell which neurons are talking to which other neurons
274
927553
2938
ื›ื“ื™ ืœืงื‘ื•ืข ืื™ืœื• ืชืื™-ืขืฆื‘ ืžื“ื‘ืจื™ื ืขื ืื™ืœื• ืชืื™-ืขืฆื‘
15:30
and how that conversation changes throughout life and during illness.
275
930515
3996
ื•ืื™ืš ื”ืฉื™ื—ื•ืช ื”ืืœื” ืžืฉืชื ื•ืช ืœืื•ืจืš ื”ื—ื™ื™ื ื•ื‘ืžื”ืœืš ืžื—ืœื”.
15:35
And we're developing a way to test in a single tube
276
935467
4520
ื”ื ื’ื ืžืคืชื—ื™ื ื“ืจืš ืœื‘ื—ื•ืŸ ื‘ืžื‘ื—ื ื” ื‘ื•ื“ื“ืช
ืื™ืš ืชืื™ื ืขื ื’ื ื•ืžื™ื ืฉืœ ืžืื•ืช ืื ืฉื™ื ืฉื•ื ื™ื
15:40
how cells with hundreds of different people's genomes
277
940011
2718
15:42
respond differently to the same stimulus.
278
942753
2170
ืžื’ื™ื‘ื™ื ืื—ืจืช ืœืื•ืชื• ื’ื™ืจื•ื™.
ื”ืžื™ื–ืžื™ื ื”ืืœื” ืžื—ื‘ืจื™ื ื‘ื™ืŸ ืื ืฉื™ื ืžืžื’ื•ื•ืŸ ืจืงืขื™ื, ื”ื›ืฉืจื•ืช ื•ืชื—ื•ืžื™-ืขื ื™ื™ืŸ --
15:46
These projects bring together people with diverse backgrounds
279
946248
4903
15:51
and training and interests --
280
951175
2493
15:53
biology, computers, chemistry, math, statistics, engineering.
281
953692
5877
ื‘ื™ื•ืœื•ื’ื™ื”, ืžื—ืฉื‘ื™ื, ื›ื™ืžื™ื”, ืžืชืžื˜ื™ืงื”, ืกื˜ื˜ื™ืกื˜ื™ืงื”, ื”ื ื“ืกื”.
ื•ื”ืืคืฉืจื•ื™ื•ืช ื”ืžื“ืขื™ื•ืช ืžืงื‘ืฆื•ืช ืื ืฉื™ื ื‘ืขืœื™ ืชื—ื•ืžื™-ืขื ื™ื™ืŸ ืžื’ื•ื•ื ื™ื
16:00
But the scientific possibilities rally people with diverse interests
282
960205
4232
16:04
into working intensely together.
283
964461
2235
ืœืขื‘ื•ื“ื” ืžืื•ืžืฆืช ื‘ื™ื—ื“.
16:08
What's the future that we could hope to create?
284
968871
2551
ืžื”ื• ื”ืขืชื™ื“ ืฉืื ื• ืžืงื•ื•ื™ื ืœื™ืฆื•ืจ?
16:12
Consider cancer.
285
972267
1350
ื—ื™ืฉื‘ื• ืขืœ ื”ืกืจื˜ืŸ.
ืขื‘ืจื ื• ืžืขื™ื“ืŸ ื”ื‘ื•ืจื•ืช ื‘ืืฉืจ ืœื’ื•ืจืžื™ ื”ืกืจื˜ืŸ,
16:14
We've moved from an era of ignorance about what causes cancer,
286
974193
3922
ืฉื‘ื• ื™ื™ื—ืกื• ื‘ื“"ื› ืืช ื”ืกืจื˜ืŸ ืœืžืืคื™ื™ื ื™ื ืคืกื™ื›ื•ืœื•ื’ื™ื™ื ืื™ืฉื™ื™ื,
16:18
in which cancer was commonly ascribed to personal psychological characteristics,
287
978139
6988
ืœืขื™ื“ืŸ ื”ืžื•ื“ืจื ื™ ืฉืœ ื”ื”ื‘ื ื” ื”ืžื•ืœืงื•ืœืจื™ืช ื‘ืืฉืจ ืœื’ื•ืจืžื™ ื”ืกืจื˜ืŸ ื”ืืžื™ืชื™ื™ื.
16:26
to a modern molecular understanding of the true biological causes of cancer.
288
986238
5395
ื”ื‘ื ื” ื–ื• ืžื•ืœื™ื“ื” ื›ื™ื•ื ื—ื™ื“ื•ืฉื™ื ืจืคื•ืื™ื™ื
16:32
That understanding today leads to innovative medicine
289
992100
3074
ื‘ื–ื” ืื—ืจ ื–ื”,
16:35
after innovative medicine,
290
995198
1696
16:36
and although there's still so much work to do,
291
996918
2839
ื•ืœืžืจื•ืช ืฉื”ืžืœืื›ื” ืขื•ื“ ืจื‘ื”,
16:39
we're already surrounded by people who have been cured of cancers
292
999781
3394
ื›ื‘ืจ ื”ื™ื•ื ืื ื• ืžื•ืงืคื™ื ื‘ืื ืฉื™ื ืฉื”ื—ืœื™ืžื• ืžืกืจื˜ืŸ
ืฉื ื—ืฉื‘ ื—ืฉื•ืš-ืžืจืคื ืœืคื ื™ ื“ื•ืจ ืื—ื“ ื‘ืœื‘ื“.
16:43
that were considered untreatable a generation ago.
293
1003199
3269
16:48
And millions of cancer survivors like my sister
294
1008254
3376
ื•ืžื™ืœื™ื•ื ื™ ื ื™ืฆื•ืœื™ ืกืจื˜ืŸ, ื›ืžื• ืื—ื•ืชื™,
16:51
find themselves with years of life that they didn't take for granted
295
1011654
4401
ืžื’ืœื™ื ืฉืžืฆืคื•ืช ืœื”ื ืฉื ื•ืช ื—ื™ื™ื ื‘ืœืชื™-ืžื•ื‘ื ื•ืช ืžืืœื™ื”ืŸ
ื•ื”ื–ื“ืžื ื•ื™ื•ืช ื—ื“ืฉื•ืช
16:56
and new opportunities
296
1016079
1769
16:57
for work and joy and human connection.
297
1017872
3930
ืœืขื‘ื•ื“ื”, ืœืฉืžื—ื” ื•ืœืงืฉืจ ืื ื•ืฉื™.
17:03
That is the future that we are determined to create around mental illness --
298
1023358
4378
ื–ื”ื• ื”ืขืชื™ื“ ืฉืื ื• ื ื—ื•ืฉื™ื ืœื™ืฆื•ืจ ื‘ื ื•ื’ืข ืœืžื—ืœื•ืช ื”ื ืคืฉ --
17:08
one of real understanding and empathy
299
1028581
4119
ืขืชื™ื“ ืฉืœ ื”ื‘ื ื” ืืžื™ืชื™ืช ื•ืืžืคืชื™ื”
17:12
and limitless possibility.
300
1032724
1816
ื•ืฉืœ ืืคืฉืจื•ื™ื•ืช ื‘ืœืชื™-ืžื•ื’ื‘ืœื•ืช.
ืชื•ื“ื” ืœื›ื.
17:15
Thank you.
301
1035159
1190
17:16
(Applause)
302
1036374
4062
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7