Computing a theory of everything | Stephen Wolfram

605,077 views ใƒป 2010-04-27

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Michael Kogan ืžื‘ืงืจ: Ido Dekkers
00:16
So I want to talk today about an idea. It's a big idea.
0
16260
3000
ื•ื‘ื›ืŸ, ื”ื™ื•ื ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœ ืจืขื™ื•ืŸ. ื–ื” ืจืขื™ื•ืŸ ื’ื“ื•ืœ.
00:19
Actually, I think it'll eventually
1
19260
2000
ืœืžืขืŸ ื”ืืžืช, ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ
00:21
be seen as probably the single biggest idea
2
21260
2000
ื”ื•ื ื™ื™ื—ืฉื‘ ืœืจืขื™ื•ืŸ ื”ื’ื“ื•ืœ ื”ื™ื—ื™ื“
00:23
that's emerged in the past century.
3
23260
2000
ืฉื”ื’ื™ื— ื‘ืžืื” ื”ืื—ืจื•ื ื”.
00:25
It's the idea of computation.
4
25260
2000
ื–ื”ื• ืจืขื™ื•ืŸ ื”ื—ื™ืฉื•ื‘ื™ื•ืช.
00:27
Now, of course, that idea has brought us
5
27260
2000
ื›ืžื•ื‘ืŸ ื”ืจืขื™ื•ืŸ ื”ื–ื” ื”ื‘ื™ื ืœื ื•
00:29
all of the computer technology we have today and so on.
6
29260
3000
ืืช ื›ืœ ื˜ื›ื ื•ืœื•ื’ื™ืช ื”ืžื—ืฉื‘ ืฉื™ืฉ ืœื ื• ื›ื™ื•ื, ื•ื›ื•'.
00:32
But there's actually a lot more to computation than that.
7
32260
3000
ืืš ืœืžืขืฉื” ื™ืฉ ื‘ื—ื™ืฉื•ื‘ื™ื•ืช ื”ืจื‘ื” ืžืขื‘ืจ ืœื›ืš.
00:35
It's really a very deep, very powerful, very fundamental idea,
8
35260
3000
ื–ื” ื‘ืืžืช ืจืขื™ื•ืŸ ืขืžื•ืง ืžืื“, ืจื‘ ืขื•ืฆืžื”, ื•ื‘ืกื™ืกื™ ืžืื“,
00:38
whose effects we've only just begun to see.
9
38260
3000
ืฉืืช ื”ืฉืคืขืชื• ืื ื• ืจืง ืžืชื—ื™ืœื™ื ืœืจืื•ืช.
00:41
Well, I myself have spent the past 30 years of my life
10
41260
3000
ื•ื‘ื›ืŸ, ืื ื™ ืขืฆืžื™ ื”ืขื‘ืจืชื™ ืืช 30 ื”ืฉื ื” ื”ืื—ืจื•ื ื•ืช ืžื—ื™ื™
00:44
working on three large projects
11
44260
2000
ื‘ืขื‘ื•ื“ื” ืขืœ ืฉืœื•ืฉื” ืคืจื•ื™ืงื˜ื™ื ื’ื“ื•ืœื™ื
00:46
that really try to take the idea of computation seriously.
12
46260
3000
ืืฉืจ ื‘ืืžืช ืžื ืกื™ื ืœืงื—ืช ืืช ืจืขื™ื•ืŸ ื”ื—ื™ืฉื•ื‘ื™ื•ืช ื‘ืจืฆื™ื ื•ืช.
00:50
So I started off at a young age as a physicist
13
50260
3000
ืื– ื”ืชื—ืœืชื™ ื‘ืฆืขื™ืจื•ืชื™ ื›ืคื™ืกื™ืงืื™
00:53
using computers as tools.
14
53260
2000
ื•ื”ืฉืชืžืฉืชื™ ื‘ืžื—ืฉื‘ื™ื ื›ื›ืœื™.
00:55
Then, I started drilling down,
15
55260
2000
ื•ืื– ื”ืชื—ืœืชื™ ืœืฆืœื•ืœ ื™ื•ืชืจ ืขืžื•ืง
00:57
thinking about the computations I might want to do,
16
57260
2000
ื•ืœื—ืฉื•ื‘ ืขืœ ื—ื™ืฉื•ื‘ื™ื ืฉืื•ืœื™ ื”ื™ื™ืชื™ ืจื•ืฆื” ืœืขืฉื•ืช,
00:59
trying to figure out what primitives they could be built up from
17
59260
3000
ืชื•ืš ื›ื“ื™ ื—ื™ืคื•ืฉ ืื—ืจ ื”ืืœืžื ื˜ื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืจื›ื™ื‘ ืื•ืชื
01:02
and how they could be automated as much as possible.
18
62260
3000
ื•ื›ื™ืฆื“ ื ื™ืชืŸ ืœืžื›ืŸ ืื•ืชื ื›ื›ืœ ื”ืืคืฉืจ.
01:05
Eventually, I created a whole structure
19
65260
2000
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื™ืฆืจืชื™ ืžื‘ื ื” ืฉืœื
01:07
based on symbolic programming and so on
20
67260
2000
ื”ืžื‘ื•ืกืก ืขืœ ืชื™ื›ื ื•ืช ืกื™ืžื‘ื•ืœื™ ื•ื›ื•'
01:09
that let me build Mathematica.
21
69260
2000
ื•ื–ื” ืื™ืคืฉืจ ืœื™ ืœื‘ื ื•ืช Mathematica.
01:11
And for the past 23 years, at an increasing rate,
22
71260
2000
ื•ื‘ืžืฉืš 23 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช, ื‘ืงืฆื‘ ื”ื•ืœืš ื•ื’ื•ื‘ืจ,
01:13
we've been pouring more and more ideas
23
73260
2000
ื”ื›ื ืกื ื• ื™ื•ืชืจ ื•ื™ื•ืชืจ ืจืขื™ื•ื ื•ืช
01:15
and capabilities and so on into Mathematica,
24
75260
2000
ื•ื™ื›ื•ืœื•ืช ื•ื›ื•' ืœืชื•ืš Mathematica,
01:17
and I'm happy to say that that's led to many good things
25
77260
3000
ื•ืื ื™ ืฉืžื— ืœื•ืžืจ ืฉื–ื” ื”ื•ื‘ื™ืœ ืœื”ืจื‘ื” ื“ื‘ืจื™ื ื˜ื•ื‘ื™ื
01:20
in R & D and education,
26
80260
2000
ื‘ืžื—ืงืจ ื•ืคื™ืชื•ื— ื•ื‘ื—ื™ื ื•ืš,
01:22
lots of other areas.
27
82260
2000
ื‘ื”ืžื•ืŸ ืชื—ื•ืžื™ื ืื—ืจื™ื.
01:24
Well, I have to admit, actually,
28
84260
2000
ื•ื‘ื›ืŸ, ืขืœื™ื™ ืœื”ื•ื“ื•ืช ืฉืœืžืขืฉื”
01:26
that I also had a very selfish reason for building Mathematica:
29
86260
3000
ื”ื™ืชื” ืœื™ ืกื™ื‘ื” ืžืื“ ืื ื•ื›ื™ืช ืœื‘ื ื™ืช Mathematica.
01:29
I wanted to use it myself,
30
89260
2000
ืจืฆื™ืชื™ ืœื”ืฉืชืžืฉ ื‘ื” ื‘ืขืฆืžื™,
01:31
a bit like Galileo got to use his telescope
31
91260
2000
ืงืฆืช ื›ืžื• ื’ืœื™ืœืื• ื”ืฉืชืžืฉ ื‘ื˜ืœืกืงื•ืค ืฉืœื•
01:33
400 years ago.
32
93260
2000
ืœืคื ื™ 400 ืฉื ื”.
01:35
But I wanted to look not at the astronomical universe,
33
95260
3000
ืจืง ืฉืื ื™ ืจืฆื™ืชื™ ืœื”ื‘ื™ื˜ ืœื ืขืœ ื”ื™ืงื•ื ื”ืืกื˜ืจื•ื ื•ืžื™
01:38
but at the computational universe.
34
98260
3000
ืืœื ืขืœ ื”ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™.
01:41
So we normally think of programs as being
35
101260
2000
ืื ื›ืŸ, ืื ื• ื‘ื“ืจืš ื›ืœืœ ื—ื•ืฉื‘ื™ื ืขืœ ืชื›ื ื™ื•ืช ืžื—ืฉื‘ ื›ืขืœ
01:43
complicated things that we build
36
103260
2000
ื“ื‘ืจื™ื ืžื•ืจื›ื‘ื™ื ืฉืื ื• ื‘ื•ื ื™ื
01:45
for very specific purposes.
37
105260
2000
ืœืฆืจื›ื™ื ืžืกื•ื™ื™ืžื™ื ืžืื“.
01:47
But what about the space of all possible programs?
38
107260
3000
ืืš ืžื” ืœื’ื‘ื™ ืžืจื—ื‘ ื›ืœ ื”ืชื›ื ื™ื•ืช ื”ืืคืฉืจื™ื•ืช?
01:50
Here's a representation of a really simple program.
39
110260
3000
ื”ื ื” ื™ื™ืฆื•ื’ ืฉืœ ืชื›ื ื™ืช ืžืžืฉ ืคืฉื•ื˜ื”.
01:53
So, if we run this program,
40
113260
2000
ืื– ืื ื ืจื™ืฅ ืืช ื”ืชื›ื ื™ืช
01:55
this is what we get.
41
115260
2000
ื”ื ื” ืžื” ืฉื ืงื‘ืœ.
01:57
Very simple.
42
117260
2000
ืžืื“ ืคืฉื•ื˜.
01:59
So let's try changing the rule
43
119260
2000
ื›ืขืช ื‘ื•ืื• ื ื ืกื” ืœืฉื ื•ืช ื˜ื™ืคื” ืืช ื”ื›ืœืœ
02:01
for this program a little bit.
44
121260
2000
ืขื‘ื•ืจ ืชื›ื ื™ืช ื–ื•.
02:03
Now we get another result,
45
123260
2000
ื›ืขืช ื ืงื‘ืœ ืชื•ืฆืื” ืื—ืจืช,
02:05
still very simple.
46
125260
2000
ืขื“ื™ื™ืŸ ืžืื“ ืคืฉื•ื˜ื”.
02:07
Try changing it again.
47
127260
3000
ื ืกื• ืœืฉื ื•ืช ื–ืืช ืฉื•ื‘.
02:10
You get something a little bit more complicated.
48
130260
2000
ืชืงื‘ืœื• ืžืฉื”ื• ืžืขื˜ ื™ื•ืชืจ ืžื•ืจื›ื‘,
02:12
But if we keep running this for a while,
49
132260
2000
ืืš ืื ื ืžืฉื™ืš ืœื”ืจื™ืฅ ื–ืืช ื–ืžืŸ ืžื”
02:14
we find out that although the pattern we get is very intricate,
50
134260
3000
ื ื’ืœื” ื›ื™ ืœืžืจื•ืช ืฉื ืชื‘ื ื™ืช ืฉืื ื• ืžืงื‘ืœื™ื ื”ื™ื ืžืื“ ืžื•ืจื›ื‘ืช
02:17
it has a very regular structure.
51
137260
3000
ื”ื™ื ื‘ืขืœืช ืžื‘ื ื” ืžืื“ ืจื’ื™ืœ.
02:20
So the question is: Can anything else happen?
52
140260
3000
ืื– ื”ืฉืืœื” ื”ื™ื: ื”ืื ืžืฉื”ื• ืื—ืจ ื™ื›ื•ืœ ืœืงืจื•ืช?
02:23
Well, we can do a little experiment.
53
143260
2000
ื•ื‘ื›ืŸ, ืื ื• ื™ื›ื•ืœื™ื ืœื‘ืฆืข ื ื™ืกื•ื™ ืงื˜ืŸ.
02:25
Let's just do a little mathematical experiment, try and find out.
54
145260
3000
ื‘ื•ืื• ืจืง ื ืขืฉื” ื ื™ืกื•ื™ ืžืชืžื˜ื™ ืงื˜ืŸ, ื ื ืกื” ื•ื ืจืื”.
02:29
Let's just run all possible programs
55
149260
3000
ื‘ื•ืื• ืจืง ื ืจื™ืฅ ืืช ื›ืœ ื”ืชื›ื ื™ื•ืช ื”ืืคืฉืจื™ื•ืช
02:32
of the particular type that we're looking at.
56
152260
2000
ืžื”ืกื•ื’ ื”ืžืกื•ื™ื ืื•ืชื• ืื ื• ื‘ื•ื—ื ื™ื.
