Computing a theory of everything | Stephen Wolfram

608,756 views ・ 2010-04-27

TED


请双击下面的英文字幕来播放视频。

翻译人员: Hao Li 校对人员: Vivian Lee
00:16
So I want to talk today about an idea. It's a big idea.
0
16260
3000
接下来,我今天想谈的是一个宏观理念。
00:19
Actually, I think it'll eventually
1
19260
2000
其实,我认为这个构想最终
00:21
be seen as probably the single biggest idea
2
21260
2000
会被视为上个世纪出现过的
00:23
that's emerged in the past century.
3
23260
2000
最伟大的理念
00:25
It's the idea of computation.
4
25260
2000
那就是计算的理念
00:27
Now, of course, that idea has brought us
5
27260
2000
现在,当然,这个理念已经带给我们
00:29
all of the computer technology we have today and so on.
6
29260
3000
所有今天所拥有的电脑科技
00:32
But there's actually a lot more to computation than that.
7
32260
3000
然而,除此之外,还有更多可以计算的事物。
00:35
It's really a very deep, very powerful, very fundamental idea,
8
35260
3000
这真是个非常深刻,非常有用,非常基本的理念
00:38
whose effects we've only just begun to see.
9
38260
3000
而我们只是刚开始见证这个理念的作用
00:41
Well, I myself have spent the past 30 years of my life
10
41260
3000
过去30年里,我致力于
00:44
working on three large projects
11
44260
2000
研究3个大型的项目
00:46
that really try to take the idea of computation seriously.
12
46260
3000
这些项目认真地将计算的理念付诸实践
00:50
So I started off at a young age as a physicist
13
50260
3000
刚开始时我只是个年轻的物理学家
00:53
using computers as tools.
14
53260
2000
运用电脑作为工具
00:55
Then, I started drilling down,
15
55260
2000
然后,我开始深入
00:57
thinking about the computations I might want to do,
16
57260
2000
思考我可能想做的计算
00:59
trying to figure out what primitives they could be built up from
17
59260
3000
尝试找出可以加以演变的主数据类型
01:02
and how they could be automated as much as possible.
18
62260
3000
以及它们尽可能自动运行的方式
01:05
Eventually, I created a whole structure
19
65260
2000
最终,我创立了整个架构
01:07
based on symbolic programming and so on
20
67260
2000
基于符号编程等等
01:09
that let me build Mathematica.
21
69260
2000
然后创造出了Mathematica
01:11
And for the past 23 years, at an increasing rate,
22
71260
2000
过去23年间,以逐年增长的态势
01:13
we've been pouring more and more ideas
23
73260
2000
我们已经为Mathematica注入了
01:15
and capabilities and so on into Mathematica,
24
75260
2000
越来越多的概念和性能
01:17
and I'm happy to say that that's led to many good things
25
77260
3000
而且我很高兴地说这带来了很多进步
01:20
in R & D and education,
26
80260
2000
在研发和教育
01:22
lots of other areas.
27
82260
2000
以及其他很多方面
01:24
Well, I have to admit, actually,
28
84260
2000
当然,我必须承认,事实上
01:26
that I also had a very selfish reason for building Mathematica:
29
86260
3000
我开发Mathematica也有个自私的原因
01:29
I wanted to use it myself,
30
89260
2000
那就是我想要用它
01:31
a bit like Galileo got to use his telescope
31
91260
2000
就像伽利略在400年前
01:33
400 years ago.
32
93260
2000
想要用望远镜一样
01:35
But I wanted to look not at the astronomical universe,
33
95260
3000
但我想了解的不是天文宇宙
01:38
but at the computational universe.
34
98260
3000
而是可计算空间
01:41
So we normally think of programs as being
35
101260
2000
通常我们觉得程序是
01:43
complicated things that we build
36
103260
2000
复杂的东西
01:45
for very specific purposes.
37
105260
2000
我们编程有很多特定的目的
01:47
But what about the space of all possible programs?
38
107260
3000
然而所有程序的空间又有多少呢?
01:50
Here's a representation of a really simple program.
39
110260
3000
这里有个非常简单的程序
01:53
So, if we run this program,
40
113260
2000
所以呢,如果我们运行这个程序
01:55
this is what we get.
41
115260
2000
这就是我们得到的结果
01:57
Very simple.
42
117260
2000
很简单
01:59
So let's try changing the rule
43
119260
2000
接下来,我们稍微修改一下
02:01
for this program a little bit.
44
121260
2000
这个程序的规则
02:03
Now we get another result,
45
123260
2000
我们便得到了另一个结果
02:05
still very simple.
46
125260
2000
仍旧非常简单
02:07
Try changing it again.
47
127260
3000
再试着改一下
02:10
You get something a little bit more complicated.
48
130260
2000
你就看到稍微复杂一点的东西
02:12
But if we keep running this for a while,
49
132260
2000
不过如果我们把这个程序继续运行下去
02:14
we find out that although the pattern we get is very intricate,
50
134260
3000
我们将发现,尽管我们获得的图案十分复杂
02:17
it has a very regular structure.
51
137260
3000
但它具有有规律的结构
02:20
So the question is: Can anything else happen?
52
140260
3000
接下来的问题是:还能发生什么?
02:23
Well, we can do a little experiment.
53
143260
2000
好,我们可以做个小实验
02:25
Let's just do a little mathematical experiment, try and find out.
54
145260
3000
来做个小的数学实验,试着找出规律
02:29
Let's just run all possible programs
55
149260
3000
运行我们所关注的特定总类的
02:32
of the particular type that we're looking at.
56
152260
2000
所有可能的程序
02:34
They're called cellular automata.
57
154260
2000
他们被称为单元自动机
02:36
You can see a lot of diversity in the behavior here.
58
156260
2000
你能看到这里有各种各样的图案模式
02:38
Most of them do very simple things,
59
158260
2000
大多数都很简单
02:40
but if you look along all these different pictures,
60
160260
2000
但是,如果你注意所有不同的图片
02:42
at rule number 30,
61
162260
2000
在30号规则上
02:44
you start to see something interesting going on.
62
164260
2000
你开始看见一些有趣的东西出现
02:46
So let's take a closer look
63
166260
2000
所以我们仔细看一下
02:48
at rule number 30 here.
64
168260
2000
在30号规则这里
02:50
So here it is.
65
170260
2000
就在这里
02:52
We're just following this very simple rule at the bottom here,
66
172260
3000
我们只是按照底部非常简单的规律
02:55
but we're getting all this amazing stuff.
67
175260
2000
然而我们得到了惊人的结果
02:57
It's not at all what we're used to,
68
177260
2000
这与我们过去习惯的事物完全不同
02:59
and I must say that, when I first saw this,
69
179260
2000
而且,我必须说,当我第一次看见它的时候
03:01
it came as a huge shock to my intuition.
70
181260
3000
它让我直觉为之震惊
03:04
And, in fact, to understand it,
71
184260
2000
实际上,为了理解它
03:06
I eventually had to create
72
186260
2000
我们最终不得不建立
03:08
a whole new kind of science.
73
188260
2000
一套全新的科学
03:11
(Laughter)
74
191260
2000
(笑声)
03:13
This science is different, more general,
75
193260
3000
这套科学是与众不同的,并且更加广义的
03:16
than the mathematics-based science that we've had
76
196260
2000
比起已经存在的基于数学的其他科学来说
03:18
for the past 300 or so years.
77
198260
3000
在过去300年甚至更久的时间内
03:21
You know, it's always seemed like a big mystery:
78
201260
2000
你知道的,它总是看似神秘
03:23
how nature, seemingly so effortlessly,
79
203260
3000
自然毫不费力地
03:26
manages to produce so much
80
206260
2000
制造出如此多的东西
03:28
that seems to us so complex.
81
208260
3000
让我们觉得如此复杂
03:31
Well, I think we've found its secret:
82
211260
3000
于是,我觉得我们已经发现了其中的奥秘
03:34
It's just sampling what's out there in the computational universe
83
214260
3000
这只是我们能探索的计算空间的一个样本
03:37
and quite often getting things like Rule 30
84
217260
3000
它们都像30号规则
03:40
or like this.
85
220260
3000
或者像这个
03:44
And knowing that starts to explain
86
224260
2000
在知道这件事后,我们可以开始解释
03:46
a lot of long-standing mysteries in science.
87
226260
3000
很多科学中长期以来的谜团
03:49
It also brings up new issues, though,
88
229260
2000
不过,它也带来新的问题
03:51
like computational irreducibility.
89
231260
3000
就像计算的不可化归性
03:54
I mean, we're used to having science let us predict things,
90
234260
3000
我的意思是我们曾习惯让科学帮我们预测一些事情
03:57
but something like this
91
237260
2000
但是像这样的事情
03:59
is fundamentally irreducible.
92
239260
2000
是根本不可简化的
04:01
The only way to find its outcome
93
241260
2000
发现它结果的唯一方法
04:03
is, effectively, just to watch it evolve.
94
243260
3000
实际上就是看着它演化
04:06
It's connected to, what I call,
95
246260
2000
与之相关的便是我所谓的
04:08
the principle of computational equivalence,
96
248260
2000
计算等价性原则
04:10
which tells us that even incredibly simple systems
97
250260
3000
它告诉我们即使超级简单的系统
04:13
can do computations as sophisticated as anything.
98
253260
3000
也能做极端复杂的计算
04:16
It doesn't take lots of technology or biological evolution
99
256260
3000
不需要多先进的技术或是生物进化过程
04:19
to be able to do arbitrary computation;
100
259260
2000
就能使得它能够做任意的计算
04:21
just something that happens, naturally,
101
261260
2000
这就是自然发生的事情
04:23
all over the place.
102
263260
2000
随处可见
04:25
Things with rules as simple as these can do it.
103
265260
3000
有如此简单规则的东西能达此目的
04:29
Well, this has deep implications
104
269260
2000
而且,这件事有深刻的意义
04:31
about the limits of science,
105
271260
2000
涉及科学的极限
04:33
about predictability and controllability
106
273260
2000
概率论和控制论等
04:35
of things like biological processes or economies,
107
275260
3000
在生物进程或者经济方面发挥作用
04:38
about intelligence in the universe,
108
278260
2000
还有关于宇宙中的智能
04:40
about questions like free will
109
280260
2000
关于自由意志
04:42
and about creating technology.
110
282260
3000
以及创新技术的问题
04:45
You know, in working on this science for many years,
111
285260
2000
从事这些科学工作很多年后
04:47
I kept wondering,
112
287260
2000
我开始思考
04:49
"What will be its first killer app?"
113
289260
2000
第一个令人震惊的应用程序是什么?
04:51
Well, ever since I was a kid,
114
291260
2000
恩,甚至我还是孩子时
04:53
I'd been thinking about systematizing knowledge
115
293260
2000
我就想过关于知识系统化的问题
04:55
and somehow making it computable.
116
295260
2000
以及怎么让它变得可计算
04:57
People like Leibniz had wondered about that too
117
297260
2000
莱布尼兹之辈也已经想过这个问题
04:59
300 years earlier.