02:34
They're called cellular automata.
57
154260
2000
ื”ื ื ืงืจืื™ื ืื•ื˜ื•ืžื˜ ืชืื™.
02:36
You can see a lot of diversity in the behavior here.
58
156260
2000
ื ื™ืชืŸ ืœืจืื•ืช ื›ืืŸ ื”ืจื‘ื” ืฉื•ื ื•ืช ื‘ื”ืชื ื”ื’ื•ืช.
02:38
Most of them do very simple things,
59
158260
2000
ืจื•ื‘ืŸ ืขื•ืฉื•ืช ื“ื‘ืจื™ื ืคืฉื•ื˜ื™ื ืžืื“.
02:40
but if you look along all these different pictures,
60
160260
2000
ืืš ืื ืชืกืชื›ืœื• ื‘ื™ืŸ ื›ืœ ื”ืชืžื•ื ื•ืช ื”ืฉื•ื ื•ืช ื”ืœืœื•
02:42
at rule number 30,
61
162260
2000
ื‘ื›ืœืœ ืžืกืคืจ 30
02:44
you start to see something interesting going on.
62
164260
2000
ืชืชื—ื™ืœื• ืœืจืื•ืช ืžืฉื”ื• ืžืขื ื™ื™ืŸ ืฉืงื•ืจื” ื›ืืŸ.
02:46
So let's take a closer look
63
166260
2000
ืื– ื‘ื•ืื• ื ืชื‘ื•ื ืŸ ืžืงืจื•ื‘
02:48
at rule number 30 here.
64
168260
2000
ื‘ื›ืœืœ ืžืกืคืจ 30 ื›ืืŸ.
02:50
So here it is.
65
170260
2000
ืื– ื”ื ื” ื–ื” ื‘ื.
02:52
We're just following this very simple rule at the bottom here,
66
172260
3000
ืื ื• ืจืง ืžื‘ืฆืขื™ื ืืช ื”ื›ืœืœ ื”ืคืฉื•ื˜ ื”ื–ื” ื›ืืŸ ืœืžื˜ื”
02:55
but we're getting all this amazing stuff.
67
175260
2000
ืืš ืื ื• ืžืงื‘ืœื™ื ืืช ื›ืœ ื”ื“ื‘ืจื™ื ื”ืžื“ื”ื™ืžื™ื ื”ืœืœื•.
02:57
It's not at all what we're used to,
68
177260
2000
ื–ื” ืžืžืฉ ืœื ืžื” ืฉืื ื• ืจื’ื™ืœื™ื ืืœื™ื•
02:59
and I must say that, when I first saw this,
69
179260
2000
ื•ืื ื™ ื—ื™ื™ื‘ ืœื•ืžืจ ืฉื›ืืฉืจ ืจืื™ืชื™ ื–ืืช ืœืจืืฉื•ื ื”
03:01
it came as a huge shock to my intuition.
70
181260
3000
ื–ื” ื”ื™ื” ื”ืœื ืœืื™ื ื˜ื•ืื™ืฆื™ื” ืฉืœื™,
03:04
And, in fact, to understand it,
71
184260
2000
ื•ืœืžืขืฉื”, ื›ื“ื™ ืœื”ื‘ื™ืŸ ื–ืืช
03:06
I eventually had to create
72
186260
2000
ื ืืœืฆืชื™ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืœื™ืฆื•ืจ
03:08
a whole new kind of science.
73
188260
2000
ืžื“ืข ื—ื“ืฉ ืœื’ืžืจื™.
03:11
(Laughter)
74
191260
2000
.
03:13
This science is different, more general,
75
193260
3000
ืžื“ืข ื–ื” ื”ื•ื ืฉื•ื ื”, ื›ืœืœื™ ื™ื•ืชืจ
03:16
than the mathematics-based science that we've had
76
196260
2000
ืžืืฉืจ ืžื“ืข ืžื‘ื•ืกืก ืžืชืžื˜ื™ืงื” ืฉื”ื™ื” ืœื ื•
03:18
for the past 300 or so years.
77
198260
3000
ื‘ืžืฉืš 300 ื•ืžืฉื”ื• ืฉื ื™ื ืื—ืจื•ื ื•ืช.
03:21
You know, it's always seemed like a big mystery:
78
201260
2000
ืืชื ื™ื•ื“ืขื™ื, ื–ื” ืชืžื™ื“ ื ืจืื” ื›ืžื• ืžืกืชื•ืจื™ืŸ ื’ื“ื•ืœ -
03:23
how nature, seemingly so effortlessly,
79
203260
3000
ื›ื™ืฆื“ ื”ื˜ื‘ืข, ื›ืื™ืœื• ืœืœื ืžืืžืฅ
03:26
manages to produce so much
80
206260
2000
ืžืฆืœื™ื— ืœื™ืฆื•ืจ ื“ื‘ืจื™ื ื›ื” ืจื‘ื™ื
03:28
that seems to us so complex.
81
208260
3000
ืฉื ืจืื™ื ืœื ื• ื›ื” ืžื•ืจื›ื‘ื™ื.
03:31
Well, I think we've found its secret:
82
211260
3000
ื•ื‘ื›ืŸ, ืื ื™ ืกื‘ื•ืจ ืฉืžืฆืื ื• ืืช ืกื•ื“ื•.
03:34
It's just sampling what's out there in the computational universe
83
214260
3000
ื”ืขื ื™ื™ืŸ ื”ื•ื ืจืง ืœื“ื’ื•ื ืืช ืžื” ืฉืงื™ื™ื ื‘ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™
03:37
and quite often getting things like Rule 30
84
217260
3000
ื•ื‘ืชื“ื™ืจื•ืช ื“ื™ ื’ื‘ื•ื”ื” ืœืงื‘ืœ ื“ื‘ืจื™ื ื›ืžื• ื›ืœืœ 30
03:40
or like this.
85
220260
3000
ืื• ื›ืžื• ื–ื”.
03:44
And knowing that starts to explain
86
224260
2000
ื•ื”ื™ื“ื™ืขื” ื”ื–ืืช ืžืชื—ื™ืœื” ืœื”ืกื‘ื™ืจ
03:46
a lot of long-standing mysteries in science.
87
226260
3000
ื”ืจื‘ื” ืชืขืœื•ืžื•ืช ืขืชื™ืงื•ืช ื™ื•ืžื™ืŸ ื‘ืžื“ืข.
03:49
It also brings up new issues, though,
88
229260
2000
ืืš ื–ื” ื’ื ืžื‘ื™ื ื‘ืขื™ื•ืช ื—ื“ืฉื•ืช
03:51
like computational irreducibility.
89
231260
3000
ื›ื’ื•ืŸ ืื™ ื™ื›ื•ืœืช ืฆื™ืžืฆื•ื ื—ื™ืฉื•ื‘ื™ืช.
03:54
I mean, we're used to having science let us predict things,
90
234260
3000
ื”ื›ื•ื•ื ื”, ืื ื• ืจื’ื™ืœื™ื ืœื›ืš ืฉืžื“ืข ืžืืคืฉืจ ืœื ื• ืœื—ื–ื•ืช ื“ื‘ืจื™ื
03:57
but something like this
91
237260
2000
ืืš ืžืฉื”ื• ื›ืžื• ื–ื”
03:59
is fundamentally irreducible.
92
239260
2000
ืขืงืจื•ื ื™ืช ืื™ื ื• ื ื™ืชืŸ ืœืฆืžืฆื•ื.
04:01
The only way to find its outcome
93
241260
2000
ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืœื’ืœื•ืช ืืช ืชื•ืฆืืชื•
04:03
is, effectively, just to watch it evolve.
94
243260
3000
ื”ื™ื ืœืžืขืฉื” ืจืง ืชื•ืš ื”ืชื‘ื•ื ื ื•ืช ื‘ื”ืชืคืชื—ื•ืชื•.
04:06
It's connected to, what I call,
95
246260
2000
ื–ื” ืžื—ื•ื‘ืจ ืœืžื” ืฉืื ื™ ืงื•ืจื
04:08
the principle of computational equivalence,
96
248260
2000
ื”ืขื™ืงืจื•ืŸ ืฉืœ ืฉืงื™ืœื•ืช ื—ื™ืฉื•ื‘ื™ืช,
04:10
which tells us that even incredibly simple systems
97
250260
3000
ืืฉืจ ืื•ืžืจ ืฉืืคื™ืœื• ืžืขืจื›ื•ืช ืคืฉื•ื˜ื•ืช ื‘ื™ื•ืชืจ
04:13
can do computations as sophisticated as anything.
98
253260
3000
ื™ื›ื•ืœื•ืช ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ืžื•ืจื›ื‘ื™ื ืœืื™ืŸ ืขืจื•ืš.
04:16
It doesn't take lots of technology or biological evolution
99
256260
3000
ื–ื” ืœื ืœื•ืงื— ื”ืจื‘ื” ื˜ื›ื ื•ืœื•ื’ื™ื” ืื• ืื‘ื•ืœื•ืฆื™ื” ื‘ื™ื•ืœื•ื’ื™ืช
04:19
to be able to do arbitrary computation;
100
259260
2000
ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ืฉืจื™ืจื•ืชื™ื™ื,
04:21
just something that happens, naturally,
101
261260
2000
ื–ื” ืจืง ืžืฉื”ื• ืฉืงื•ืจื”, ื‘ืื•ืคืŸ ื˜ื‘ืขื™,
04:23
all over the place.
102
263260
2000
ื‘ื›ืœ ืžืงื•ื.
04:25
Things with rules as simple as these can do it.
103
265260
3000
ื“ื‘ืจื™ื ืขื ื›ืœืœื™ื ืคืฉื•ื˜ื™ื ื›ื’ื•ืŸ ืืœื” ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช.
04:29
Well, this has deep implications
104
269260
2000
ื•ื‘ื›ืŸ, ืœื›ืš ื™ืฉ ื”ืฉืœื›ื•ืช ืžืจื—ื™ืงื•ืช ืœื›ืช
04:31
about the limits of science,
105
271260
2000
ืขืœ ื’ื‘ื•ืœื•ืช ื”ืžื“ืข,
04:33
about predictability and controllability
106
273260
2000
ืขืœ ื™ื›ื•ืœืช ื—ื™ื–ื•ื™ ื•ื™ื›ื•ืœืช ื‘ืงืจื”
04:35
of things like biological processes or economies,
107
275260
3000
ืฉืœ ื“ื‘ืจื™ื ื›ืžื• ืชื”ืœื™ื›ื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื ืื• ื›ืœื›ืœื•ืช,
04:38
about intelligence in the universe,
108
278260
2000
ืขืœ ืชื‘ื•ื ื” ื‘ื™ืงื•ื,
04:40
about questions like free will
109
280260
2000
ืขืœ ืฉืืœื•ืช ื›ืžื• ืจืฆื•ืŸ ื—ื•ืคืฉื™
04:42
and about creating technology.
110
282260
3000
ื•ืขืœ ื™ืฆื™ืจืช ื˜ื›ื ื•ืœื•ื’ื™ื”.
04:45
You know, in working on this science for many years,
111
285260
2000
ืืชื ื™ื•ื“ืขื™ื, ื‘ื–ืžืŸ ืฉืขื‘ื“ืชื™ ืขืœ ื”ืžื“ืข ื”ื–ื” ื‘ืžืฉืš ื”ืจื‘ื” ืฉื ื™ื
04:47
I kept wondering,
112
287260
2000
ื›ืœ ื”ื–ืžืŸ ืชื”ื™ืชื™
04:49
"What will be its first killer app?"
113
289260
2000
"ืžื” ืชื”ื™ื” "ื”ืืคืœื™ืงืฆื™ื” ื”ืžื•ืฆืœื—ืช" ื”ืจืืฉื•ื ื” ืฉืœื•?"
04:51
Well, ever since I was a kid,
114
291260
2000
ื•ื‘ื›ืŸ, ืžืื– ืฉื”ื™ื™ืชื™ ื™ืœื“
04:53
I'd been thinking about systematizing knowledge
115
293260
2000
ื—ืฉื‘ืชื™ ืขืœ ื›ื™ืฆื“ ืœื”ืคื•ืš ื™ื“ืข ืœืฉื™ื˜ืชื™
04:55
and somehow making it computable.
116
295260
2000
ื•ืื™ืš ืฉื”ื•ื ืœื”ื•ืคื›ื• ืœื‘ืจ ื—ื™ืฉื•ื‘.
04:57
People like Leibniz had wondered about that too
117
297260
2000
ืื ืฉื™ื ื›ืžื• ืœื™ื™ื‘ื ื™ืฅ ื’ื ืชื”ื• ืขืœ ื›ืš
04:59
300 years earlier.
118
299260
2000
300 ืฉื ื” ืงื•ื“ื ืœื›ืŸ.
05:01
But I'd always assumed that to make progress,
119
301260
2000
ืืš ืชืžื™ื“ ื”ื ื—ืชื™ ื›ื™ ื›ื“ื™ ืœื”ืชืงื“ื
05:03
I'd essentially have to replicate a whole brain.
120
303260
3000
ืขืงืจื•ื ื™ืช ื”ื™ื™ืชื™ ื—ื™ื™ื‘ ืœืฉื›ืคืœ ืžื•ื— ืฉืœื.
05:06
Well, then I got to thinking:
121
306260
2000
ื•ื‘ื›ืŸ, ืื– ื”ืชื—ืœืชื™ ืœื—ืฉื•ื‘:
05:08
This scientific paradigm of mine suggests something different --
122
308260
3000
ื”ืคืจื“ื™ื’ืžื” ื”ืžื“ืขื™ืช ื”ื–ืืช ืฉืœื™ ืžืฆื™ืขื” ืžืฉื”ื• ืฉื•ื ื”.
05:11
and, by the way, I've now got
123
311260
2000
ื•ื“ืจืš ืื’ื‘, ื™ืฉ ืœื™ ื›ืจื’ืข
05:13
huge computation capabilities in Mathematica,
124
313260
3000
ื™ื›ื•ืœื•ืช ื—ื™ืฉื•ื‘ื™ื•ืช ืื“ื™ืจื•ืช ื‘-Mathematica,
05:16
and I'm a CEO with some worldly resources
125
316260
3000
ื•ืื ื™ ืžื ื›"ืœ ืขื ื“ื™ ืžืฉืื‘ื™ื
05:19
to do large, seemingly crazy, projects --
126
319260
3000
ืœื‘ืฆืข ืคืจื•ื™ื™ืงื˜ื™ื ื’ื“ื•ืœื™ื ื•ืœื›ืื•ืจื” ืžื˜ื•ืจืคื™ื.
05:22
So I decided to just try to see
127
322260
2000
ืื– ื”ื—ืœื˜ืชื™ ืคืฉื•ื˜ ืœื ืกื•ืช ื•ืœืจืื•ืช
05:24
how much of the systematic knowledge that's out there in the world
128
324260
3000
ื›ืžื” ืžืชื•ืš ื”ื™ื“ืข ื”ืฉื™ื˜ืชื™ ืฉืงื™ื™ื ื‘ืขื•ืœื
05:27
we could make computable.
129
327260
2000
ื ื™ืชืŸ ืœืขืฉื•ืช ื‘ืจ ื—ื™ืฉื•ื‘.
05:29
So, it's been a big, very complex project,
130
329260
2000
ื•ื‘ื›ืŸ, ื–ื” ื”ื™ื” ืคืจื•ื™ืงื˜ ื’ื“ื•ืœ ื•ืžืื“ ืžื•ืจื›ื‘
05:31
which I was not sure was going to work at all.
131
331260
3000
ืืฉืจ ืœื ื”ื™ื™ืชื™ ื‘ื˜ื•ื— ืฉื‘ื›ืœืœ ื™ืขื‘ื•ื“.
05:34
But I'm happy to say it's actually going really well.
132
334260
3000
ืืš ืื ื™ ืฉืžื— ืœื‘ืฉืจ ื›ื™ ื”ื•ื ื“ื•ื•ืงื ื”ื•ืœืš ืœื ืจืข.
05:37
And last year we were able
133
337260
2000
ื•ื‘ืฉื ื” ืฉืขื‘ืจื” ื”ืฆืœื—ื ื•
05:39
to release the first website version
134
339260
2000
ืœืฉื—ืจืจ ื’ืจืกื” ืจืืฉื•ื ื” ืฉืœ ืืชืจ ื”ืื™ื ื˜ืจื ื˜
05:41
of Wolfram Alpha.
135
341260
2000
ืฉืœ ื•ื•ืœืคืจื ืืœืคื.
05:43
Its purpose is to be a serious knowledge engine
136
343260
3000
ืžื˜ืจืชื• ื”ื•ื ืœื”ื•ื•ืช ืžื ื•ืข ื™ื“ืข ืจืฆื™ื ื™
05:46
that computes answers to questions.
137
346260
3000
ืืฉืจ ืžื—ืฉื‘ ืชืฉื•ื‘ื•ืช ืœืฉืืœื•ืช.
05:49
So let's give it a try.
138
349260
2000
ืื– ื‘ื•ืื• ื•ื ื ืกื” ืื•ืชื•.
05:51
Let's start off with something really easy.
139
351260
2000
ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ืžืฉื”ื• ืžืžืฉ ืงืœ.
05:53
Hope for the best.
140
353260
2000
ื‘ื•ืื• ื ืงื•ื•ื” ืœื˜ื•ื‘.
05:55
Very good. Okay.
141
355260
2000
ื˜ื•ื‘ ืžืื“. ืื•ืงื™ื™.
05:57
So far so good.
142
357260
2000
ืขื“ ืขื›ืฉื™ื• ื”ื›ืœ ื˜ื•ื‘.
05:59
(Laughter)
143
359260
3000
(ืฆื—ื•ืง)
06:02
Let's try something a little bit harder.
144
362260
3000
ื‘ื•ืื• ื ื ืกื” ืžืฉื”ื• ืงืฆืช ื™ื•ืชืจ ืงืฉื”.
06:05
Let's do
145
365260
2000
ื‘ื•ื ื ื’ื™ื“...
06:07
some mathy thing,
146
367260
3000
ื”ื‘ื” ื ืขืฉื” ืงืฆืช ื“ื‘ืจื™ื ืžืชืžื˜ื™ื™ื
06:10
and with luck it'll work out the answer
147
370260
3000
ื•ืขื ืงืฆืช ืžื–ืœ ื–ื” ื™ื—ืฉื‘ ืืช ื”ืชืฉื•ื‘ื”
06:13
and try and tell us some interesting things
148
373260
2000
ื•ื™ื ืกื” ืœื•ืžืจ ืœื ื• ื›ืžื” ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื -
06:15
things about related math.
149
375260
2000
ื ื•ืฉืื™ื ืžืชืžื˜ื™ื™ื ืงืฉื•ืจื™ื.
06:17
We could ask it something about the real world.
150
377260
3000
ืื ื• ื™ื›ื•ืœื™ื ืœืฉืื•ืœ ืื•ืชื• ืžืฉื”ื• ืขืœ ื”ืขื•ืœื ื”ืืžื™ืชื™.
06:20
Let's say -- I don't know --
151
380260
2000
ื‘ื•ืื• ื ืืžืจ -- ืœื ื™ื•ื“ืข --
06:22
what's the GDP of Spain?
152
382260
3000
ืžื”ื• ื”ืชืœ"ื’ ืฉืœ ืกืคืจื“?
06:25
And it should be able to tell us that.
153
385260
2000
ื•ื–ื” ืืžื•ืจ ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื•ืžืจ ืœื ื• ื–ืืช.
06:27
Now we could compute something related to this,
154
387260
2000
ื›ืขืช ืื ื• ื™ื›ื•ืœื™ื ืœื—ืฉื‘ ืžืฉื”ื• ืฉืงืฉื•ืจ ืœื–ื”,
06:29
let's say ... the GDP of Spain
155
389260
2000
ื‘ื•ืื• ื ืืžืจ ื”ืชืœ"ื’ ืฉืœ ืกืคืจื“
06:31
divided by, I don't know,
156
391260
2000
ืžื—ื•ืœืง ื‘-ืœื ื™ื•ื“ืข-
06:33
the -- hmmm ...
157
393260
2000
ื”-ื”ืžืžืž...
06:35
let's say the revenue of Microsoft.
158
395260
2000
ื‘ื•ืื• ื ืืžืจ ื”ื”ื›ื ืกื•ืช ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜.
06:37
(Laughter)
159
397260
2000
.
06:39
The idea is that we can just type this in,
160
399260
2000
ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉืื ื• ืคืฉื•ื˜ ื™ื›ื•ืœื™ื ืœื”ืงืœื™ื“ ืืช ื–ื”,
06:41
this kind of question in, however we think of it.
161
401260
3000
ืžื™ืŸ ืฉืืœื” ื›ื–ืืช ื‘ื›ืœ ื“ืจืš ืฉืื ื• ื—ื•ืฉื‘ื™ื ืขืœื™ื”.
06:44
So let's try asking a question,
162
404260
2000
ืื– ื”ื‘ื” ื ื ืกื” ืœืฉืื•ืœ ืฉืืœื”,
06:46
like a health related question.
163
406260
2000
ื›ืžื• ืฉืืœื” ื‘ื ื•ืฉื ื‘ืจื™ืื•ืช.
06:48
So let's say we have a lab finding that ...
164
408260
3000
ืื– ื‘ื•ืื• ื ืืžืจ ืฉื™ืฉ ืœื ื• ืชื•ืฆืืช ืžืขื‘ื“ื” ืฉืื•ืžืจืช
06:51
you know, we have an LDL level of 140
165
411260
2000
ืฉืืชื ื™ื•ื“ืขื™ื -- ื™ืฉ ืœื ื• LDL ื‘ืจืžื” ืฉืœ 140
06:53
for a male aged 50.
166
413260
3000
ืืฆืœ ื’ื‘ืจ ื‘ื’ื™ืœ 50.
06:56
So let's type that in, and now Wolfram Alpha
167
416260
2000
ืื– ื‘ื•ืื• ื ืงืœื™ื“ ืืช ื–ื”, ื•ื›ืขืช ื•ื•ืœืคืจื ืืœืคื
06:58
will go and use available public health data
168
418260
2000
ื™ืœืš ื•ื™ืฉืชืžืฉ ื‘ื ืชื•ื ื™ ื‘ืจื™ืื•ืช ื”ืฆื™ื‘ื•ืจ ืฉืงื™ื™ืžื™ื
07:00
and try and figure out
169
420260
2000
ื•ื™ื ืกื” ืœื’ืœื•ืช
07:02
what part of the population that corresponds to and so on.
170
422260
3000
ืœืื™ื–ื” ื—ืœืง ืžื”ืื•ื›ืœื•ืกื™ื” ื–ื” ืžืชืื™ื ื•ื›ื•'.
07:05
Or let's try asking about, I don't know,
171
425260
3000
ืื• ื”ื‘ื” ื ื ืกื” ืœืฉืื•ืœ ืขืœ, ืœื ื™ื•ื“ืข,
07:08
the International Space Station.
172
428260
2000
ืชื—ื ืช ื”ื—ืœืœ ื”ื‘ื™ื ืœืื•ืžื™ืช.
07:10
And what's happening here is that
173
430260
2000
ื•ืžื” ืฉืงื•ืจื” ื›ืืŸ ื”ื•ื
07:12
Wolfram Alpha is not just looking up something;
174
432260
2000
ืฉื•ื•ืœืคืจื ืืœืคื ืื™ื ื• ืจืง ืžื—ืคืฉ ืžืฉื”ื•;
07:14
it's computing, in real time,
175
434260
3000
ื”ื•ื ืžื—ืฉื‘, ื‘ื–ืžืŸ ืืžืช,
07:17
where the International Space Station is right now at this moment,
176
437260
3000
ื”ื™ื›ืŸ ื ืžืฆืืช ืชื—ื ืช ื”ื—ืœืœ ื”ื‘ื™ื ืœืื•ืžื™ืช ื›ืขืช, ื‘ืจื’ืข ื–ื”,
07:20
how fast it's going, and so on.
177
440260
3000
ืžื” ืžื”ื™ืจื•ืชื” ื•ื›ื•'.
07:24
So Wolfram Alpha knows about lots and lots of kinds of things.
178
444260
3000
ืื ื›ืŸ, ื•ื•ืœืคืจื ืืœืคื ื™ื•ื“ืข ื”ืžื•ืŸ ื”ืžื•ืŸ ืžื™ื ื™ ื“ื‘ืจื™ื.
07:27
It's got, by now,
179
447260
2000
ืขื“ ืขืชื” ื”ื•ื ื”ืฉื™ื’
07:29
pretty good coverage of everything you might find
180
449260
2000
ื›ื™ืกื•ื™ ื“ื™ ื˜ื•ื‘ ืฉืœ ื›ืœ ืžื” ืฉื ื™ืชืŸ ืœืžืฆื•ื
07:31
in a standard reference library.