118
299260
2000
在300年前
05:01
But I'd always assumed that to make progress,
119
301260
2000
但是我总是假设,为了进步,
05:03
I'd essentially have to replicate a whole brain.
120
303260
3000
我不得不克隆出整个大脑
05:06
Well, then I got to thinking:
121
306260
2000
而现在,我想的是
05:08
This scientific paradigm of mine suggests something different --
122
308260
3000
我的科学模式意味着不一样的东西。
05:11
and, by the way, I've now got
123
311260
2000
并且,顺便提一下,我已经
05:13
huge computation capabilities in Mathematica,
124
313260
3000
使Mathematica具备了超强的计算能力
05:16
and I'm a CEO with some worldly resources
125
316260
3000
并且,我是公司的首席执行官,拥有大量的资源
05:19
to do large, seemingly crazy, projects --
126
319260
3000
来做大型的,看似疯狂的项目。
05:22
So I decided to just try to see
127
322260
2000
所以,我决定尝试知道
05:24
how much of the systematic knowledge that's out there in the world
128
324260
3000
在这世界上,有多少系统化的知识
05:27
we could make computable.
129
327260
2000
是我们能够计算的
05:29
So, it's been a big, very complex project,
130
329260
2000
所以,这是个大型、复杂的项目,
05:31
which I was not sure was going to work at all.
131
331260
3000
我不完全确定它是否可行
05:34
But I'm happy to say it's actually going really well.
132
334260
3000
但是我很高兴地说,它现在进行的不错
05:37
And last year we were able
133
337260
2000
就在去年
05:39
to release the first website version
134
339260
2000
我们发布了第一个网络版本的
05:41
of Wolfram Alpha.
135
341260
2000
Wolfram Alpha
05:43
Its purpose is to be a serious knowledge engine
136
343260
3000
目的是提供一个专业的知识搜索引擎
05:46
that computes answers to questions.
137
346260
3000
它为提问计算答案
05:49
So let's give it a try.
138
349260
2000
所以呢,我们来试试看
05:51
Let's start off with something really easy.
139
351260
2000
让我们先试试简单的东西
05:53
Hope for the best.
140
353260
2000
希望没问题
05:55
Very good. Okay.
141
355260
2000
非常好,没问题
05:57
So far so good.
142
357260
2000
到目前为止,不错
05:59
(Laughter)
143
359260
3000
(笑声)
06:02
Let's try something a little bit harder.
144
362260
3000
让我们试试难一点的东西
06:05
Let's do
145
365260
2000
比如
06:07
some mathy thing,
146
367260
3000
我们做点数学
06:10
and with luck it'll work out the answer
147
370260
3000
希望它能幸运的计算出结果
06:13
and try and tell us some interesting things
148
373260
2000
并且试着告诉我们一些
06:15
things about related math.
149
375260
2000
关于数学的有趣的事
06:17
We could ask it something about the real world.
150
377260
3000
我们可以问他一些现实生活的事情
06:20
Let's say -- I don't know --
151
380260
2000
比如,--- 让我想想 -----
06:22
what's the GDP of Spain?
152
382260
3000
西班牙的国民生产总值是多少?
06:25
And it should be able to tell us that.
153
385260
2000
它应该能告诉我们
06:27
Now we could compute something related to this,
154
387260
2000
现在我们能计算和它相关的事
06:29
let's say ... the GDP of Spain
155
389260
2000
比如西班牙的国民生产总值
06:31
divided by, I don't know,
156
391260
2000
除以, 让我想想
06:33
the -- hmmm ...
157
393260
2000
06:35
let's say the revenue of Microsoft.
158
395260
2000
比如微软公司的收入
06:37
(Laughter)
159
397260
2000
(笑声)
06:39
The idea is that we can just type this in,
160
399260
2000
想法就是我们输入一些好奇的问题
06:41
this kind of question in, however we think of it.
161
401260
3000
不论是什么奇怪的问题
06:44
So let's try asking a question,
162
404260
2000
所以,我们提个问题
06:46
like a health related question.
163
406260
2000
比如有关健康的问题
06:48
So let's say we have a lab finding that ...
164
408260
3000
比如,跟据实验室数据
06:51
you know, we have an LDL level of 140
165
411260
2000
你知道的,有低密度脂蛋白浓度值是140的数据
06:53
for a male aged 50.
166
413260
3000
这是针对50多岁的男性
06:56
So let's type that in, and now Wolfram Alpha
167
416260
2000
我们输入这个,然后Wolfram Alpha
06:58
will go and use available public health data
168
418260
2000
就会使用存在的公共健康数据库
07:00
and try and figure out
169
420260
2000
来试着分析出
07:02
what part of the population that corresponds to and so on.
170
422260
3000
这组数据对应哪部分人群等等
07:05
Or let's try asking about, I don't know,
171
425260
3000
或者我们可以问,让我想想
07:08
the International Space Station.
172
428260
2000
国际空间站的问题
07:10
And what's happening here is that
173
430260
2000
结果就是
07:12
Wolfram Alpha is not just looking up something;
174
432260
2000
Wolfram Alpha不仅在查找信息
07:14
it's computing, in real time,
175
434260
3000
它是在实时计算
07:17
where the International Space Station is right now at this moment,
176
437260
3000
国际空间站现在此刻的位置
07:20
how fast it's going, and so on.
177
440260
3000
它运行的速度等等
07:24
So Wolfram Alpha knows about lots and lots of kinds of things.
178
444260
3000
所以呢,Wolfram Alpha知道很多很多不同的事情
07:27
It's got, by now,
179
447260
2000
到现在为止
07:29
pretty good coverage of everything you might find
180
449260
2000
它几乎可以很好的涵盖了你能在
07:31
in a standard reference library.