181
451260
3000
ื‘ืกืคืจื™ื” ืกื˜ื ื“ืจื˜ื™ืช ื•ื›ื•'.
07:34
But the goal is to go much further
182
454260
2000
ืืš ื”ืžื˜ืจื” ื”ื™ื ืœืœื›ืช ื”ืจื‘ื” ืžืขื‘ืจ ืœื›ืš
07:36
and, very broadly, to democratize
183
456260
3000
ื•ื‘ืื•ืคืŸ ื›ืœืœื™ ืœื”ื‘ื™ื ืœื”ืžื•ื ื™ื
07:39
all of this knowledge,
184
459260
3000
ืืช ื›ืœ ื”ื™ื“ืข ื”ื–ื”
07:42
and to try and be an authoritative
185
462260
2000
ื•ืœื ืกื•ืช ืœื”ื•ื•ืช ืžืงื•ืจ ืžื”ื™ืžืŸ
07:44
source in all areas.
186
464260
2000
ื‘ื›ืœ ื”ืชื—ื•ืžื™ื,
07:46
To be able to compute answers to specific questions that people have,
187
466260
3000
ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื—ืฉื‘ ืชืฉื•ื‘ื•ืช ืœืฉืืœื•ืช ืกืคืฆื™ืคื™ื•ืช ืฉื™ืฉ ืœืื ืฉื™ื,
07:49
not by searching what other people
188
469260
2000
ืœื ืขืœ ื™ื“ื™ ื—ื™ืคื•ืฉ ืžื” ืฉืื—ืจื™ื
07:51
may have written down before,
189
471260
2000
ืื•ืœื™ ื›ืชื‘ื• ืงื•ื“ื,
07:53
but by using built in knowledge
190
473260
2000
ืืœื ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ื™ื“ืข ืžื•ื‘ื ื”
07:55
to compute fresh new answers to specific questions.
191
475260
3000
ืขืœ ืžื ืช ืœื—ืฉื‘ ืชืฉื•ื‘ื•ืช ื—ื“ืฉื•ืช ื•ื˜ืจื™ื•ืช ืœืฉืืœื•ืช ืกืคืฆื™ืคื™ื•ืช.
07:58
Now, of course, Wolfram Alpha
192
478260
2000
ื›ืžื•ื‘ืŸ ืฉื•ื•ืœืคืจื ืืœืคื
08:00
is a monumentally huge, long-term project
193
480260
2000
ื”ื•ื ืคืจื•ื™ืงื˜ ืขื ืง ื•ืืจื•ืš ื˜ื•ื•ื—
08:02
with lots and lots of challenges.
194
482260
2000
ืขื ื”ืžื•ืŸ ืืชื’ืจื™ื.
08:04
For a start, one has to curate a zillion
195
484260
3000
ืจืืฉื™ืช, ืฆืจื™ืš ืœื’ืฉืช ืœืื™ืŸ ืกื•ืฃ
08:07
different sources of facts and data,
196
487260
3000
ืžืงื•ืจื•ืช ืฉื•ื ื™ื ืฉืœ ืขื•ื‘ื“ื•ืช ื•ื ืชื•ื ื™ื
08:10
and we built quite a pipeline of Mathematica automation
197
490260
3000
ื•ื‘ื ื™ื ื• ื—ืชื™ื›ืช ืคื™ื™ืคืœื™ื™ืŸ ืฉืœ ืื•ื˜ื•ืžืฆื™ื” ืฉืœ Mathematica
08:13
and human domain experts for doing this.
198
493260
3000
ื•ืžื•ืžื—ื™ื ืื ื•ืฉื™ื™ื ืœืฆื•ืจืš ื–ื”.
08:16
But that's just the beginning.
199
496260
2000
ืืš ื–ื•ื”ื™ ืจืง ื”ื”ืชื—ืœื”.
08:18
Given raw facts or data
200
498260
2000
ื‘ื”ื™ื ืชืŸ ืขื•ื‘ื“ื•ืช ืื• ื ืชื•ื ื™ื ื’ื•ืœืžื™ื™ื
08:20
to actually answer questions,
201
500260
2000
ืขืœ ืžื ืช ื‘ืืžืช ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช
08:22
one has to compute:
202
502260
2000
ืฆืจื™ืš ืœื—ืฉื‘,
08:24
one has to implement all those methods and models
203
504260
2000
ืฆืจื™ืš ืœืžืžืฉ ืืช ื›ืœ ื”ืฉื™ื˜ื•ืช ื•ื”ืžื•ื“ืœื™ื
08:26
and algorithms and so on
204
506260
2000
ื•ื”ืืœื’ื•ืจื™ืชืžื™ื ื”ืœืœื• ื•ื›ื•'
08:28
that science and other areas have built up over the centuries.
205
508260
3000
ืฉื”ืžื“ืข ื•ืฉืืจ ื”ืชื—ื•ืžื™ื ื‘ื ื• ืœืื•ืจืš ืžืื•ืช ื‘ืฉื ื™ื.
08:31
Well, even starting from Mathematica,
206
511260
3000
ื•ื‘ื›ืŸ, ืืคื™ืœื• ืื ืžืชื—ื™ืœื™ื ื‘-Mathematica
08:34
this is still a huge amount of work.
207
514260
2000
ื–ืืช ืขื“ื™ื™ืŸ ื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ืขื‘ื•ื“ื”.
08:36
So far, there are about 8 million lines
208
516260
2000
ื‘ื™ื ืชื™ื™ื, ื ื›ืชื‘ื• ื‘ืขืจืš 8 ืžืœื™ื•ืŸ ืฉื•ืจื•ืช
08:38
of Mathematica code in Wolfram Alpha
209
518260
2000
ืงื•ื“ ืฉืœ Mathematica ื‘ื•ื•ืœืคืจื ืืœืคื
08:40
built by experts from many, many different fields.
210
520260
3000
ืฉื ื‘ื ื• ืขืœ ื™ื“ื™ ืžื•ืžื—ื™ื ืžื”ืจื‘ื” ื”ืจื‘ื” ืชื—ื•ืžื™ื ืฉื•ื ื™ื.
08:43
Well, a crucial idea of Wolfram Alpha
211
523260
3000
ื•ื‘ื›ืŸ, ื”ืจืขื™ื•ืŸ ื”ืžืจื›ื–ื™ ืฉืœ ื•ื•ืœืคืจื ืืœืคื
08:46
is that you can just ask it questions
212
526260
2000
ื”ื•ื ืฉืืคืฉืจ ืคืฉื•ื˜ ืœืฉืื•ืœ ืื•ืชื• ืฉืืœื•ืช
08:48
using ordinary human language,
213
528260
3000
ืชื•ืš ืฉื™ืžื•ืฉ ื‘ืฉืคื” ืื ื•ืฉื™ืช ืจื’ื™ืœื”
08:51
which means that we've got to be able to take
214
531260
2000
ื›ืœื•ืžืจ ืื ื• ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืงื—ืช
08:53
all those strange utterances that people type into the input field
215
533260
3000
ืืช ื›ืœ ื”ื‘ื™ื˜ื•ื™ื™ื ื”ืžื•ื–ืจื™ื ืฉืื ืฉื™ื ืžืงืœื™ื“ื™ื ื‘ืฉื“ื” ื”ืงืœื˜
08:56
and understand them.
216
536260
2000
ื•ืœื”ื‘ื™ืŸ ืื•ืชื.
08:58
And I must say that I thought that step
217
538260
2000
ื•ืื ื™ ืžื•ื›ืจื— ืœื•ืžืจ ืฉืื ื™ ื—ืฉื‘ืชื™ ืฉืฆืขื“ ื–ื”
09:00
might just be plain impossible.
218
540260
3000
ื”ื•ื ืคืฉื•ื˜ ื‘ื‘ื—ื™ื ืช ื‘ืœืชื™ ืืคืฉืจื™.
09:04
Two big things happened:
219
544260
2000
ืงืจื• ืฉื ื™ ื“ื‘ืจื™ื ื’ื“ื•ืœื™ื.
09:06
First, a bunch of new ideas about linguistics
220
546260
3000
ืจืืฉื™ืช, ื›ืžื” ืจืขื™ื•ื ื•ืช ื—ื“ืฉื™ื ืขืœ ื‘ืœืฉื ื•ืช
09:09
that came from studying the computational universe;
221
549260
3000
ืฉื ื‘ืขื• ืžื—ืงืจ ื”ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™.
09:12
and second, the realization that having actual computable knowledge
222
552260
3000
ื•ืฉื ื™ืช, ื”ื”ื›ืจื” ื›ื™ ืจื›ื™ืฉืช ื™ื“ืข ื‘ืจ ื—ื™ืฉื•ื‘
09:15
completely changes how one can
223
555260
2000
ืžืฉื ื” ืœื’ืžืจื™ ืืช ื”ื“ืจืš ื‘ื”
09:17
set about understanding language.
224
557260
3000
ื ื™ืชืŸ ืœื˜ืคืœ ื‘ื”ื‘ื ืช ืฉืคื”.
09:20
And, of course, now
225
560260
2000
ื•ื›ืžื•ื‘ืŸ, ื›ืขืช
09:22
with Wolfram Alpha actually out in the wild,
226
562260
2000
ื›ืฉื•ื•ืœืคืจื ืืœืคื ืžืฉื•ื—ืจืจ ืœื—ื•ืคืฉื™
09:24
we can learn from its actual usage.
227
564260
2000
ืื ื• ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืžื“ืจืš ื”ืฉื™ืžื•ืฉ ื”ืžืขืฉื™ืช ื‘ื•.
09:26
And, in fact, there's been
228
566260
2000
ื•ืœืžืขืฉื”, ื”ื™ื™ื ื• ืขื“ื™ื
09:28
an interesting coevolution that's been going on
229
568260
2000
ืœื”ืชืคืชื—ื•ืช ืžืงื‘ื™ืœื” ืฉืงืจืชื”
09:30
between Wolfram Alpha
230
570260
2000
ื‘ื™ืŸ ื•ื•ืœืคืจื ืืœืคื
09:32
and its human users,
231
572260
2000
ืœื‘ื™ืŸ ื”ืžืฉืชืžืฉื™ื ื”ืื ื•ืฉื™ื™ื ืฉืœื•.
09:34
and it's really encouraging.
232
574260
2000
ื•ื–ื” ืžืžืฉ ืžืขื•ื“ื“.
09:36
Right now, if we look at web queries,
233
576260
2000
ื‘ืจื’ืข ื–ื”, ืื ื ืกืชื›ืœ ืขืœ ืฉืื™ืœืชื•ืช ืื™ื ื˜ืจื ื˜
09:38
more than 80 percent of them get handled successfully the first time.
234
578260
3000
ื™ื•ืชืจ ืž-80 ืื—ื•ื– ืžื”ืŸ ืžื˜ื•ืคืœื•ืช ื‘ื”ืฆืœื—ื” ื‘ืคืขื ื”ืจืืฉื•ื ื”.
09:41
And if you look at things like the iPhone app,
235
581260
2000
ื•ืื ืžืกืชื›ืœื™ื ื‘ื“ื‘ืจื™ื ื›ืžื• ืืคืœื™ืงืฆื™ื•ืช ืื™ื™ืคื•ืŸ
09:43
the fraction is considerably larger.
236
583260
2000
ื”ื—ืœืง ื”ื™ื—ืกื™ ื”ื•ื ื’ื“ื•ืœ ืžืฉืžืขื•ืชื™ืช.
09:45
So, I'm pretty pleased with it all.
237
585260
2000
ืื– ืื ื™ ื“ื™ ืžืจื•ืฆื” ืขื ื›ืœ ื–ื”.
09:47
But, in many ways,
238
587260
2000
ืืš ื‘ื”ืจื‘ื” ืžื•ื‘ื ื™ื
09:49
we're still at the very beginning with Wolfram Alpha.
239
589260
3000
ืื ื• ืขื“ื™ื™ืŸ ื‘ืจืืฉื™ืช ื“ืจื›ื™ื ื• ืขื ื•ื•ืœืคืจื ืืœืคื.
09:52
I mean, everything is scaling up very nicely
240
592260
2000
ื›ื•ื•ื ืชื™, ื”ื›ืœ ื’ื“ืœ ื‘ืฆื•ืจื” ืžืื“ ื ื—ืžื“ื”.
09:54
and we're getting more confident.
241
594260
2000
ืื ื• ื”ื•ืœื›ื™ื ื•ืฆื•ื‘ืจื™ื ื‘ื˜ื—ื•ืŸ.
09:56
You can expect to see Wolfram Alpha technology
242
596260
2000
ื ื™ืชืŸ ืœืฆืคื•ืช ืฉื ืจืื” ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœ ื•ื•ืœืคืจื ืืœืคื
09:58
showing up in more and more places,
243
598260
2000
ืžื•ืคื™ืขื” ื‘ื™ื•ืชืจ ื•ื™ื•ืชืจ ืžืงื•ืžื•ืช
10:00
working both with this kind of public data, like on the website,
244
600260
3000
ืชื•ืš ื›ื“ื™ ืขื‘ื•ื“ื” ืขื ื ืชื•ื ื™ื ืฆื™ื‘ื•ืจื™ื™ื ื›ืžื• ืืœื” ืฉื‘ืืชืจ ื”ืื™ื ื˜ืจื ื˜
10:03
and with private knowledge
245
603260
2000
ื•ื’ื ืขื ื™ื“ืข ืคืจื˜ื™
10:05
for people and companies and so on.
246
605260
3000
ื‘ืฉื‘ื™ืœ ืื ืฉื™ื, ื—ื‘ืจื•ืช ื•ื›ื•'.
10:08
You know, I've realized that Wolfram Alpha actually gives one
247
608260
3000
ืืชื ื™ื•ื“ืขื™ื, ื”ื’ืขืชื™ ืœืžืกืงื ื” ืฉื•ื•ืœืคืจื ืืœืคื ืœืžืขืฉื” ื ื•ืชื ืช
10:11
a whole new kind of computing
248
611260
2000
ืžื™ืŸ ื™ื›ื•ืœืช ื—ื™ืฉื•ื‘ื™ืช ื—ื“ืฉื” ืœื’ืžืจื™
10:13
that one can call knowledge-based computing,
249
613260
2000
ืฉืืคืฉืจ ืœืงืจื•ื ืœื” ื—ื™ืฉื•ื‘ื™ื•ืช ืžื‘ื•ืกืกืช ื™ื“ืข
10:15
in which one's starting not just from raw computation,
250
615260
3000
ืฉื‘ื” ืžืชื—ื™ืœื™ื ืœื ืจืง ืžื—ื™ืฉื•ื‘ ื˜ื”ื•ืจ
10:18
but from a vast amount of built-in knowledge.
251
618260
3000
ืืœื ืžื›ืžื•ืช ืขืฆื•ืžื” ืฉืœ ื™ื“ืข ืžื•ื‘ื ื”.
10:21
And when one does that, one really changes
252
621260
2000
ื•ื›ืฉืขื•ืฉื™ื ื–ืืช ืœืžืขืฉื” ืžืฉื ื™ื
10:23
the economics of delivering computational things,
253
623260
3000
ืืช ื”ื›ืœื›ืœื” ืฉืœ ืืกืคืงืช ื“ื‘ืจื™ื ื—ื™ืฉื•ื‘ื™ื™ื
10:26
whether it's on the web or elsewhere.
254
626260
2000
ื‘ื™ืŸ ืื ื–ื” ื‘ืจืฉืช ืืŸ ื‘ื›ืœ ืžืงื•ื ืื—ืจ.
10:28
You know, we have a fairly interesting situation right now.
255
628260
3000
ืืชื ื™ื•ื“ืขื™ื, ื™ืฉ ืœื ื• ืžืฆื‘ ื“ื™ ืžืขื ื™ื™ืŸ ื›ืขืช.
10:31
On the one hand, we have Mathematica,
256
631260
2000
ืžื—ื“ ื’ื™ืกื ื™ืฉ ืœื ื• ืืช Mathematica
10:33
with its sort of precise, formal language
257
633260
3000
ืขื ืฉืคืชื” ื”ืจืฉืžื™ืช ื•ื”ืžื“ื•ื™ื™ืงืช
10:36
and a huge network
258
636260
2000
ื•ืจืฉืช ืขืฆื•ืžื”
10:38
of carefully designed capabilities
259
638260
2000
ืฉืœ ื™ื›ื•ืœื•ืช ืžืชื•ื›ื ื ื•ืช ื”ื™ื˜ื‘
10:40
able to get a lot done in just a few lines.
260
640260
3000
ืฉืžืกื•ื’ืœื•ืช ืœืขืฉื•ืช ื”ืจื‘ื” ื‘ื›ืžื” ืฉื•ืจื•ืช ืงื•ื“.
10:43
Let me show you a couple of examples here.
261
643260
3000
ื‘ื•ืื• ื ืจืื” ื›ืžื” ื“ื•ื’ืžืื•ืช.
10:47
So here's a trivial piece of Mathematica programming.
262
647260
3000
ืื– ื”ื ื” ืคื™ืกื” ื˜ืจื™ื•ื™ืืœื™ืช ืฉืœ ืชื›ื ื™ืช ื‘-Mathematica.
10:51
Here's something where we're sort of
263
651260
2000
ื”ื ื” ืžืฉื”ื• ืฉื‘ื• ืื ื• ื›ืื™ืœื•
10:53
integrating a bunch of different capabilities here.
264
653260
3000
ืžืฉืœื‘ื™ื ื›ืžื” ื™ื›ื•ืœื•ืช ืฉื•ื ื•ืช ื›ืืŸ.
10:56
Here we'll just create, in this line,
265
656260
3000
ื›ืืŸ ืื ื• ืคืฉื•ื˜ ื ื™ืฆื•ืจ ื‘ืฉื•ืจื” ื”ื–ืืช
10:59
a little user interface that allows us to
266
659260
3000
ืžืžืฉืง ืžืฉืชืžืฉ ืงื˜ืŸ ืฉืžืืคืฉืจืช ืœื ื•
11:02
do something fun there.
267
662260
2000
ืœืขืฉื•ืช ืžืฉื”ื• ื›ื™ืคื™ ื›ืืŸ.
11:05
If you go on, that's a slightly more complicated program
268
665260
2000
ืื ื ืžืฉื™ืš, ื–ื•ื”ื™ ืชื›ื ื™ืช ืžืขื˜ ื™ื•ืชืจ ืžื•ืจื›ื‘ืช
11:07
that's now doing all sorts of algorithmic things
269
667260
3000
ืฉื›ืขืช ืžื‘ืฆืขืช ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ืืœื’ื•ืจื™ืชืžื™ื™ื
11:10
and creating user interface and so on.
270
670260
2000
ื•ื™ื•ืฆืจืช ืžืžืฉืง ืžืฉืชืžืฉ ื•ื›ื•'.
11:12
But it's something that is very precise stuff.
271
672260
3000
ืื‘ืœ ื–ื” ืžืฉื”ื• ืฉื”ื•ื ืžืื“ ืžื“ื•ื™ืง.
11:15
It's a precise specification with a precise formal language
272
675260
3000
ื–ื”ื• ืืคื™ื•ืŸ ืžื“ื•ื™ืง ืขื ืฉืคื” ืžื“ื•ื™ื™ืงืช ื•ืจืฉืžื™ืช
11:18
that causes Mathematica to know what to do here.
273
678260
3000
ืฉื’ื•ืจืžืช ืœ-Mathematica ืœื“ืขืช ืžื” ืœืขืฉื•ืช ื›ืืŸ.
11:21
Then on the other hand, we have Wolfram Alpha,
274
681260
3000
ื•ืื–, ืžืื™ื“ืš ื’ื™ืกื ื™ืฉ ืœื ื• ืืช ื•ื•ืœืคืจื ืืœืคื
11:24
with all the messiness of the world
275
684260
2000
ืขื ื›ืœ ืื™ ื”ืกื“ืจ ืฉืœ ื”ืขื•ืœื
11:26
and human language and so on built into it.
276
686260
2000
ื•ืฉืคื” ืื ื•ืฉื™ืช ื•ื›ื•' ืžื•ื‘ื ื™ื ืœืชื•ื›ื”.
11:28
So what happens when you put these things together?
277
688260
3000
ืื– ืžื” ืงื•ืจื” ื›ืืฉืจ ืžื—ื‘ืจื™ื ืืช ืฉื ื™ ื”ื“ื‘ืจื™ื?
11:31
I think it's actually rather wonderful.
278
691260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืœืžืขืฉื” ื“ื™ ื ืคืœื.
11:33
With Wolfram Alpha inside Mathematica,
279
693260
2000
ืขื ื•ื•ืœืคืจื ืืœืคื ื‘ืชื•ืš Mathematica
11:35
you can, for example, make precise programs
280
695260
2000
ืืคืฉืจ ืœืžืฉืœ ืœื™ืฆื•ืจ ืชื›ื ื™ื•ืช ืžื“ื•ื™ื™ืงื•ืช
11:37
that call on real world data.
281
697260
2000
ืฉืžืฉืชืžืฉื•ืช ื‘ื ืชื•ื ื™ื ืžื”ืขื•ืœื ื”ืืžื™ืชื™.
11:39
Here's a real simple example.
282
699260
2000
ื”ื ื” ื“ื•ื’ืžื” ืžืžืฉ ืคืฉื•ื˜ื”.
11:44
You can also just sort of give vague input
283
704260
3000
ืืคืฉืจ ื’ื ืคืฉื•ื˜ ืœืชืช ืงืœื˜ ืžืขื•ืจืคืœ
11:47
and then try and have Wolfram Alpha
284
707260
2000
ื•ืื– ืœืชืช ืœื•ื•ืœืคืจื ืืœืคื
11:49
figure out what you're talking about.
285
709260
2000
ืœื’ืœื•ืช ืขืœ ืžื” ืžื“ื•ื‘ืจ.
11:51
Let's try this here.
286
711260
2000
ื‘ื•ืื• ื ื ืกื” ื–ืืช ื›ืืŸ.
11:53
But actually I think the most exciting thing about this
287
713260
3000
ืืš ืœืžืขืฉื” ืื ื™ ื—ื•ืฉื‘ ืฉื”ื“ื‘ืจ ื”ืžืœื”ื™ื‘ ื‘ื™ื•ืชืจ ื‘ื”ืงืฉืจ ื”ื–ื”
11:56
is that it really gives one the chance
288
716260
2000
ื”ื•ื ืฉื–ื” ื‘ืืžืช ื ื•ืชืŸ ืกื™ื›ื•ื™
11:58
to democratize programming.
289
718260
3000
ืœื”ื‘ื™ื ืืช ื”ืชื™ื›ื ื•ืช ืœื”ืžื•ื ื™ื.
12:01
I mean, anyone will be able to say what they want in plain language.
290
721260
3000
ื›ืœื•ืžืจ ื›ืœ ืื—ื“ ื™ื•ื›ืœ ืคืฉื•ื˜ ืœื•ืžืจ ืžื” ื”ื ืจื•ืฆื™ื ื‘ืฉืคื” ืจื’ื™ืœื”
12:04
Then, the idea is that Wolfram Alpha will be able to figure out
291
724260
3000
ื•ืื– ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉื•ื•ืœืคืจื ืืœืคื ื™ื•ื›ืœ ืœื’ืœื•ืช
12:07
what precise pieces of code
292
727260
2000
ืื™ืœื• ืคื™ืกื•ืช ืงื•ื“ ื‘ื“ื™ื•ืง
12:09
can do what they're asking for
293
729260
2000
ืชื”ื™ื ื” ืžืกื•ื’ืœื•ืช ืœื‘ืฆืข ืืช ืžื” ืฉื”ื ืžื‘ืงืฉื™ื,
12:11
and then show them examples that will let them pick what they need
294
731260
3000
ื•ืื– ืœื”ืจืื•ืช ืœื”ื ื“ื•ื’ืžืื•ืช ืฉืชืืคืฉืจื ื” ืœื”ื ืœื‘ื—ื•ืจ ืืช ืžื” ืฉื”ื ืฆืจื™ื›ื™ื
12:14
to build up bigger and bigger, precise programs.
295
734260
3000
ื›ื“ื™ ืœื‘ื ื•ืช ืชื›ื ื™ื•ืช ืžื“ื•ื™ืงื•ืช ื”ื•ืœื›ื•ืช ื•ื’ื“ืœื•ืช.
12:17
So, sometimes, Wolfram Alpha
296
737260
2000
ืื– ืœืขื™ืชื™ื ื•ื•ืœืคืจื ืืœืคื
12:19
will be able to do the whole thing immediately
297
739260
2000
ื™ื•ื›ืœ ืœืขืฉื•ืช ืืช ื›ืœ ื–ื” ืžื™ื“
12:21
and just give back a whole big program that you can then compute with.