181
451260
3000
一个标准图书馆中找到的知识
07:34
But the goal is to go much further
182
454260
2000
不过,我们的目标远不止这些
07:36
and, very broadly, to democratize
183
456260
3000
概括地说
07:39
all of this knowledge,
184
459260
3000
是要使所有的知识民主化
07:42
and to try and be an authoritative
185
462260
2000
并且试着提供
07:44
source in all areas.
186
464260
2000
所有领域中的权威资料
07:46
To be able to compute answers to specific questions that people have,
187
466260
3000
使它能够计算人们特定问题的答案
07:49
not by searching what other people
188
469260
2000
不是靠搜索其他人
07:51
may have written down before,
189
471260
2000
之前可能写下的资料
07:53
but by using built in knowledge
190
473260
2000
而是使用内建知识
07:55
to compute fresh new answers to specific questions.
191
475260
3000
来对特定问题计算新的答案
07:58
Now, of course, Wolfram Alpha
192
478260
2000
现在,当然,Wolfram Alpha
08:00
is a monumentally huge, long-term project
193
480260
2000
是一个非常大型、长远的项目
08:02
with lots and lots of challenges.
194
482260
2000
面临着众多挑战
08:04
For a start, one has to curate a zillion
195
484260
3000
开始的时候,我们要收集数以万计的
08:07
different sources of facts and data,
196
487260
3000
不同的事实来源和数据
08:10
and we built quite a pipeline of Mathematica automation
197
490260
3000
而且,我们建立了Mathematica自动化流水线
08:13
and human domain experts for doing this.
198
493260
3000
还有知识领域专家来做这件事
08:16
But that's just the beginning.
199
496260
2000
不过,这只是开始
08:18
Given raw facts or data
200
498260
2000
对于运用一些没有处理的事实和数据
08:20
to actually answer questions,
201
500260
2000
来解答实际问题
08:22
one has to compute:
202
502260
2000
一方面要计算
08:24
one has to implement all those methods and models
203
504260
2000
另一方面要执行所有的方法、模型
08:26
and algorithms and so on
204
506260
2000
以及算法等等
08:28
that science and other areas have built up over the centuries.
205
508260
3000
而科学以及其他领域于此已发展了数个世纪
08:31
Well, even starting from Mathematica,
206
511260
3000
甚至从Mathematica开始
08:34
this is still a huge amount of work.
207
514260
2000
这仍然是一项浩大工程
08:36
So far, there are about 8 million lines
208
516260
2000
至今为止,有8百万行
08:38
of Mathematica code in Wolfram Alpha
209
518260
2000
Mathematica的代码写在Wolfram Alpha里
08:40
built by experts from many, many different fields.
210
520260
3000
这些代码由很多来自不同领域的专家构建
08:43
Well, a crucial idea of Wolfram Alpha
211
523260
3000
Wolfram Alpha中的一个最重要的想法
08:46
is that you can just ask it questions
212
526260
2000
是你可以问它问题
08:48
using ordinary human language,
213
528260
3000
使用普通人类语言
08:51
which means that we've got to be able to take
214
531260
2000
这意味着我们必须能够接受
08:53
all those strange utterances that people type into the input field
215
533260
3000
人们输入所有的奇怪的文字
08:56
and understand them.
216
536260
2000
并理解它们
08:58
And I must say that I thought that step
217
538260
2000
我必须说我曾觉得做到那一步
09:00
might just be plain impossible.
218
540260
3000
相当不可能
09:04
Two big things happened:
219
544260
2000
后来有了两大重要进步
09:06
First, a bunch of new ideas about linguistics
220
546260
3000
首先是语言学上的很多新想法
09:09
that came from studying the computational universe;
221
549260
3000
来自于对计算空间的研究
09:12
and second, the realization that having actual computable knowledge
222
552260
3000
其次,可计算知识的实现
09:15
completely changes how one can
223
555260
2000
完全地改变了如何一个人能够
09:17
set about understanding language.
224
557260
3000
开始理解语言
09:20
And, of course, now
225
560260
2000
当然,现在
09:22
with Wolfram Alpha actually out in the wild,
226
562260
2000
在浩瀚的网络中有了Wolfram Alpha
09:24
we can learn from its actual usage.
227
564260
2000
我们就能学习它的使用方法
09:26
And, in fact, there's been
228
566260
2000
实际上,一直都有
09:28
an interesting coevolution that's been going on
229
568260
2000
一个有趣的共同进化
09:30
between Wolfram Alpha
230
570260
2000
发生在Wolfram Alpha
09:32
and its human users,
231
572260
2000
和用户之间
09:34
and it's really encouraging.
232
574260
2000
并且,这相当鼓舞人心
09:36
Right now, if we look at web queries,
233
576260
2000
现在,对于任意网络搜索
09:38
more than 80 percent of them get handled successfully the first time.
234
578260
3000
超过百分之80的搜索在第一时间就被成功处理。
09:41
And if you look at things like the iPhone app,
235
581260
2000
如果你看看类似iPhone应用程序的东西
09:43
the fraction is considerably larger.
236
583260
2000
那被成功搜索部分就相当大了
09:45
So, I'm pretty pleased with it all.
237
585260
2000
所以我对此很满意
09:47
But, in many ways,
238
587260
2000
但是,从很多角度看
09:49
we're still at the very beginning with Wolfram Alpha.
239
589260
3000
我们仍然处于Wolfram Alpha开发的初级阶段。
09:52
I mean, everything is scaling up very nicely
240
592260
2000
我的意思是,每件事情的规模都在扩大
09:54
and we're getting more confident.