298
741260
3000
ื•ืคืฉื•ื˜ ืœื”ื—ื–ื™ืจ ืชื›ื ื™ืช ืื—ืช ื’ื“ื•ืœื” ืฉืื™ืชื” ื ื™ืชืŸ ืœื—ืฉื‘.
12:24
Here's a big website
299
744260
2000
ืื– ื”ื ื” ืืชืจ ืื™ื ื˜ืจื ื˜ ื’ื“ื•ืœ
12:26
where we've been collecting lots of educational
300
746260
3000
ืฉื‘ื• ืืกืคื ื• ื”ืžื•ืŸ ื”ื“ื’ืžื•ืช ื—ื™ื ื•ื›ื™ื•ืช
12:29
and other demonstrations about lots of kinds of things.
301
749260
3000
ื•ืื—ืจื•ืช ืขืœ ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื:
12:32
I'll show you one example here.
302
752260
3000
ืื–, ืœื ื™ื•ื“ืข, ืื•ืœื™ ืืจืื” ืœื›ื ื›ืืŸ ื“ื•ื’ืžื” ืื—ืช.
12:36
This is just an example of one of these computable documents.
303
756260
3000
ื–ื•ื”ื™ ืจืง ื“ื•ื’ืžื” ืฉืœ ืื—ื“ ื”ืžืกืžื›ื™ื ื‘ืจื™ ื”ื—ื™ืฉื•ื‘ ื”ืœืœื•.
12:39
This is probably a fairly small
304
759260
2000
ื–ื”ื• ื›ื ืจืื” ืคื™ืกื” ื™ื—ืกื™ืช ืงื˜ื ื”
12:41
piece of Mathematica code
305
761260
2000
ืฉืœ ืงื•ื“ ื‘-Mathematica
12:43
that's able to be run here.
306
763260
2000
ืฉืืคืฉืจ ืœื”ืจื™ืฅ ื›ืืŸ.
12:47
Okay. Let's zoom out again.
307
767260
3000
ืื•ืงื™ื™. ื‘ื•ื ื ืขืฉื” ื–ื•ื-ืืื•ื˜ ืฉื•ื‘.
12:50
So, given our new kind of science,
308
770260
2000
ืื– ื‘ื”ื™ื ืชืŸ ื”ืžื“ืข ืžื”ืกื•ื’ ื”ื—ื“ืฉ ืฉืœื ื•
12:52
is there a general way to use it to make technology?
309
772260
3000
ื”ืื ื™ืฉ ื“ืจืš ื›ืœืœื™ืช ืœื”ืฉืชืžืฉ ื‘ื” ืœื™ื™ืฆื•ืจ ื˜ื›ื ื•ืœื•ื’ื™ื”?
12:55
So, with physical materials,
310
775260
2000
ื•ื‘ื›ืŸ, ื‘ื”ืงืฉืจ ืœื—ื•ืžืจื™ื ืคื™ืกื™ื™ื
12:57
we're used to going around the world
311
777260
2000
ืื ื—ื ื• ืจื’ื™ืœื™ื ืœื”ืกืชื•ื‘ื‘ ื‘ืขื•ืœื
12:59
and discovering that particular materials
312
779260
2000
ื•ืœื’ืœื•ืช ืฉื—ื•ืžืจื™ื ืžืกื•ื™ื™ืžื™ื
13:01
are useful for particular
313
781260
2000
ืฉื™ืžื•ืฉื™ื™ื ืœืžื˜ืจื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
13:03
technological purposes.
314
783260
2000
ืžืกื•ื™ื™ืžื•ืช ื•ื›ื•'.
13:05
Well, it turns out we can do very much the same kind of thing
315
785260
2000
ื•ื‘ื›ืŸ, ืžืชื‘ืจืจ ืฉืื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื“ื‘ืจ ืžืื“ ื“ื•ืžื”
13:07
in the computational universe.
316
787260
2000
ื‘ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™.
13:09
There's an inexhaustible supply of programs out there.
317
789260
3000
ื™ืฉื ื• ื”ื™ืฆืข ื‘ืœืชื™ ื ื“ืœื” ืฉืœ ืชื›ื ื™ื•ืช ื‘ืขื•ืœื.
13:12
The challenge is to see how to
318
792260
2000
ื”ืืชื’ืจ ื”ื•ื ืœืจืื•ืช ื›ื™ืฆื“
13:14
harness them for human purposes.
319
794260
2000
ืœืจืชื•ื ืื•ืชืŸ ืœืžื˜ืจื•ืช ืฉืœ ื”ืื ื•ืฉื•ืช.
13:16
Something like Rule 30, for example,
320
796260
2000
ืžืฉื”ื• ื›ืžื• ื›ืœืœ 30 ืœื“ื•ื’ืžื”
13:18
turns out to be a really good randomness generator.
321
798260
2000
ืžืชื‘ืจืจ ื›ืžื—ื•ืœืœ ืžืžืฉ ื˜ื•ื‘ ืฉืœ ืžืกืคืจื™ื ืืงืจืื™ื™ื.
13:20
Other simple programs are good models
322
800260
2000
ืชื›ื ื™ื•ืช ืคืฉื•ื˜ื•ืช ืื—ืจื•ืช ื”ืŸ ืžื•ื“ืœื™ื ื˜ื•ื‘ื™ื
13:22
for processes in the natural or social world.
323
802260
3000
ืœืชื”ืœื™ื›ื™ื ื‘ืขื•ืœื ื”ื˜ื‘ืขื™ ืื• ื”ื—ื‘ืจืชื™.
13:25
And, for example, Wolfram Alpha and Mathematica
324
805260
2000
ื•ืœื“ื•ื’ืžื” ื•ื•ืœืคืจื ืืœืคื ื•-Mathematica
13:27
are actually now full of algorithms
325
807260
2000
ื”ื ื›ื™ื•ื ืžืœืื™ื ื‘ืืœื’ื•ืจื™ืชืžื™ื
13:29
that we discovered by searching the computational universe.
326
809260
3000
ืื•ืชื ื’ื™ืœื™ื ื• ืขืœ ื™ื“ื™ ืกืจื™ืงืช ื”ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™.
13:33
And, for example, this -- if we go back here --
327
813260
3000
ื•ืœื“ื•ื’ืžื” ื–ื” -- ืื ื• ื—ื•ื–ืจื™ื ื›ืืŸ ืœืื—ื•ืจ --
13:37
this has become surprisingly popular
328
817260
2000
ื–ื”, ื‘ืื•ืคืŸ ืžืคืชื™ืข, ื ื”ื™ื” ืคื•ืคื•ืœืจื™
13:39
among composers
329
819260
2000
ื‘ืงืจื‘ ืžืœื—ื™ื ื™ื
13:41
finding musical forms by searching the computational universe.
330
821260
3000
ืฉืžืฆืื• ืฆื•ืจื•ืช ืžื•ืกื™ืงืœื™ื•ืช ืชื•ืš ื›ื“ื™ ื—ื™ืคื•ืฉ ื‘ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™.
13:45
In a sense, we can use the computational universe
331
825260
2000
ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื ืื ื• ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™
13:47
to get mass customized creativity.
332
827260
3000
ืœื”ืฉื’ืช ื™ืฆื™ืจืชื™ื•ืช ื”ืžื•ืชืืžืช ืœื”ืžื•ื ื™ื.
13:50
I'm hoping we can, for example,
333
830260
2000
ืื ื™ ืžืงื•ื•ื” ืฉืื ื• ื ื•ื›ืœ ืœืžืฉืœ
13:52
use that even to get Wolfram Alpha
334
832260
2000
ืœื”ืฉืชืžืฉ ื‘ื›ืš ืืคื™ืœื• ื›ื“ื™ ืœื’ืจื•ื ืœื•ื•ืœืคืจื ืืœืคื
13:54
to routinely do invention and discovery on the fly,
335
834260
3000
ืœืขืฉื•ืช ื“ืจืš ืงื‘ืข ื”ืžืฆืื•ืช ื•ื’ื™ืœื•ื™ื™ื ืชื•ืš ื›ื“ื™ ืขื‘ื•ื“ื”
13:57
and to find all sorts of wonderful stuff
336
837260
2000
ื•ืœืžืฆื•ื ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ื ืคืœืื™ื
13:59
that no engineer
337
839260
2000
ืฉืืฃ ืžื”ื ื“ืก
14:01
and no process of incremental evolution would ever come up with.
338
841260
3000
ื•ืืฃ ืชื”ืœื™ืš ืฉืœ ืื‘ื•ืœื•ืฆื™ื” ื”ื“ืจื’ืชื™ืช ืœืขื•ืœื ืœื ื™ื•ื›ืœื• ืœื”ืฉื™ื’.
14:05
Well, so, that leads to kind of an ultimate question:
339
845260
3000
ื•ื‘ื›ืŸ, ื–ื” ืžื•ื‘ื™ืœ ืœืžื™ืŸ ืฉืืœื” ืื•ืœื˜ื™ืžื˜ื™ื‘ื™ืช.
14:08
Could it be that someplace out there in the computational universe
340
848260
3000
ื”ืื ื™ื™ืชื›ืŸ ืฉืื™ ืฉื ื‘ืžืจื—ื‘ื™ ื”ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™
14:11
we might find our physical universe?
341
851260
3000
ื ื•ื›ืœ ืœืžืฆื•ื ืืช ื”ื™ืงื•ื ื”ืคื™ืกื™?
14:14
Perhaps there's even some quite simple rule,
342
854260
2000
ื™ื™ืชื›ืŸ ืฉื™ืฉื ื• ืืคื™ืœื• ื›ืœืœ ื“ื™ ืคืฉื•ื˜,
14:16
some simple program for our universe.
343
856260
3000
ืชื›ื ื™ืช ื“ื™ ืคืฉื•ื˜ื” ืœื™ืงื•ื ืฉืœื ื•.
14:19
Well, the history of physics would have us believe
344
859260
2000
ื•ื‘ื›ืŸ, ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื”ืคื™ืกื™ืงื” ืื•ืœื™ ื’ืจืžื” ืœื ื• ืœื”ืืžื™ืŸ
14:21
that the rule for the universe must be pretty complicated.
345
861260
3000
ื›ื™ ื”ื›ืœืœ ืœื™ืงื•ื ื”ื•ื ืžืฉื”ื• ืžืื“ ืžื•ืจื›ื‘.
14:24
But in the computational universe,
346
864260
2000
ืื‘ืœ ื‘ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™
14:26
we've now seen how rules that are incredibly simple
347
866260
3000
ืจืื™ื ื• ื”ืจื’ืข ื›ื™ืฆื“ ื›ืœืœื™ื ืคืฉื•ื˜ื™ื ืœื”ืคืœื™ื
14:29
can produce incredibly rich and complex behavior.
348
869260
3000
ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ื”ืชื ื”ื’ื•ืช ืขืฉื™ืจื” ื•ืžื•ืจื›ื‘ืช ืœื”ืคืœื™ื.
14:32
So could that be what's going on with our whole universe?
349
872260
3000
ืื– ื”ืื ื™ื™ืชื›ืŸ ืฉื–ื” ืžื” ืฉืงื•ืจื” ืขื ื›ืœ ื”ื™ืงื•ื ืฉืœื ื•?
14:36
If the rules for the universe are simple,
350
876260
2000
ืื ื”ื›ืœืœื™ื ืฉืœ ื”ื™ืงื•ื ืคืฉื•ื˜ื™ื
14:38
it's kind of inevitable that they have to be
351
878260
2000
ืื–ื™ ื–ื” ื‘ืœืชื™ ื ืžื ืข ืฉื”ื ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช
14:40
very abstract and very low level;
352
880260
2000
ืžืื“ ืื‘ืกื˜ืจืงื˜ื™ื™ื ื•ืžืื“ ื‘ืกื™ืกื™ื™ื,
14:42
operating, for example, far below
353
882260
2000
ืฉืคื•ืขืœื™ื ืœืžืฉืœ ื”ืจื‘ื” ืžืชื—ืช
14:44
the level of space or time,
354
884260
2000
ืœืจืžืช ืžืจื—ื‘ ืื• ื–ืžืŸ -
14:46
which makes it hard to represent things.
355
886260
2000
ื“ื‘ืจ ืฉืžืงืฉื” ืขืœ ื™ืฆื•ื’ ื“ื‘ืจื™ื.
14:48
But in at least a large class of cases,
356
888260
2000
ืืš ืœืคื—ื•ืช ื‘ืงื‘ื•ืฆื” ื’ื“ื•ืœื” ืฉืœ ืžืงืจื™ื
14:50
one can think of the universe as being
357
890260
2000
ื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœ ื”ื™ืงื•ื ื›ืžืฉื”ื•
14:52
like some kind of network,
358
892260
2000
ื›ืžื• ืžื™ืŸ ืจืฉืช
14:54
which, when it gets big enough,
359
894260
2000
ืืฉืจ ื›ืฉื”ื™ื ื’ื“ืœื” ื“ื™ ื”ืฆื•ืจืš
14:56
behaves like continuous space
360
896260
2000
ื”ื™ื ืžืชื—ื™ืœื” ืœื”ืชื ื”ื’ ื›ืžื• ืžืจื—ื‘ ืจืฆื™ืฃ
14:58
in much the same way as having lots of molecules
361
898260
2000
ื‘ืฆื•ืจื” ืžืื“ ื“ื•ืžื” ืœืžื•ืœืงื•ืœื•ืช ืฉื›ืฉืžืกืคืจืŸ ืจื‘
15:00
can behave like a continuous fluid.
362
900260
2000
ื”ืŸ ื™ื›ื•ืœื•ืช ืœื”ืชื ื”ื’ ื›ืžื• ื ื•ื–ืœ ืจืฆื™ืฃ.
15:02
Well, then the universe has to evolve by applying
363
902260
3000
ื•ืื ื›ืš, ืื– ื”ื™ืงื•ื ื—ื™ื™ื‘ ืœื”ืชืคืชื— ืขืœ ื™ื“ื™ ื”ืคืขืœืช
15:05
little rules that progressively update this network.
364
905260
3000
ื›ืœืœื™ื ืงื˜ื ื™ื ืืฉืจ ื‘ื”ื“ืจื’ื” ืžืขื“ื›ื ื™ื ืจืฉืช ื–ื•.
15:08
And each possible rule, in a sense,
365
908260
2000
ื•ื›ืœ ื›ืœืœ ืืคืฉืจื™, ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื,
15:10
corresponds to a candidate universe.
366
910260
2000
ืžืชืื™ื ืœื”ื™ื•ืช ืžื•ืขืžื“ ืœื™ืงื•ื.
15:12
Actually, I haven't shown these before,
367
912260
3000
ืœืžืขืŸ ื”ืืžืช ืœื ื”ืจืื™ืชื™ ืืช ืืœื” ืœืคื ื™ ื›ืŸ,
15:16
but here are a few of the candidate universes
368
916260
3000
ืืš ื”ื ื” ืžืกืคืจ ืžื•ืขืžื“ื™ื ืœื”ื•ื•ืช ื™ืงื•ื
15:19
that I've looked at.
369
919260
2000
ืฉื”ืกืชื›ืœืชื™ ืขืœื™ื”ื.
15:21
Some of these are hopeless universes,
370
921260
2000
ื›ืžื” ืžื”ื ื”ื ื™ืงื•ืžื™ื ื—ืกืจื™ ืชืงื•ื•ื”,
15:23
completely sterile,
371
923260
2000
ืกื˜ืจื™ืœื™ื™ื ืœื—ืœื•ื˜ื™ืŸ,
15:25
with other kinds of pathologies like no notion of space,
372
925260
2000
ืขื ืคืชื•ืœื•ื’ื™ื•ืช ืื—ืจื•ืช ื›ื’ื•ืŸ ื—ื•ืกืจ ืžืจื—ื‘,
15:27
no notion of time, no matter,
373
927260
3000
ื—ื•ืกืจ ื–ืžืŸ, ื—ื•ืกืจ ื—ื•ืžืจ,
15:30
other problems like that.
374
930260
2000
ื‘ืขื™ื•ืช ืื—ืจื•ืช ื“ื•ืžื•ืช.
15:32
But the exciting thing that I've found in the last few years
375
932260
3000
ืื‘ืœ ื”ื“ื‘ืจ ื”ืžืœื”ื™ื‘ ื”ื•ื ืฉื‘ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช ื’ื™ืœื™ืชื™
15:35
is that you actually don't have to go very far
376
935260
2000
ื›ื™ ืื™ืŸ ืฆื•ืจืš ืœืœื›ืช ืจื—ื•ืง
15:37
in the computational universe
377
937260
2000
ื‘ื™ืงื•ื ื”ื—ื™ืฉื•ื‘ื™
15:39
before you start finding candidate universes
378
939260
2000
ื›ื“ื™ ืœืžืฆื•ื ืžื•ืขืžื“ื™ื ืœื”ื•ื•ืช ื™ืงื•ื
15:41
that aren't obviously not our universe.
379
941260
3000
ืืฉืจ ืื™ื ื ื‘ื‘ื™ืจื•ืจ ืœื ื”ื™ืงื•ื ืฉืœื ื•.
15:44
Here's the problem:
380
944260
2000
ื•ื”ืจื™ ื”ื‘ืขื™ื”:
15:46
Any serious candidate for our universe
381
946260
3000
ื›ืœ ืžื•ืขืžื“ ืœื”ื•ื•ืช ืืช ื”ื™ืงื•ื ืฉืœื ื•
15:49
is inevitably full of computational irreducibility.
382
949260
3000
ื”ื•ื ื‘ืื•ืคืŸ ื‘ืœืชื™ ื ืžื ืข ื’ื“ื•ืฉ ื‘ืื™ ื™ื›ื•ืœืช ืฆื™ืžืฆื•ื ื—ื™ืฉื•ื‘ื™ืช
15:52
Which means that it is irreducibly difficult
383
952260
3000
ืฉืžืฉืžืขื• ืฉืงืฉื”, ืœืœื ืืคืฉืจื•ืช ืœืฆืžืฆื ืงื•ืฉื™ ื–ื”,
15:55
to find out how it will really behave,
384
955260
2000
ืœื’ืœื•ืช ื›ื™ืฆื“ ื”ื•ื ื‘ืืžืช ื™ืชื ื”ื’,
15:57
and whether it matches our physical universe.
385
957260
3000
ื•ื”ืื ื”ื•ื ืชื•ืื ืœื™ืงื•ื ื”ืคื™ืกื™ ืฉืœื ื•.
16:01
A few years ago, I was pretty excited to discover
386
961260
3000
ืœืคื ื™ ืžืกืคืจ ืฉื ื™ื ื”ืชืจื’ืฉืชื™ ืœื’ืœื•ืช
16:04
that there are candidate universes with incredibly simple rules
387
964260
3000
ื›ื™ ื™ืฉื ื ืžื•ืขืžื“ื™ื ืœื”ื™ื•ืช ื™ืงื•ื ืขื ื›ืœืœื™ื ืคืฉื•ื˜ื™ื ืœื”ืคืœื™ื
16:07
that successfully reproduce special relativity,
388
967260
2000
ืืฉืจ ืžืฉื—ื–ืจื™ื ื‘ื”ืฆืœื—ื” ืืช ืชื•ืจืช ื”ื™ื—ืกื•ืช ื”ืคืจื˜ื™ืช
16:09
and even general relativity and gravitation,
389
969260
3000
ื•ืืฃ ืืช ืชื•ืจืช ื”ื™ื—ืกื•ืช ื”ื›ืœืœื™ืช ื•ื’ืจื‘ื™ื˜ืฆื™ื”
16:12
and at least give hints of quantum mechanics.
390
972260
3000
ื•ืœืคื—ื•ืช ื ื•ืชื ื™ื ืจืžื–ื™ื ืขืœ ืžื›ื ื™ืงืช ื”ืงื•ื•ืื ื˜ื™ื.
16:15
So, will we find the whole of physics?
391
975260
2000
ืื– ื”ืื ื ืžืฆื ืืช ื”ืคื™ืกื™ืงื” ื‘ืฉืœืžื•ืชื”?
16:17
I don't know for sure,
392
977260
2000
ืื™ื ื™ ื™ื•ื“ืข ื‘ื•ื•ื“ืื•ืช.
16:19
but I think at this point it's sort of
393
979260
2000
ืืš ืื ื™ ืกื‘ื•ืจ ืฉื‘ืฉืœื‘ ื–ื” ื–ื” ื›ืžืขื˜
16:21
almost embarrassing not to at least try.
394
981260
2000
ืžื‘ื™ืš ืฉืœื ืœื ืกื•ืช ืœืคื—ื•ืช.
16:23
Not an easy project.
395
983260
2000
ืœื ืคืจื•ื™ืงื˜ ืงืœ.
16:25
One's got to build a lot of technology.
396
985260
2000
ืฆืจื™ืš ืœืคืชื— ื”ืžื•ืŸ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช.
16:27
One's got to build a structure that's probably
397
987260
2000
ืฆืจื™ืš ืœืคืชื— ืžื‘ื ื” ืืฉืจ ื›ืคื™ ื”ื ืจืื”
16:29
at least as deep as existing physics.
398
989260
2000
ืขืžื•ืง ืœืคื—ื•ืช ื›ืžื• ื”ืคื™ืกื™ืงื” ืฉืœ ื”ื™ื•ื.
16:31
And I'm not sure what the best way to organize the whole thing is.
399
991260
3000
ื•ืื™ื ื™ ื‘ื˜ื•ื— ืžื”ื™ ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœืืจื’ืŸ ืืช ื›ืœ ื”ื“ื‘ืจ ื”ื–ื”.
16:34
Build a team, open it up, offer prizes and so on.
400
994260
3000
ืœื‘ื ื•ืช ืฆื•ื•ืช, ืœื”ืื™ืฅ ืื•ืชื• ืงื“ื™ืžื”, ืœื”ืฆื™ืข ืคืจืกื™ื ื•ื›ื•'.
16:37
But I'll tell you, here today,
401
997260
2000
ืืš ืื•ืžืจ ืœื›ื ื›ืืŸ ื”ื™ื•ื
16:39
that I'm committed to seeing this project done,
402
999260
2000
ื›ื™ ืื ื™ ืžื—ื•ื™ื™ื‘ ืœืจืื•ืช ืืช ื”ืคืจื•ื™ืงื˜ ื”ื–ื” ืžื’ื™ืข ืœืกื™ื•ืžื•,
16:41
to see if, within this decade,
403
1001260
3000
ืœืจืื•ืช ืื ื‘ืชื•ืš ืขืฉื•ืจ
16:44
we can finally hold in our hands
404
1004260
2000
ื ื•ื›ืœ ืกื•ืฃ ืกื•ืฃ ืœื”ื—ื–ื™ืง ื‘ื™ื“ื™ื ื•
16:46
the rule for our universe
405
1006260
2000
ืืช ื”ื›ืœืœ ืขื‘ื•ืจ ื”ื™ืงื•ื ืฉืœื ื•
16:48
and know where our universe lies
406
1008260
2000
ื•ืœื“ืขืช ื”ื™ื›ืŸ ื ืžืฆื ื”ื™ืงื•ื ืฉืœื ื•
16:50
in the space of all possible universes ...
407
1010260
2000
ื‘ืžืจื—ื‘ ื›ืœ ื”ื™ืงื•ืžื™ื ื”ืืคืฉืจื™ื™ื --
16:52
and be able to type into Wolfram Alpha, "the theory of the universe,"
408
1012260
3000
ื•ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื”ืงืœื™ื“ ืœืชื•ืš ื•ื•ืœืคืจื ืืœืคื "ืชื•ืจืช ื”ื™ืงื•ื"
16:55
and have it tell us.
409
1015260
2000
ื•ืฉื”ื•ื ื™ืขื ื”.
16:57
(Laughter)
410
1017260
2000
(ืฆื—ื•ืง)
17:00
So I've been working on the idea of computation
411
1020260
2000
ืื ื›ืŸ, ืขื‘ื“ืชื™ ืขืœ ืจืขื™ื•ืŸ ื”ื—ื™ืฉื•ื‘ื™ื•ืช
17:02
now for more than 30 years,
412
1022260
2000
ื–ื” ืœืžืขืœื” ืž-30 ืฉื ื”
17:04
building tools and methods and turning intellectual ideas
413
1024260
3000
ื•ื‘ื ื™ืชื™ ื›ืœื™ื ื•ืฉื™ื˜ื•ืช ื•ื”ืคื›ืชื™ ืจืขื™ื•ื ื•ืช ืื™ื ื˜ืœืงื˜ื•ืืœื™ื™ื
17:07
into millions of lines of code
414
1027260
2000
ืœืžื™ืœื™ื•ื ื™ ืฉื•ืจื•ืช ืงื•ื“
17:09
and grist for server farms and so on.
415
1029260
2000
ื—ืฆืฅ ืœื—ื•ื•ืช ืฉืจืชื™ื ื•ื›ื•'.