241
594260
2000
我们也变得更有信心
09:56
You can expect to see Wolfram Alpha technology
242
596260
2000
你能期待看到Wolfram Alpha技术
09:58
showing up in more and more places,
243
598260
2000
在越来越多的地方使用
10:00
working both with this kind of public data, like on the website,
244
600260
3000
既能使用公共数据,比如网站
10:03
and with private knowledge
245
603260
2000
又能使用私人数据
10:05
for people and companies and so on.
246
605260
3000
给个人和公司等等提供服务
10:08
You know, I've realized that Wolfram Alpha actually gives one
247
608260
3000
我觉得Wolfram Alpha其实是一个
10:11
a whole new kind of computing
248
611260
2000
全新的计算方法
10:13
that one can call knowledge-based computing,
249
613260
2000
我们可以称之基于知识的计算
10:15
in which one's starting not just from raw computation,
250
615260
3000
这种计算方法,不仅可以使用原始数据
10:18
but from a vast amount of built-in knowledge.
251
618260
3000
还能使用大量的内建知识
10:21
And when one does that, one really changes
252
621260
2000
而且,一个能做这样计算的工具真的能够改变
10:23
the economics of delivering computational things,
253
623260
3000
传递可计算事物的理论
10:26
whether it's on the web or elsewhere.
254
626260
2000
无论在网络上或者是其他地方
10:28
You know, we have a fairly interesting situation right now.
255
628260
3000
我们现在处于一个很有意思的状态
10:31
On the one hand, we have Mathematica,
256
631260
2000
一方面,我们拥有Mathematica这个软件
10:33
with its sort of precise, formal language
257
633260
3000
它有精确性,正规性
10:36
and a huge network
258
636260
2000
以及大规模
10:38
of carefully designed capabilities
259
638260
2000
设计仔细的功能网络
10:40
able to get a lot done in just a few lines.
260
640260
3000
用几行代码就能做很多事情
10:43
Let me show you a couple of examples here.
261
643260
3000
我来展示几个例子
10:47
So here's a trivial piece of Mathematica programming.
262
647260
3000
这是Mathematica编程中很小的一段代码
10:51
Here's something where we're sort of
263
651260
2000
这里是我们整合
10:53
integrating a bunch of different capabilities here.
264
653260
3000
大量不同的功能
10:56
Here we'll just create, in this line,
265
656260
3000
这行,我们就能建立
10:59
a little user interface that allows us to
266
659260
3000
一个简单的用户界面
11:02
do something fun there.
267
662260
2000
它允许我们做一些有趣的事情
11:05
If you go on, that's a slightly more complicated program
268
665260
2000
如果你继续的话,那就出现一些更复杂的程序
11:07
that's now doing all sorts of algorithmic things
269
667260
3000
这些程序在运行算法之类的程序
11:10
and creating user interface and so on.
270
670260
2000
并且建立用户界面等等
11:12
But it's something that is very precise stuff.
271
672260
3000
不过,这是非常精准的东西
11:15
It's a precise specification with a precise formal language
272
675260
3000
它精准的命令需要精准的正式编程语言
11:18
that causes Mathematica to know what to do here.
273
678260
3000
才能让Mathematica知道要干什么
11:21
Then on the other hand, we have Wolfram Alpha,
274
681260
3000
另一方面,我们拥有Wolfram Alpha
11:24
with all the messiness of the world
275
684260
2000
包含了世界上所有杂乱无章的东西
11:26
and human language and so on built into it.
276
686260
2000
以及人类语言等内建的知识体系
11:28
So what happens when you put these things together?
277
688260
3000
如果把他们放一起,会发生什么呢?
11:31
I think it's actually rather wonderful.
278
691260
2000
我觉得真是非常棒
11:33
With Wolfram Alpha inside Mathematica,
279
693260
2000
Mathematica里有Wolfram Alpha,
11:35
you can, for example, make precise programs
280
695260
2000
你就能编写精准的程序
11:37
that call on real world data.
281
697260
2000
来接触真实世界的数据
11:39
Here's a real simple example.
282
699260
2000
这里有个很简单的例子
11:44
You can also just sort of give vague input
283
704260
3000
你可以只是输入模棱两可的话语
11:47
and then try and have Wolfram Alpha
284
707260
2000
试着让Wolfram Alpha
11:49
figure out what you're talking about.
285
709260
2000
来分析出你想研究的内容
11:51
Let's try this here.
286
711260
2000
我们在这儿试试看
11:53
But actually I think the most exciting thing about this
287
713260
3000
不过事实上我想最激动人心的事是
11:56
is that it really gives one the chance
288
716260
2000
它给了我们一个机会
11:58
to democratize programming.
289
718260
3000
来全民编程
12:01
I mean, anyone will be able to say what they want in plain language.
290
721260
3000
我的意思是,任何人都能用日常用语说话
12:04
Then, the idea is that Wolfram Alpha will be able to figure out
291
724260
3000
关键在于,Wolfram Alpha能分析出
12:07
what precise pieces of code
292
727260
2000
什么样的精准代码
12:09
can do what they're asking for
293
729260
2000
能符合人们要求的事情
12:11
and then show them examples that will let them pick what they need
294
731260
3000
然后显示出样例来帮助人们找到想要的答案
12:14
to build up bigger and bigger, precise programs.
295
734260
3000
由此建立越来越多的精准程序
12:17
So, sometimes, Wolfram Alpha
296
737260
2000
所以,有时候,Wolfram Alpha
12:19
will be able to do the whole thing immediately
297
739260
2000
能够立即处理整个问题
12:21
and just give back a whole big program that you can then compute with.
298
741260
3000
然后仅仅回馈你能用来计算的整个大程序
12:24
Here's a big website
299
744260
2000
这里有个大网站
12:26
where we've been collecting lots of educational
300
746260
3000
这里,我们收集了很多关于教育等
12:29
and other demonstrations about lots of kinds of things.
301
749260
3000
各种事物的样例
12:32
I'll show you one example here.
302
752260
3000
我来展示一个例子,例如这个
12:36
This is just an example of one of these computable documents.
303
756260
3000
这只是可计算文档的其中一个样例
12:39
This is probably a fairly small
304
759260
2000
它是相当小的
12:41
piece of Mathematica code
305
761260
2000
一段Mathematica代码
12:43
that's able to be run here.
306
763260
2000
能在这里运行
12:47
Okay. Let's zoom out again.
307
767260
3000
我们再缩小一下
12:50
So, given our new kind of science,
308
770260
2000
所以,有了这个新版科学
12:52
is there a general way to use it to make technology?
309
772260
3000
存在一个通用的办法来用它革新技术吗?
12:55
So, with physical materials,
310
775260
2000
使用物理材料
12:57
we're used to going around the world
311
777260
2000
我们过去常常遍步世界
12:59
and discovering that particular materials
312
779260
2000
并发现特定材料
13:01
are useful for particular
313
781260
2000
用于特定的
13:03
technological purposes.
314
783260
2000
技术目的等等。
13:05
Well, it turns out we can do very much the same kind of thing
315
785260
2000
结果,我们可以做很多差不多的事情
13:07
in the computational universe.
316
787260
2000
在这个可计算的世界中。
13:09
There's an inexhaustible supply of programs out there.
317
789260
3000
有无穷无尽的程序资源在那儿。
13:12
The challenge is to see how to
318
792260
2000
面临的挑战是如何
13:14
harness them for human purposes.
319
794260
2000
让它们供人类使用
13:16
Something like Rule 30, for example,
320
796260
2000
举个例子,一些像30号规则的东西
13:18
turns out to be a really good randomness generator.
321
798260
2000
结果可以是很好的随机生成器。
13:20
Other simple programs are good models
322
800260
2000
其他简单的程序是很好的模型
13:22
for processes in the natural or social world.
323
802260
3000
来处理自然世界或者社交活动的问题
13:25
And, for example, Wolfram Alpha and Mathematica
324
805260
2000
再比如,Wolfram Alpha和Mathematica
13:27
are actually now full of algorithms
325
807260
2000
确实包含很多算法
13:29
that we discovered by searching the computational universe.
326
809260
3000
我们通过搜索计算空间找到它们
13:33
And, for example, this -- if we go back here --
327
813260
3000
再比如,我们返回到这里
13:37
this has become surprisingly popular
328
817260
2000
这个已经变成相当的流行
13:39
among composers
329
819260
2000
在作曲家间
13:41
finding musical forms by searching the computational universe.
330
821260
3000
通过搜索计算空间来找出音乐模式
13:45
In a sense, we can use the computational universe
331
825260
2000
某种意义上说,我们可以使用计算空间
13:47
to get mass customized creativity.
332
827260
3000
来获得大量的个性化创造。
13:50
I'm hoping we can, for example,
333
830260
2000
我希望我们能够
13:52
use that even to get Wolfram Alpha
334
832260
2000
使用Wolfram Alpha
13:54
to routinely do invention and discovery on the fly,
335
834260
3000
来运行常规的发明和发现的过程
13:57
and to find all sorts of wonderful stuff
336
837260
2000
并且来找出所有令人惊讶的事情
13:59
that no engineer
337
839260
2000
这些事情没有一个工程师
14:01
and no process of incremental evolution would ever come up with.
338
841260
3000
也没有一个渐进式演化的过程能够找出
14:05
Well, so, that leads to kind of an ultimate question:
339
845260
3000
这些最终导向一个终极问题
14:08
Could it be that someplace out there in the computational universe
340
848260
3000
有没有可能使这个计算空间
14:11
we might find our physical universe?
341
851260
3000
与我们的物理世界相融合?
14:14
Perhaps there's even some quite simple rule,
342
854260
2000
也许存在简单的规则
14:16
some simple program for our universe.
343
856260
3000
一些简单的程序,对于我们的物理世界来说。
14:19
Well, the history of physics would have us believe
344
859260
2000
物理的历史让我们相信
14:21
that the rule for the universe must be pretty complicated.
345
861260
3000
宇宙的内部规则一定是很复杂的
14:24
But in the computational universe,
346
864260
2000
但是在计算空间中
14:26
we've now seen how rules that are incredibly simple
347
866260
3000
我们已经看到那些规则惊人的简单
14:29
can produce incredibly rich and complex behavior.
348
869260
3000
却能够产生非常丰富和复杂的结果
14:32
So could that be what's going on with our whole universe?
349
872260
3000
所以,这可能是我们的物理世界的本质吗?
14:36
If the rules for the universe are simple,
350
876260
2000
如果这个宇宙的规则很简单
14:38
it's kind of inevitable that they have to be
351
878260
2000
不可避免的,他们一定是
14:40
very abstract and very low level;
352
880260
2000
十分抽象以及初级
14:42
operating, for example, far below
353
882260
2000
远远运行于
14:44
the level of space or time,
354
884260
2000
时间、空间之下
14:46
which makes it hard to represent things.