17:11
With every passing year,
416
1031260
2000
ืขื ื›ืœ ืฉื ื” ืฉืขื•ื‘ืจืช
17:13
I realize how much more powerful
417
1033260
2000
ืื ื™ ืžื‘ื™ืŸ ืขื“ ื›ืžื” ืจื‘ ืขื•ืฆืžื”
17:15
the idea of computation really is.
418
1035260
2000
ื”ื•ื ื”ืจืขื™ื•ืŸ ืฉืœ ื—ื™ืฉื•ื‘ื™ื•ืช.
17:17
It's taken us a long way already,
419
1037260
2000
ื”ื•ื ื›ื‘ืจ ืœืงื— ืื•ืชื ื• ื“ืจืš ืืจื•ื›ื”
17:19
but there's so much more to come.
420
1039260
2000
ืืš ื™ืฉ ื›ืœ ื›ืš ื”ืจื‘ื” ืฉืขื•ื“ ื‘ื“ืจืš.
17:21
From the foundations of science
421
1041260
2000
ื”ื—ืœ ืžืื‘ื ื™ ื™ืกื•ื“ ืฉืœ ืžื“ืข
17:23
to the limits of technology
422
1043260
2000
ืขื‘ื•ืจ ืœื’ื‘ื•ืœื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”
17:25
to the very definition of the human condition,
423
1045260
2000
ื•ื›ืœื” ื‘ื”ื’ื“ืจื” ืฉืœ ื”ืžืฆื‘ ื”ืื ื•ืฉื™,
17:27
I think computation is destined to be
424
1047260
2000
ืื ื™ ืกื‘ื•ืจ ื›ื™ ื—ื™ืฉื•ื‘ื™ื•ืช ื ื•ืขื“ื” ืœื”ื™ื•ืช
17:29
the defining idea of our future.
425
1049260
2000
ื”ืจืขื™ื•ืŸ ื”ืžื’ื“ื™ืจ ืฉืœ ื”ืขืชื™ื“.
17:31
Thank you.
426
1051260
2000
ืชื•ื“ื” ืœื›ื.
17:33
(Applause)
427
1053260
14000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
17:47
Chris Anderson: That was astonishing.
428
1067260
2000
ื–ื” ื”ื™ื” ืžื“ื”ื™ื.
17:49
Stay here. I've got a question.
429
1069260
2000
ื”ื™ืฉืืจ ื›ืืŸ. ื™ืฉ ืœื™ ืฉืืœื”.
17:51
(Applause)
430
1071260
4000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
17:57
So, that was, fair to say, an astonishing talk.
431
1077260
3000
ื–ื” ื”ื™ื”, ืฆืจื™ืš ืœื•ืžืจ, ื”ืจืฆืื” ืžื“ื”ื™ืžื”.
18:01
Are you able to say in a sentence or two
432
1081260
3000
ื”ืื ืชื•ื›ืœ ืœื•ืžืจ ื‘ืžืฉืคื˜ ืื• ืฉื ื™ื™ื
18:04
how this type of thinking
433
1084260
3000
ื›ื™ืฆื“ ืกื•ื’ ื–ื” ืฉืœ ื—ืฉื™ื‘ื”
18:07
could integrate at some point
434
1087260
2000
ื™ื›ื•ืœื” ื‘ืฉืœื‘ ื›ืœืฉื”ื• ืœื”ืฉืชืœื‘
18:09
to things like string theory or the kind of things that people think of
435
1089260
2000
ื‘ื“ื‘ืจื™ื ื›ืžื• ืชื•ืจืช ื”ืžื™ืชืจื™ื ืื• ื“ื‘ืจื™ื ืฉืื ืฉื™ื ืžื—ืฉื™ื‘ื™ื
18:11
as the fundamental explanations of the universe?
436
1091260
3000
ื›ื”ืกื‘ืจื™ื ื‘ืกื™ืกื™ื™ื ืฉืœ ื”ื™ืงื•ื?
18:14
Stephen Wolfram: Well, the parts of physics
437
1094260
2000
ื•ื‘ื›ืŸ, ื—ืœืงื™ื ืฉืœ ืคื™ืกื™ืงื”
18:16
that we kind of know to be true,
438
1096260
2000
ืฉืื ื• ื›ืื™ืœื• ื™ื•ื“ืขื™ื ืฉื”ื ื ื›ื•ื ื™ื,
18:18
things like the standard model of physics:
439
1098260
2000
ื“ื‘ืจื™ื ื›ืžื• ื”ืžื•ื“ืœ ื”ืกื˜ื ื“ืจื˜ื™ ืฉืœ ื”ืคื™ืกื™ืงื”.
18:20
what I'm trying to do better reproduce the standard model of physics
440
1100260
3000
ืžื” ืฉืื ื™ ืžื ืกื” ืœืขืฉื•ืช ื˜ื•ื‘ ื™ื•ืชืจ ืœืฉื—ื–ืจ ืืช ื”ืžื•ื“ืœ ื”ืกื˜ื ื“ืจื˜ื™ ืฉืœ ื”ืคื™ืกื™ืงื”
18:23
or it's simply wrong.
441
1103260
2000
ืื• ืฉื”ื•ื ืคืฉื•ื˜ ืฉื’ื•ื™.
18:25
The things that people have tried to do in the last 25 years or so
442
1105260
2000
ื”ื“ื‘ืจื™ื ืฉืื ืฉื™ื ื ื™ืกื• ืœืขืฉื•ืช ื‘-25 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช
18:27
with string theory and so on
443
1107260
2000
ืขื ืชื•ืจืช ื”ืžื™ืชืจื™ื ื•ื›ื•'
18:29
have been an interesting exploration
444
1109260
2000
ื”ื™ื•ื• ื—ืงื™ืจื” ืžืขื ื™ื™ื ืช
18:31
that has tried to get back to the standard model,
445
1111260
3000
ืฉื ื™ืกืชื” ืœื—ื–ื•ืจ ืœืžื•ื“ืœ ื”ืกื˜ื ื“ืจื˜ื™
18:34
but hasn't quite gotten there.
446
1114260
2000
ืืš ืœื ืžืžืฉ ื”ืฆืœื™ื— ืœื”ื’ื™ืข ืœื›ืš.
18:36
My guess is that some great simplifications of what I'm doing
447
1116260
3000
ื”ื ื™ื—ื•ืฉ ืฉืœื™ ื”ื•ื ืฉื›ืžื” ื”ืคืฉื˜ื•ืช ืจืฆื™ื ื™ื•ืช ืฉืœ ืžื” ืฉืื ื™ ืขื•ืฉื”
18:39
may actually have considerable resonance
448
1119260
3000
ืขืฉื•ื™ื™ื ืœืžืขืฉื” ืœืขื•ืจืจ ืชื”ื•ื“ื” ืœื ืžื‘ื•ื˜ืœืช
18:42
with what's been done in string theory,
449
1122260
2000
ืขื ืžื” ืฉื ืขืฉื” ื‘ืชื•ืจืช ื”ืžื™ืชืจื™ื,
18:44
but that's a complicated math thing
450
1124260
3000
ืืš ื–ื”ื• ื“ื‘ืจ ืžืชืžื˜ื™ ืžื•ืจื›ื‘
18:47
that I don't yet know how it's going to work out.
451
1127260
3000
ืฉืื™ื ื™ ื™ื•ื“ืข ืขื•ื“ ื›ื™ืฆื“ ื™ืกืชื™ื™ื.
18:50
CA: Benoit Mandelbrot is in the audience.
452
1130260
2000
ื‘ื ื•ืื” ืžื ื“ืœื‘ืจื•ื˜ ื ืžืฆื ื‘ืงื”ืœ.
18:52
He also has shown how complexity
453
1132260
2000
ื’ื ื”ื•ื ื”ืจืื” ื›ื™ืฆื“ ืžื•ืจื›ื‘ื•ืช
18:54
can arise out of a simple start.
454
1134260
2000
ื™ื›ื•ืœื” ืœื”ืชืคืชื— ืžื”ืชื—ืœื” ืคืฉื•ื˜ื”.
18:56
Does your work relate to his?
455
1136260
2000
ื”ืื ืขื‘ื•ื“ืชืš ืงืฉื•ืจื” ืœื–ื”?
18:58
SW: I think so.
456
1138260
2000
ืื ื™ ื—ื•ืฉื‘ ืฉื›ืŸ.
19:00
I view Benoit Mandelbrot's work
457
1140260
2000
ืื ื™ ืจื•ืื” ื‘ืขื‘ื•ื“ืชื• ืฉืœ ื‘ื ื•ืื” ืžื ื“ืœื‘ืจื•ื˜
19:02
as one of the founding contributions
458
1142260
3000
ื›ืื—ื“ ื”ืชืจื•ืžื•ืช ื”ื™ืกื•ื“ื™ื•ืช
19:05
to this kind of area.
459
1145260
3000
ืœืชื—ื•ื ืฉื›ื–ื”.
19:08
Benoit has been particularly interested
460
1148260
2000
ื‘ื ื•ืื” ื”ืชืขื ื™ื™ืŸ ื‘ืžื™ื•ื—ื“
19:10
in nested patterns, in fractals and so on,
461
1150260
2000
ื‘ืชื‘ื ื™ื•ืช ืžืงื•ื ื ื•ืช, ื‘ืคืจืงื˜ืœื™ื ื•ื›ื•'
19:12
where the structure is something
462
1152260
2000
ืฉื ื”ืžื‘ื ื” ื”ื•ื ืžืฉื”ื•
19:14
that's kind of tree-like,
463
1154260
2000
ื“ืžื•ื™ ืขืฅ,
19:16
and where there's sort of a big branch that makes little branches
464
1156260
2000
ื•ืฉืฉื ื™ืฉ ืžื™ืŸ ืขื ืฃ ื’ื“ื•ืœ ืฉืžืžื ื• ื™ื•ืฆืื™ื ืขื ืคื™ื ืงื˜ื ื™ื
19:18
and even smaller branches and so on.
465
1158260
3000
ื•ืืฃ ืขื ืคื™ื ืงื˜ื ื™ื ื™ื•ืชืจ ื•ื›ื•'.
19:21
That's one of the ways
466
1161260
2000
ื–ื•ื”ื™ ืื—ืช ื”ื“ืจื›ื™ื
19:23
that you get towards true complexity.
467
1163260
3000
ืฉื‘ื” ื ื™ืชืŸ ืœื”ืชืงืจื‘ ืœืžื•ืจื›ื‘ื•ืช ืืžื™ืชื™ืช.
19:26
I think things like the Rule 30 cellular automaton
468
1166260
3000
ืื ื™ ื—ื•ืฉื‘ ืฉื“ื‘ืจื™ื ื›ืžื• ืื•ื˜ื•ืžื˜ ืชืื™ ื”ืžื‘ื•ืกืก ืขืœ ื›ืœืœ 30
19:29
get us to a different level.
469
1169260
2000
ื™ื‘ื™ื ืื•ืชื ื• ืœืจืžื” ืื—ืจืช.
19:31
In fact, in a very precise way, they get us to a different level
470
1171260
3000
ืœืžืขืฉื”, ื‘ื“ืจืš ืžืื“ ืžื“ื•ื™ืงืช ื”ื ืžื‘ื™ืื™ื ืื•ืชื ื• ืœืจืžื” ืื—ืจืช
19:34
because they seem to be things that are
471
1174260
2000
ืžืฉื•ื ืฉื ื“ืžื” ื›ื™ ื”ื ื”ื“ื‘ืจื™ื
19:37
capable of complexity
472
1177260
3000
ืืฉืจ ื‘ื™ื›ื•ืœืชื ืœื”ื™ื•ืช ืžื•ืจื›ื‘ื™ื
19:40
that's sort of as great as complexity can ever get ...
473
1180260
3000
ืฉื–ื” ืžืฉื”ื• ืฉื”ื›ื™ ื’ื“ื•ืœ ืฉืžื•ืจื›ื‘ื•ืช ื™ื›ื•ืœื” ืœื”ื™ื•ืช...
19:44
I could go on about this at great length, but I won't. (Laughter) (Applause)
474
1184260
3000
ืื ื™ ื™ื›ื•ืœ ืœื”ืจื—ื™ื‘ ืขืœ ื–ื” ืขื“ ืžืื“, ืืš ืœื ืืขืฉื” ื–ืืช.
19:47
CA: Stephen Wolfram, thank you.
475
1187260
2000
ืกื˜ืคืŸ ื•ื•ืœืคืจื, ืชื•ื“ื” ืœืš.
19:49
(Applause)
476
1189260
2000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7