355
886260
2000
这种运行方法很难表现某种东西
14:48
But in at least a large class of cases,
356
888260
2000
但是至少,从其中一类大量的事例中
14:50
one can think of the universe as being
357
890260
2000
我们能把这个宇宙想成
14:52
like some kind of network,
358
892260
2000
某种网络
14:54
which, when it gets big enough,
359
894260
2000
当它变得足够大时
14:56
behaves like continuous space
360
896260
2000
它表现得像一个连续空间
14:58
in much the same way as having lots of molecules
361
898260
2000
某种程度上就像很多分子
15:00
can behave like a continuous fluid.
362
900260
2000
表现得像流体一样。
15:02
Well, then the universe has to evolve by applying
363
902260
3000
之后,宇宙进化就要依靠
15:05
little rules that progressively update this network.
364
905260
3000
应用这个网络中不断更新的简单规则。
15:08
And each possible rule, in a sense,
365
908260
2000
并且,每一个可能的规则,在某种程度上说,
15:10
corresponds to a candidate universe.
366
910260
2000
对应一个候选空间
15:12
Actually, I haven't shown these before,
367
912260
3000
事实上,我之前从来没有展示过
15:16
but here are a few of the candidate universes
368
916260
3000
不过,这里有几个候选空间
15:19
that I've looked at.
369
919260
2000
我正在研究的
15:21
Some of these are hopeless universes,
370
921260
2000
一些是没希望的空间
15:23
completely sterile,
371
923260
2000
完全不能演化,
15:25
with other kinds of pathologies like no notion of space,
372
925260
2000
包括很多缺点,例如没有空间的观念
15:27
no notion of time, no matter,
373
927260
3000
没有时间的概念,没有物质
15:30
other problems like that.
374
930260
2000
或者类似的其他问题
15:32
But the exciting thing that I've found in the last few years
375
932260
3000
但是,我近几年发现的最令人激动的事
15:35
is that you actually don't have to go very far
376
935260
2000
是你其实不必深入
15:37
in the computational universe
377
937260
2000
在计算空间中
15:39
before you start finding candidate universes
378
939260
2000
你就能发现与我们的物理空间
15:41
that aren't obviously not our universe.
379
941260
3000
明显不同的候选空间
15:44
Here's the problem:
380
944260
2000
问题在这里:
15:46
Any serious candidate for our universe
381
946260
3000
任何有可能的候选空间
15:49
is inevitably full of computational irreducibility.
382
949260
3000
不可避免地充满了计算不可化归性,
15:52
Which means that it is irreducibly difficult
383
952260
3000
这意味着简化它的具体表现
15:55
to find out how it will really behave,
384
955260
2000
是极其困难的
15:57
and whether it matches our physical universe.
385
957260
3000
并且不易判断它是否符合我们的物理世界。
16:01
A few years ago, I was pretty excited to discover
386
961260
3000
几年前,我非常兴奋地发现
16:04
that there are candidate universes with incredibly simple rules
387
964260
3000
有些候选空间具有极其简单的规则
16:07
that successfully reproduce special relativity,
388
967260
2000
却能成功再现狭义相对论
16:09
and even general relativity and gravitation,
389
969260
3000
和广义相对论以及重力
16:12
and at least give hints of quantum mechanics.
390
972260
3000
而且至少还给出了量子力学的暗示。
16:15
So, will we find the whole of physics?
391
975260
2000
所以,我们将会发现整个物理学吗?
16:17
I don't know for sure,
392
977260
2000
我不确定。
16:19
but I think at this point it's sort of
393
979260
2000
但是我觉得现在
16:21
almost embarrassing not to at least try.
394
981260
2000
不去尝试的话真的是令人羞愧的。
16:23
Not an easy project.
395
983260
2000
虽然这不是件简单的事。
16:25
One's got to build a lot of technology.
396
985260
2000
一方面要发展技术
16:27
One's got to build a structure that's probably
397
987260
2000
一方面要建立架构
16:29
at least as deep as existing physics.
398
989260
2000
这架构至少要达到现有物理学的深度。
16:31
And I'm not sure what the best way to organize the whole thing is.
399
991260
3000
而且,我不确定去整合整件事情最好的方法是什么。
16:34
Build a team, open it up, offer prizes and so on.
400
994260
3000
建立一个团队,运营它,还是提供奖励等等。
16:37
But I'll tell you, here today,
401
997260
2000
但是,我今天要告诉你
16:39
that I'm committed to seeing this project done,
402
999260
2000
我要把这个项目做完,
16:41
to see if, within this decade,
403
1001260
3000
要看看在这10年内
16:44
we can finally hold in our hands
404
1004260
2000
我们是否最终可以掌握
16:46
the rule for our universe
405
1006260
2000
我们宇宙的规则
16:48
and know where our universe lies
406
1008260
2000
并且知道我们宇宙在
16:50
in the space of all possible universes ...
407
1010260
2000
所有可能的宇宙空间的位置
16:52
and be able to type into Wolfram Alpha, "the theory of the universe,"
408
1012260
3000
并且,能够在Wolfram Alpha中输入“宇宙理论”
16:55
and have it tell us.
409
1015260
2000
让它告诉我们结果。
16:57
(Laughter)
410
1017260
2000
(笑声)
17:00
So I've been working on the idea of computation
411
1020260
2000
我已经在计算的这个想法上做了
17:02
now for more than 30 years,
412
1022260
2000
超过30年了研究
17:04
building tools and methods and turning intellectual ideas
413
1024260
3000
打造工具,创立方法,将专业知识
17:07
into millions of lines of code
414
1027260
2000
编写成数百万行的代码
17:09
and grist for server farms and so on.
415
1029260
2000
在服务器中收获结果等等。
17:11
With every passing year,
416
1031260
2000
每过去一年
17:13
I realize how much more powerful
417
1033260
2000
我都意识到
17:15
the idea of computation really is.
418
1035260
2000
计算的想法是多么的强大。
17:17
It's taken us a long way already,
419
1037260
2000
它已引领我们走过很长一段路
17:19
but there's so much more to come.
420
1039260
2000
但是还有更多可以做的事情。
17:21
From the foundations of science
421
1041260
2000
从科学的根基
17:23
to the limits of technology
422
1043260
2000
到技术的极限
17:25
to the very definition of the human condition,
423
1045260
2000
再到人类条件的定义,
17:27
I think computation is destined to be
424
1047260
2000
我觉得,计算注定
17:29
the defining idea of our future.
425
1049260
2000
是定义我们的未来的想法
17:31
Thank you.
426
1051260
2000
谢谢。
17:33
(Applause)
427
1053260
14000
(鼓掌)
17:47
Chris Anderson: That was astonishing.
428
1067260
2000
Chris Anderson(克里斯 安德森):太令人惊讶了。
17:49
Stay here. I've got a question.
429
1069260
2000
别走,我有问题。
17:51
(Applause)
430
1071260
4000
(鼓掌)
17:57
So, that was, fair to say, an astonishing talk.
431
1077260
3000
说实在的,那真的是很惊人的演讲。
18:01
Are you able to say in a sentence or two
432
1081260
3000
您能用一两句话概括
18:04
how this type of thinking
433
1084260
3000
这种思考方式如何
18:07
could integrate at some point
434
1087260
2000
能在某些点上整合
18:09
to things like string theory or the kind of things that people think of
435
1089260
2000
一些如弦论或者
18:11
as the fundamental explanations of the universe?
436
1091260
3000
人们在思考的一些关于根本宇宙解释的问题?
18:14
Stephen Wolfram: Well, the parts of physics
437
1094260
2000
Stephen Wolfram(斯蒂芬.沃尔夫勒姆):好的。
18:16
that we kind of know to be true,
438
1096260
2000
那部分我们视作真理的物理学
18:18
things like the standard model of physics:
439
1098260
2000
就像标准物理模型
18:20
what I'm trying to do better reproduce the standard model of physics
440
1100260
3000
我尝试做得更好的是再现标准物理模型
18:23
or it's simply wrong.
441
1103260
2000
或者说明它是错的。
18:25
The things that people have tried to do in the last 25 years or so
442
1105260
2000
人们在近25年里已尝试的事情
18:27
with string theory and so on
443
1107260
2000
有关弦论等等
18:29
have been an interesting exploration
444
1109260
2000
都是非常有趣的探索
18:31
that has tried to get back to the standard model,
445
1111260
3000
这些探索已经尝试回到标准模型,
18:34
but hasn't quite gotten there.
446
1114260
2000
却还不能到那一步。
18:36
My guess is that some great simplifications of what I'm doing
447
1116260
3000
我猜我的研究中的一些极端简化
18:39
may actually have considerable resonance
448
1119260
3000
可能和弦论中的某些研究
18:42
with what's been done in string theory,
449
1122260
2000
有相当的相似度
18:44
but that's a complicated math thing
450
1124260
3000
不过,那是复杂的数学
18:47
that I don't yet know how it's going to work out.
451
1127260
3000
我还不知道有些是怎么回事情。
18:50
CA: Benoit Mandelbrot is in the audience.
452
1130260
2000
克里斯 安德森: Benoit Mandlebrot也在观众席中。
18:52
He also has shown how complexity
453
1132260
2000
他也展示了如何复杂
18:54
can arise out of a simple start.
454
1134260
2000
可以从简单的初始状态演化过来。
18:56
Does your work relate to his?
455
1136260
2000
这和你的研究相关吗?
18:58
SW: I think so.
456
1138260
2000
史蒂芬:我觉得有。
19:00
I view Benoit Mandelbrot's work
457
1140260
2000
我看过Benoit Mandlebrot的研究,
19:02
as one of the founding contributions
458
1142260
3000
觉得像这个领域的
19:05
to this kind of area.
459
1145260
3000
基础贡献
19:08
Benoit has been particularly interested
460
1148260
2000
Benoit致力于
19:10
in nested patterns, in fractals and so on,
461
1150260
2000
复杂图样,分型等等的研究,
19:12
where the structure is something
462
1152260
2000
在那些方面,结构就像
19:14
that's kind of tree-like,
463
1154260
2000
树型之类的东西,
19:16
and where there's sort of a big branch that makes little branches
464
1156260
2000
有大分支,能产生小分支
19:18
and even smaller branches and so on.
465
1158260
3000
和更小分支
19:21
That's one of the ways
466
1161260
2000
那也是一种方法
19:23
that you get towards true complexity.
467
1163260
3000
来到达真正的复杂。
19:26
I think things like the Rule 30 cellular automaton
468
1166260
3000
我觉得像30号规则的单元自动机
19:29
get us to a different level.
469
1169260
2000
将我们带到了不同的水平上。
19:31
In fact, in a very precise way, they get us to a different level
470
1171260
3000
事实上,更精确地说,它能将我们带到不同的水平
19:34
because they seem to be things that are
471
1174260
2000
因为他们看似能够
19:37
capable of complexity
472
1177260
3000
达到复杂状态
19:40
that's sort of as great as complexity can ever get ...
473
1180260
3000
这种复杂是前所未有的...
19:44
I could go on about this at great length, but I won't. (Laughter) (Applause)
474
1184260
3000
我可以持续不断地讲下去,但是我不打算去做。
19:47
CA: Stephen Wolfram, thank you.
475
1187260
2000
克里斯:史蒂芬,谢谢你。
19:49
(Applause)
476
1189260
2000
(鼓掌)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog