Computing a theory of everything | Stephen Wolfram

605,077 views ใƒป 2010-04-27

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Sanghoon Lee ๊ฒ€ํ† : Wonchan Lee
00:16
So I want to talk today about an idea. It's a big idea.
0
16260
3000
์˜ค๋Š˜ ์•„์ด๋””์–ด ํ•œ ๊ฐ€์ง€์— ๋Œ€ํ•ด ๋งํ•˜๋ ค ํ•ฉ๋‹ˆ๋‹ค. ์•„์ฃผ ํฐ ์•„์ด๋””์–ด์ฃ .
00:19
Actually, I think it'll eventually
1
19260
2000
์‹ค์ œ๋กœ, ์ œ ์ƒ๊ฐ์—๋Š”
00:21
be seen as probably the single biggest idea
2
21260
2000
์ด ์•„์ด๋””์–ด๊ฐ€ ๊ถ๊ทน์ ์œผ๋กœ ์ง€๋‚œ ์„ธ๊ธฐ ์ค‘์—
00:23
that's emerged in the past century.
3
23260
2000
๋‚˜์˜จ ๊ฐ€์žฅ ํฐ ์•„์ด๋””์–ด๊ฐ€ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:25
It's the idea of computation.
4
25260
2000
๊ณ„์‚ฐ์— ๊ด€ํ•œ ์ƒ๊ฐ์ž…๋‹ˆ๋‹ค.
00:27
Now, of course, that idea has brought us
5
27260
2000
๋ฌผ๋ก  ํ˜„์žฌ ์ด๋Ÿฐ ์ƒ๊ฐ์—๋Š”
00:29
all of the computer technology we have today and so on.
6
29260
3000
์˜ค๋Š˜๋‚  ์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง„ ์ปดํ“จํ„ฐ ๊ธฐ์ˆ ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.
00:32
But there's actually a lot more to computation than that.
7
32260
3000
ํ•˜์ง€๋งŒ, ๊ทธ๊ฒƒ์„ ๋Šฅ๊ฐ€ํ•˜๋Š” ํ›จ์”ฌ ๋” ๋งŽ์€ ๊ณ„์‚ฐ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
00:35
It's really a very deep, very powerful, very fundamental idea,
8
35260
3000
์ด๊ฒƒ์€ ์•„์ฃผ ์‹ฌ๋„ ์žˆ๊ณ , ์•„์ฃผ ๊ฐ•๋ ฅํ•˜๊ณ , ๋งค์šฐ ๊ทผ๋ณธ์ ์ธ ์•„์ด๋””์–ด๋กœ์„œ
00:38
whose effects we've only just begun to see.
9
38260
3000
๊ทธ ํšจ๊ณผ๋ฅผ ์ด์ œ ๊ฒจ์šฐ ๋ณด๊ธฐ ์‹œ์ž‘ํ•˜๊ณ  ์žˆ์ฃ .
00:41
Well, I myself have spent the past 30 years of my life
10
41260
3000
์ €๋Š” ์ง€๋‚œ 30 ํ‰์ƒ ๋™์•ˆ
00:44
working on three large projects
11
44260
2000
์„ธ ๊ฐ€์ง€ ํฐ ํ”„๋กœ์ ํŠธ๋ฅผ ์ถ”์ง„ํ•ด ์™”์ฃ .
00:46
that really try to take the idea of computation seriously.
12
46260
3000
๊ณ„์‚ฐ์ด๋ผ๋Š” ์•„์ด๋””์–ด๋ฅผ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ ์šฉํ•œ ๊ฒƒ๋“ค์ด์ฃ .
00:50
So I started off at a young age as a physicist
13
50260
3000
์ €๋Š” ์ Š์€ ์‹œ์ ˆ ๋ฌผ๋ฆฌํ•™์ž๋กœ์„œ
00:53
using computers as tools.
14
53260
2000
์ปดํ“จํ„ฐ๋ฅผ ๋„๊ตฌ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ .
00:55
Then, I started drilling down,
15
55260
2000
๊ทธ๋ฆฌ๊ณ  ์ข€ ๋” ํŒŒ๊ณ  ๋“ค์–ด๊ฐ€์„œ,
00:57
thinking about the computations I might want to do,
16
57260
2000
์ œ๊ฐ€ ํ•˜๊ณ  ์‹ถ์€ ๊ณ„์‚ฐ์— ๋Œ€ํ•ด์„œ ์ƒ๊ฐํ–ˆ๊ณ ,
00:59
trying to figure out what primitives they could be built up from
17
59260
3000
๊ธฐ๋ณธ์ ์œผ๋กœ ์–ด๋–ป๊ฒŒ ๋งŒ๋“ค์–ด์งˆ ์ˆ˜ ์žˆ๋Š”๊ฐ€ ์ฐพ์œผ๋ ค ํ–ˆ์œผ๋ฉฐ
01:02
and how they could be automated as much as possible.
18
62260
3000
๊ฐ€๋Šฅํ•œ ๋งŽ์ด ์ž๋™ํ™”ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€ ์•Œ์•„๋ณด์•˜์ฃ .
01:05
Eventually, I created a whole structure
19
65260
2000
๊ฒฐ๊ตญ, ๊ธฐํ˜ธ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ
01:07
based on symbolic programming and so on
20
67260
2000
์ „์ฒด์ ์ธ ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์—ˆ๊ณ 
01:09
that let me build Mathematica.
21
69260
2000
๊ทธ๊ฒƒ์ด ๋งค์Šค๋งคํ‹ฐ์นด๋ฅผ ๊ฐ€๋Šฅ์ผ€ ํ–ˆ์ฃ .
01:11
And for the past 23 years, at an increasing rate,
22
71260
2000
๊ทธ๋ฆฌ๊ณ  ์ง€๋‚œ 23๋…„ ๋™์•ˆ ๊พธ์ค€ํžˆ ์ฆ๊ฐ€ํ•œ ๊ฒƒ์€
01:13
we've been pouring more and more ideas
23
73260
2000
๋งค์Šค๋งคํ‹ฐ์นด์— ์•„์ด๋””์–ด์™€ ๊ธฐ๋Šฅ ๋“ฑ์„
01:15
and capabilities and so on into Mathematica,
24
75260
2000
๋”์šฑ ๋” ๋งŽ์ด ์ถ”๊ฐ€ํ•ด ์™”๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
01:17
and I'm happy to say that that's led to many good things
25
77260
3000
๊ธฐ์˜๊ฒŒ ๋งํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์ด๊ฒƒ์„ ํ†ตํ•ด
01:20
in R & D and education,
26
80260
2000
์—ฐ๊ตฌ, ๊ฐœ๋ฐœ, ๊ต์œก์„ ๋น„๋กฏํ•œ
01:22
lots of other areas.
27
82260
2000
์—ฌ๋ ค ๋ถ„์•ผ์—์„œ ๋งŽ์€ ์„ฑ๊ณผ๊ฐ€ ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:24
Well, I have to admit, actually,
28
84260
2000
์‚ฌ์‹ค, ๊ณ ๋ฐฑํ•ด์•ผ ํ•  ๊ฒƒ์€
01:26
that I also had a very selfish reason for building Mathematica:
29
86260
3000
๋งค์Šค๋งคํ‹ฐ์นด๋ฅผ ๋งŒ๋“  ๊ฑด ๋งค์šฐ ์ด๊ธฐ์ ์ธ ์ด์œ ๋„ ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
01:29
I wanted to use it myself,
30
89260
2000
๋งˆ์น˜ 400๋…„ ์ „์— ๊ฐˆ๋ฆด๋ ˆ์˜ค๊ฐ€ ์ž์‹ ์˜
01:31
a bit like Galileo got to use his telescope
31
91260
2000
๋ง์›๊ฒฝ์„ ์ œ์ž‘ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ ๊ทธ๊ฒƒ๋„ ์ œ๊ฐ€ ์“ฐ๊ธฐ ์œ„ํ•œ
01:33
400 years ago.
32
93260
2000
๋„๊ตฌ์˜€์–ด์š”.
01:35
But I wanted to look not at the astronomical universe,
33
95260
3000
ํ•˜์ง€๋งŒ ์ €๋Š” ์ฒœ๋ฌธํ•™์  ์šฐ์ฃผ๋งŒ์ด ์•„๋‹ˆ๋ผ,
01:38
but at the computational universe.
34
98260
3000
๊ณ„์‚ฐ์  ์šฐ์ฃผ๋„ ๋ณด๊ณ  ์‹ถ์—ˆ์ฃ .
01:41
So we normally think of programs as being
35
101260
2000
์ผ๋ฐ˜์ ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ํ”„๋กœ๊ทธ๋žจ์„
01:43
complicated things that we build
36
103260
2000
๋งค์šฐ ํŠน์ •ํ•œ ๋ชฉ์ ์„ ์œ„ํ•ด ๋งŒ๋“ 
01:45
for very specific purposes.
37
105260
2000
๋ณต์žกํ•œ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
01:47
But what about the space of all possible programs?
38
107260
3000
ํ•˜์ง€๋งŒ ๋ชจ๋“  ๊ฒƒ์ด ๊ฐ€๋Šฅํ•œ ํ”„๋กœ๊ทธ๋žจ์˜ ์˜์—ญ์€ ์–ด๋–จ๊นŒ์š”?
01:50
Here's a representation of a really simple program.
39
110260
3000
์—ฌ๊ธฐ ์ •๋ง ๋‹จ์ˆœํ•œ ํ”„๋กœ๊ทธ๋žจ์„ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
01:53
So, if we run this program,
40
113260
2000
์ด ํ”„๋กœ๊ทธ๋žจ์„ ์‹คํ–‰ํ•˜๋ฉด,
01:55
this is what we get.
41
115260
2000
์ด๋Ÿฐ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ต๋‹ˆ๋‹ค.
01:57
Very simple.
42
117260
2000
๋งค์šฐ ๊ฐ„๋‹จํ•˜์ฃ .
01:59
So let's try changing the rule
43
119260
2000
์ž, ์ด ํ”„๋กœ๊ทธ๋žจ์˜ ๊ทœ์น™์„
02:01
for this program a little bit.
44
121260
2000
์กฐ๊ธˆ ๋ฐ”๊ฟ” ๋ณด๋„๋ก ํ•˜์ฃ .
02:03
Now we get another result,
45
123260
2000
์ด์ œ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋Š”๋ฐ,
02:05
still very simple.
46
125260
2000
์—ฌ์ „ํžˆ ๋งค์šฐ ๋‹จ์ˆœํ•˜์ฃ .
02:07
Try changing it again.
47
127260
3000
๋‹ค์‹œ ํ•œ ๋ฒˆ ๋ฐ”๊ฟ”๋ณด์ฃ .
02:10
You get something a little bit more complicated.
48
130260
2000
์กฐ๊ทธ์€ ๋” ๋ณต์žกํ•œ ๊ฒƒ์„ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
02:12
But if we keep running this for a while,
49
132260
2000
ํ•˜์ง€๋งŒ ์–ผ๋งˆ๊ฐ„ ์ด ํ”„๋กœ๊ทธ๋žจ์„ ๊ณ„์† ์ˆ˜ํ–‰ํ•˜๋ฉด,
02:14
we find out that although the pattern we get is very intricate,
50
134260
3000
์•„์ฃผ ๋ณต์žกํ•œ ํŒจํ„ด์„ ์–ป๊ฒŒ ๋˜๋”๋ผ๋„
02:17
it has a very regular structure.
51
137260
3000
๋งค์šฐ ๊ทœ์น™์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์ฃ .
02:20
So the question is: Can anything else happen?
52
140260
3000
์งˆ๋ฌธ์€ ์ด๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ฌด์—‡์ด๋“ ์ง€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
02:23
Well, we can do a little experiment.
53
143260
2000
์ž‘์€ ์‹คํ—˜์„ ํ•ด๋ณผ ์ˆ˜ ์žˆ์ฃ .
02:25
Let's just do a little mathematical experiment, try and find out.
54
145260
3000
๊ฐ„๋‹จํ•œ ์ˆ˜ํ•™์  ์‹คํ—˜์„ ํ†ตํ•ด์„œ ์ฐพ์•„๋ณด๋„๋ก ํ•˜์ฃ .
02:29
Let's just run all possible programs
55
149260
3000
๋‹จ์ง€ ์šฐ๋ฆฌ๊ฐ€ ๋ณด๊ณ  ์žˆ๋Š” ํ˜•ํƒœ์— ๋Œ€ํ•œ
02:32
of the particular type that we're looking at.
56
152260
2000
๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ํ”„๋กœ๊ทธ๋žจ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒ๋‹ˆ๋‹ค.
02:34
They're called cellular automata.
57
154260
2000
์ด๊ฑธ ์„ธํฌ ์ž๋™์ž(cellular automata)๋ผ๊ณ  ๋ถ€๋ฅด์ฃ .
02:36
You can see a lot of diversity in the behavior here.
58
156260
2000
์—ฌ๊ธฐ ํ–‰๋™ ์ค‘์—์„œ ๋งŽ์€ ๋‹ค์–‘์„ฑ์„ ๋ณผ ์ˆ˜ ์žˆ์ฃ .
02:38
Most of them do very simple things,
59
158260
2000
๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ ๋งค์šฐ ๋‹จ์ˆœํ•œ ์ผ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
02:40
but if you look along all these different pictures,
60
160260
2000
ํ•˜์ง€๋งŒ ์„œ๋กœ ๋‹ค๋ฅธ ๋ชจ๋“  ๊ทธ๋ฆผ ์ค‘์—์„œ,
02:42
at rule number 30,
61
162260
2000
๊ทœ์น™ 30 ๋ฒˆ์—์„œ,
02:44
you start to see something interesting going on.
62
164260
2000
ํฅ๋ฏธ๋กœ์šด ์ผ์ด ์ง„ํ–‰๋˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:46
So let's take a closer look
63
166260
2000
์ข€ ๋” ์ž์„ธํžˆ ์‚ดํŽด๋ณด์ฃ .
02:48
at rule number 30 here.
64
168260
2000
์—ฌ๊ธฐ ๊ทœ์น™ 30 ๋ฒˆ,
02:50
So here it is.
65
170260
2000
๋ฐ”๋กœ ์—ฌ๊ธฐ์ฃ .
02:52
We're just following this very simple rule at the bottom here,
66
172260
3000
์—ฌ๊ธฐ ์•„๋ž˜์— ์žˆ๋Š” ๋งค์šฐ ๊ฐ„๋‹จํ•œ ๊ทœ์น™์„ ๋”ฐ๋ž์„ ๋ฟ์ด์ง€๋งŒ,
02:55
but we're getting all this amazing stuff.
67
175260
2000
์ด ๋ชจ๋“  ๋†€๋ผ์šด ๊ฒƒ๋“ค์„ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.
02:57
It's not at all what we're used to,
68
177260
2000
์ด๋ฏธ ์ต์ˆ™ํ•ด์ง„ ์šฐ๋ฆฌ์—๊ฒ ๋ณ„๊ฒƒ์ด ์•„๋‹ˆ์ง€๋งŒ,
02:59
and I must say that, when I first saw this,
69
179260
2000
๊ผญ ๋งํ•ด์•ผ ํ•  ๊ฒƒ์€ ์ด๊ฑธ ์ฒ˜์Œ ๋ดค์„ ๋•Œ,
03:01
it came as a huge shock to my intuition.
70
181260
3000
์ง๊ด€์ ์œผ๋กœ ์—„์ฒญ๋‚œ ๊ฒฝ์•…์œผ๋กœ ๋‹ค๊ฐ€ ์™”๊ณ ,
03:04
And, in fact, to understand it,
71
184260
2000
์‚ฌ์‹ค ๊ทธ๊ฒƒ์„ ์ดํ•ดํ•œ ํ›„์—๋Š”
03:06
I eventually had to create
72
186260
2000
๊ถ๊ทน์ ์œผ๋กœ ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ์ข…๋ฅ˜์˜
03:08
a whole new kind of science.
73
188260
2000
๊ณผํ•™์„ ์ฐฝ์กฐํ•ด์•ผ๋งŒ ํ–ˆ์ฃ .
03:11
(Laughter)
74
191260
2000
(์›ƒ์Œ)
03:13
This science is different, more general,
75
193260
3000
์ด ๊ณผํ•™์— ๋‹ค๋ฅธ ์ ์ด ์žˆ๋‹ค๋ฉด,
03:16
than the mathematics-based science that we've had
76
196260
2000
๊ณผ๊ฑฐ 300๋…„ ์ด์ƒ ์—ฐ๊ตฌํ–ˆ๋˜ ์ˆ˜ํ•™์— ๊ธฐ๋ฐ˜์„ ๋‘”
03:18
for the past 300 or so years.
77
198260
3000
๊ณผํ•™๋ณด๋‹ค ๋” ์ผ๋ฐ˜์ ์ด๋ผ๋Š” ๊ฒƒ์ด์ฃ .
03:21
You know, it's always seemed like a big mystery:
78
201260
2000
์•Œ๋‹ค์‹œํ”ผ, ์ž์—ฐ์ด ๋ณ„๋กœ ๋…ธ๋ ฅ์„ ๋“ค์ด์ง€ ์•Š๊ณ 
03:23
how nature, seemingly so effortlessly,
79
203260
3000
์šฐ๋ฆฌ์—๊ฒŒ ๊ทธํ† ๋ก ๋ณต์žกํ•ด ๋ณด์ด๋Š” ๊ฒƒ๋“ค์„
03:26
manages to produce so much
80
206260
2000
๋งŒ๋“ค์–ด ๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š” ๊ฒƒ์€
03:28
that seems to us so complex.
81
208260
3000
์–ธ์ œ๋‚˜ ํฐ ๋ฏธ์Šคํ„ฐ๋ฆฌ์ฃ .
03:31
Well, I think we've found its secret:
82
211260
3000
์ œ ์ƒ๊ฐ์— ์šฐ๋ฆฌ๋Š” ๊ทธ ๋น„๋ฐ€์„ ์ฐพ์€ ๊ฒƒ ๊ฐ™์•„์š”.
03:34
It's just sampling what's out there in the computational universe
83
214260
3000
๊ณ„์‚ฐ์  ์šฐ์ฃผ ์•ˆ์— ์žˆ๋Š” ๊ฒƒ๋“ค์˜ ํ‘œ๋ณธ์„ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋„
03:37
and quite often getting things like Rule 30
84
217260
3000
๊ทœ์น™ 30 ๋ฒˆ์ด๋‚˜ ์ด๋Ÿฐ ๊ฒƒ๋“ค์„ ๋งค์šฐ ์ž์ฃผ
03:40
or like this.
85
220260
3000
์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
03:44
And knowing that starts to explain
86
224260
2000
๋˜ ์ด๊ฒƒ์„ ๋ฐํž˜์œผ๋กœ์จ ๊ณผํ•™์—์„œ ์˜ค๋žซ๋™์•ˆ
03:46
a lot of long-standing mysteries in science.
87
226260
3000
๋ฏธ์Šคํ„ฐ๋ฆฌ์˜€๋˜ ๋งŽ์€ ๊ฒƒ๋“ค์ด ์„ค๋ช…๋˜๊ธฐ ์‹œ์ž‘ํ–ˆ์ฃ .
03:49
It also brings up new issues, though,
88
229260
2000
ํ•˜์ง€๋งŒ ์ƒˆ๋กœ์šด ์ด์Šˆ๋„ ์ œ๊ธฐํ•˜๊ณ  ์žˆ๋Š”๋ฐ,
03:51
like computational irreducibility.
89
231260
3000
๊ณ„์‚ฐ์  ๊ธฐ์•ฝ์„ฑ(irreducibility) ๊ฐ™์€ ๊ฒƒ๋“ค์ด์ฃ . ์—ญ) ๊ธฐ์•ฝ์„ฑ: ๋” ์ด์ƒ ์ค„์ผ ์ˆ˜ ์—†๋Š” ์„ฑ์งˆ
03:54
I mean, we're used to having science let us predict things,
90
234260
3000
์ œ ๋ง์€ ์šฐ๋ฆฌ๊ฐ€ ๊ณผํ•™์„ ํ†ตํ•ด ์‚ฌ๋ฌผ์„ ์˜ˆ์ธกํ•ด์˜ค๊ณค ํ–ˆ์ง€๋งŒ,
03:57
but something like this
91
237260
2000
์ด๋Ÿฌํ•œ ๊ฒƒ๋“ค์ด ๋ฐ”๋กœ
03:59
is fundamentally irreducible.
92
239260
2000
๊ทผ๋ณธ์ ์œผ๋กœ ํ•„์š”ํ•œ ๊ณ„์‚ฐ๋Ÿ‰์„ ๋” ์ค„์ผ ์ˆ˜ ์—†๋Š” ๊ฒƒ๋“ค์— ์†ํ•ฉ๋‹ˆ๋‹ค.
04:01
The only way to find its outcome
93
241260
2000
๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์ฐพ๋Š” ์œ ์ผํ•œ ๋ฐฉ๋ฒ•์€
04:03
is, effectively, just to watch it evolve.
94
243260
3000
์‚ฌ์‹ค์ƒ ์–ด๋–ป๊ฒŒ ๋ฐœ๋‹ฌํ•ด ๋‚˜๊ฐ€๋Š”์ง€ ์ง€์ผœ๋ณด๋Š” ๊ฒƒ๋ฟ์ž…๋‹ˆ๋‹ค.
04:06
It's connected to, what I call,
95
246260
2000
์ด๊ฑด ์ œ๊ฐ€ ๊ณ„์‚ฐ์  ๋“ฑ๊ฐ€ ์›์น™์ด๋ผ๊ณ 
04:08
the principle of computational equivalence,
96
248260
2000
๋ถ€๋ฅด๋Š” ๊ฒƒ๊ณผ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋Š”๋ฐ,
04:10
which tells us that even incredibly simple systems
97
250260
3000
๋ฏฟ๊ธฐ ํž˜๋“ค ์ •๋„๋กœ ๋‹จ์ˆœํ•œ ์‹œ์Šคํ…œ๋“ค๋„
04:13
can do computations as sophisticated as anything.
98
253260
3000
๋‹ค๋ฅธ ๊ฒƒ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ณต์žกํ•œ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
04:16
It doesn't take lots of technology or biological evolution
99
256260
3000
์ž„์˜์ ์ธ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ
04:19
to be able to do arbitrary computation;
100
259260
2000
๋งŽ์€ ๊ธฐ์ˆ ์ด๋‚˜ ์ƒ๋ฌผํ•™์ „ ์ง„ํ™”๊ฐ€ ์š”๊ตฌ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ฉฐ,
04:21
just something that happens, naturally,
101
261260
2000
๋ชจ๋“  ๊ณณ์—์„œ ์ž์—ฐ์ ์œผ๋กœ ์–ด๋–ค ๊ฒƒ์ด
04:23
all over the place.
102
263260
2000
์ผ์–ด๋‚œ ๊ฒƒ๋ฟ์ด์ฃ .
04:25
Things with rules as simple as these can do it.
103
265260
3000
์ด์ฒ˜๋Ÿผ ๋‹จ์ˆœํ•œ ๊ทœ์น™๋“ค์ด ๊ทธ๊ฒƒ์„ ํ•ด๋‚ด๋Š” ๊ฒƒ์ด์ฃ .
04:29
Well, this has deep implications
104
269260
2000
์ด๊ฒƒ์€ ๊ณผํ•™์˜ ํ•œ๊ณ„์™€
04:31
about the limits of science,
105
271260
2000
์ƒ๋ฌผํ•™์  ๊ณผ์ •์ด๋‚˜ ๊ฒฝ์ œ์˜
04:33
about predictability and controllability
106
273260
2000
์˜ˆ์ธก ๊ฐ€๋Šฅ์„ฑ ๋ฐ ํ†ต์ œ ๊ฐ€๋Šฅ์„ฑ,
04:35
of things like biological processes or economies,
107
275260
3000
์šฐ์ฃผ์— ์กด์žฌํ•˜๋Š” ์ง€์  ์ƒ๋ช…์ฒด,
04:38
about intelligence in the universe,
108
278260
2000
์ž์œ  ์˜์ง€์— ๋Œ€ํ•œ ์งˆ๋ฌธ๊ณผ
04:40
about questions like free will
109
280260
2000
๊ธฐ์ˆ ์„ ์ฐฝ์กฐํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•ด
04:42
and about creating technology.
110
282260
3000
๊นŠ์€ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค.
04:45
You know, in working on this science for many years,
111
285260
2000
์ด ๊ณผํ•™ ๋ถ„์•ผ์— ๋Œ€ํ•ด ์ˆ˜๋…„ ๊ฐ„ ์—ฐ๊ตฌํ•œ ์ €๋Š”
04:47
I kept wondering,
112
287260
2000
ํ•ญ์ƒ ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ์ฃ .
04:49
"What will be its first killer app?"
113
289260
2000
"์ด๊ฒƒ์„ ํ†ตํ•œ ์ฒซ ๋Œ€๋ฐ• ์‘์šฉ์€ ๋ญ˜๊นŒ?"
04:51
Well, ever since I was a kid,
114
291260
2000
์ œ๊ฐ€ ์•„์ด์˜€์„ ๋•Œ๋ถ€ํ„ฐ
04:53
I'd been thinking about systematizing knowledge
115
293260
2000
์ƒ๊ฐํ•ด ์˜จ ๊ฒƒ์€ ์ง€์‹์„ ์ฒด๊ณ„ํ™”ํ•˜๊ณ  ์–ด๋Š์ •๋„
04:55
and somehow making it computable.
116
295260
2000
๊ณ„์‚ฐ ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด์—ˆ์ฃ .
04:57
People like Leibniz had wondered about that too
117
297260
2000
๋ผ์ดํ”„๋‹ˆ์ธ ์™€ ๊ฐ™์€ ์‚ฌ๋žŒ์€ ์ด๋ฏธ 300๋…„ ์ „์—
04:59
300 years earlier.
118
299260
2000
๊ฐ™์€ ๊ณ ๋ฏผ์„ ํ–ˆ์—ˆ์ฃ .
05:01
But I'd always assumed that to make progress,
119
301260
2000
ํ•˜์ง€๋งŒ ์ €๋Š” ํ•ญ์ƒ ์ง„์ „์„ ์ด๋ฃจ๊ธฐ ์œ„ํ•ด์„œ๋Š”
05:03
I'd essentially have to replicate a whole brain.
120
303260
3000
์ „์ฒด ๋‘๋‡Œ๋ฅผ ๋ณต์ œํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜๋ผ๊ณ  ๊ฐ€์ •ํ–ˆ์—ˆ์ฃ .
05:06
Well, then I got to thinking:
121
306260
2000
์ด์ œ ์ œ๊ฐ€ ์ƒ๊ฐํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์€
05:08
This scientific paradigm of mine suggests something different --
122
308260
3000
์ œ ๊ณผํ•™์  ํŒจ๋Ÿฌ๋‹ค์ž„์€ ๋ญ”๊ฐ€ ๋‹ค๋ฅธ ๊ฒƒ์„ ์ œ์‹œํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:11
and, by the way, I've now got
123
311260
2000
๊ทธ๋ฆฌ๊ณ , ํ•œํŽธ ์ง€๊ธˆ ์ €๋Š”
05:13
huge computation capabilities in Mathematica,
124
313260
3000
๋งค์Šค๋งคํ‹ฐ์นด๋ผ๋Š” ๋ง‰๋Œ€ํ•œ ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ 
05:16
and I'm a CEO with some worldly resources
125
316260
3000
๊ฑฐ๋Œ€ํ•˜๊ณ  ๋ฏธ์นœ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š” ํ”„๋กœ์ ํŠธ๋ฅผ
05:19
to do large, seemingly crazy, projects --
126
319260
3000
์ถ”์ง„ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์ œ ์ž์›์„ ๊ฐ€์ง„ CEO์ฃ .
05:22
So I decided to just try to see
127
322260
2000
๊ทธ ๊ฒฐ๊ณผ ์ด ์„ธ์ƒ์— ์–ผ๋งˆ๋‚˜ ๋งŽ์€
05:24
how much of the systematic knowledge that's out there in the world
128
324260
3000
๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ์ฒด๊ณ„์ ์ธ ์ •๋ณด๊ฐ€ ์žˆ๋Š”๊ฐ€๋ฅผ ์‚ดํŽด๋ณด๊ธฐ๋กœ
05:27
we could make computable.
129
327260
2000
๊ฒฐ์ •ํ–ˆ์Šต๋‹ˆ๋‹ค.
05:29
So, it's been a big, very complex project,
130
329260
2000
์ด๊ฑด ๊ฑฐ๋Œ€ํ•˜๊ณ  ๋งค์šฐ ๋ณต์žกํ•œ ํ”„๋กœ์ ํŠธ์˜€์œผ๋ฉฐ,
05:31
which I was not sure was going to work at all.
131
331260
3000
์ž˜ ๋  ๊ฒƒ์ธ์ง€ ํ™•์‹คํ•˜์ง€๋„ ์•Š์•˜์ฃ .
05:34
But I'm happy to say it's actually going really well.
132
334260
3000
ํ•˜์ง€๋งŒ ๋‹คํ–‰์Šค๋Ÿฝ๊ฒŒ๋„ ์ด๊ฑด ์ž˜ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ์ฃ .
05:37
And last year we were able
133
337260
2000
๊ทธ๋ฆฌ๊ณ  ์ง€๋‚œํ•ด ์šฐ๋ฆฌ๋Š”
05:39
to release the first website version
134
339260
2000
์ตœ์ดˆ์˜ ์›น์‚ฌ์ดํŠธ ๋ฒ„์ „์„ ์ถœ์‹œํ–ˆ๋Š”๋ฐ,
05:41
of Wolfram Alpha.
135
341260
2000
๋ฐ”๋กœ ์šธํ”„๋žจ ์•ŒํŒŒ(Wolfram Alpha)์ฃ .
05:43
Its purpose is to be a serious knowledge engine
136
343260
3000
์ด ์‚ฌ์ดํŠธ์˜ ๋ชฉ์ ์€ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š”
05:46
that computes answers to questions.
137
346260
3000
์ง„์ •ํ•œ ์ง€์‹ ์—”์ง„์ด ๋˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:49
So let's give it a try.
138
349260
2000
ํ•œ ๋ฒˆ ์‹œํ—˜ํ•ด๋ณด์ฃ .
05:51
Let's start off with something really easy.
139
351260
2000
๋งค์šฐ ์‰ฌ์šด ๊ฒƒ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด๋ด…์‹œ๋‹ค.
05:53
Hope for the best.
140
353260
2000
์ž˜ ๋˜๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.
05:55
Very good. Okay.
141
355260
2000
์•„์ฃผ ์ข‹์•„์š”.
05:57
So far so good.
142
357260
2000
์ง€๊ธˆ๊นŒ์ง„ ์ž˜ ๋˜๊ณ  ์žˆ๋„ค์š”.
05:59
(Laughter)
143
359260
3000
(์›ƒ์Œ)
06:02
Let's try something a little bit harder.
144
362260
3000
์กฐ๊ธˆ ๋” ์–ด๋ ค์šด ๊ฑธ ์‹œ๋„ํ•ด๋ณด์ฃ .
06:05
Let's do
145
365260
2000
์ž...
06:07
some mathy thing,
146
367260
3000
์กฐ๊ธˆ ์ˆ˜ํ•™์ ์ธ ๊ฒƒ๊ณผ
06:10
and with luck it'll work out the answer
147
370260
3000
์šด์„ ํฌํ•จํ•ด์„œ ์šฐ๋ฆฌ์—๊ฒŒ
06:13
and try and tell us some interesting things
148
373260
2000
์–ด๋–ค ํฅ๋ฏธ๋กœ์šด ๊ฒƒ๊ณผ ์ˆ˜ํ•™์— ๊ด€๋ จ๋œ
06:15
things about related math.
149
375260
2000
๊ฒฐ๊ณผ๋ฅผ ์ฃผ๋„๋ก ํ•ด๋ณด์ฃ .
06:17
We could ask it something about the real world.
150
377260
3000
์‹ค์„ธ๊ณ„์— ๊ด€ํ•œ ๊ฒƒ์„ ๋ฌผ์–ด๋ณผ ์ˆ˜๋„ ์žˆ์ฃ .
06:20
Let's say -- I don't know --
151
380260
2000
์ž... ์ž˜ ์ƒ๊ฐ์€ ์•ˆ๋‚˜์ง€๋งŒ...
06:22
what's the GDP of Spain?
152
382260
3000
์ŠคํŽ˜์ธ์˜ GDP๋Š” ์–ผ๋งˆ์ผ๊นŒ์š”?
06:25
And it should be able to tell us that.
153
385260
2000
๊ทธ๊ฒƒ์„ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:27
Now we could compute something related to this,
154
387260
2000
์ž ์ด์ œ ์ด์™€ ๊ด€๋ จ๋œ ๊ฒƒ๋“ค์„ ๊ณ„์‚ฐํ•  ์ˆ˜๋„ ์žˆ์ฃ .
06:29
let's say ... the GDP of Spain
155
389260
2000
์ŠคํŽ˜์ธ์˜ GDP๋ฅผ ์–ด๋–ค ๊ฒƒ์œผ๋กœ
06:31
divided by, I don't know,
156
391260
2000
๋‚˜๋ˆˆ๋‹ค๊ณ  ํ•ด๋ณด์ฃ . ๋งˆ๋•…ํ•œ ๊ฒƒ์ด
06:33
the -- hmmm ...
157
393260
2000
์ž˜ ๋– ์˜ค๋ฅด์ง€ ์•Š๋„ค์š”...
06:35
let's say the revenue of Microsoft.
158
395260
2000
๋งˆ์ดํฌ๋กœ์†Œํ”„ํŠธ์˜ ์ด์ต์ด๋ผ๊ณ  ํ•ด๋ด…์‹œ๋‹ค.
06:37
(Laughter)
159
397260
2000
(์›ƒ์Œ)
06:39
The idea is that we can just type this in,
160
399260
2000
์šฐ๋ฆฌ๋Š” ์ž…๋ ฅ๊ณผ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ์งˆ๋ฌธ์˜
06:41
this kind of question in, however we think of it.
161
401260
3000
์ข…๋ฅ˜๋ฅผ ์ •๋ ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:44
So let's try asking a question,
162
404260
2000
์งˆ๋ฌธ์„ ํ•œ ๋ฒˆ ํ•ด๋ณด์ฃ .
06:46
like a health related question.
163
406260
2000
๊ฑด๊ฐ•๊ด€๋ จ ์งˆ๋ฌธ์ž…๋‹ˆ๋‹ค.
06:48
So let's say we have a lab finding that ...
164
408260
3000
๊ฒ€์‚ฌ๊ฒฐ๊ณผ, 50์„ธ ๋‚จ์„ฑ์˜
06:51
you know, we have an LDL level of 140
165
411260
2000
์ €๋ฐ€๋„์ง€์งˆ๋‹จ๋ฐฑ์งˆ(LDL) ์ˆ˜์น˜๊ฐ€ 140์ด
06:53
for a male aged 50.
166
413260
3000
๋‚˜์™”๋‹ค๊ณ  ํ•ด๋ณด์ฃ .
06:56
So let's type that in, and now Wolfram Alpha
167
416260
2000
์ž…๋ ฅํ•ด๋ณด์ฃ . ์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€
06:58
will go and use available public health data
168
418260
2000
๊ฐ€์šฉํ•œ ๊ณต๊ณต ๋ณด๊ฑด ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•ด์„œ
07:00
and try and figure out
169
420260
2000
์–ด๋–ค ๋ถ€๋ถ„์˜ ์ธ๊ตฌ๊ฐ€
07:02
what part of the population that corresponds to and so on.
170
422260
3000
์ด์— ํ•ด๋‹นํ•˜๋Š”์ง€๋ฅผ ํฌํ•จํ•œ ์ •๋ณด๋ฅผ ๋ฐํ˜€์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:05
Or let's try asking about, I don't know,
171
425260
3000
๋‹ค๋ฅธ ์งˆ๋ฌธ๋„ ํ•ด๋ณด์ฃ . ๋ญ๊ฐ€ ์ข‹์„๊นŒ์š”?
07:08
the International Space Station.
172
428260
2000
๊ตญ์ œ ์šฐ์ฃผ์ •๊ฑฐ์žฅ.
07:10
And what's happening here is that
173
430260
2000
์—ฌ๊ธฐ์„œ ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์€
07:12
Wolfram Alpha is not just looking up something;
174
432260
2000
์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€ ๋‹จ์ˆœํžˆ ์–ด๋–ค ๊ฑธ ์ฐพ๋Š” ๊ฒƒ๋งŒ ์•„๋‹ˆ๋ผ
07:14
it's computing, in real time,
175
434260
3000
์‹ค์‹œ๊ฐ„์œผ๋กœ ์ˆ˜ํ–‰๋˜๋Š” ๊ณ„์‚ฐ์ด์ฃ .
07:17
where the International Space Station is right now at this moment,
176
437260
3000
๋ฐ”๋กœ ์ด์ˆœ๊ฐ„ ๊ตญ์ œ ์šฐ์ฃผ์ •๊ฑฐ์žฅ(ISS)์ด ์–ด๋””์— ์žˆ์œผ๋ฉฐ,
07:20
how fast it's going, and so on.
177
440260
3000
์–ผ๋งˆ๋‚˜ ๋น ๋ฅด๊ฒŒ ์›€์ง์ด๊ณ  ์žˆ๋‚˜ ํ•˜๋Š” ๊ฒƒ๋“ค์ž…๋‹ˆ๋‹ค.
07:24
So Wolfram Alpha knows about lots and lots of kinds of things.
178
444260
3000
์šธํ”„๋žจ ์•ŒํŒŒ๋Š” ์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ์ •๋ณด๋ฅผ ์•„์ฃผ ๋งŽ์ด ์•Œ๊ณ  ์žˆ์ฃ .
07:27
It's got, by now,
179
447260
2000
ํ˜„์žฌ ์—ฌ๋Ÿฌ๋ถ„์ด
07:29
pretty good coverage of everything you might find
180
449260
2000
ํ‘œ์ค€ ๋ฌธํ—Œ ๋„์„œ๊ด€์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋Š”
07:31
in a standard reference library.
181
451260
3000
๊ฑฐ์˜ ๋Œ€๋ถ€๋ถ„์˜ ์ •๋ณด๋ฅผ ๋ง๋ผํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
07:34
But the goal is to go much further
182
454260
2000
ํ•˜์ง€๋งŒ ๊ทธ ๋ชฉํ‘œ๋Š” ํ›จ์”ฌ ๋” ๋‚˜์•„๊ฐ€
07:36
and, very broadly, to democratize
183
456260
3000
๋งค์šฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ๋ฏผ์ฃผํ™”๋œ
07:39
all of this knowledge,
184
459260
3000
๋ชจ๋“  ์ข…๋ฅ˜์˜ ์ง€์‹์„ ํฌํ•จํ•˜์—ฌ,
07:42
and to try and be an authoritative
185
462260
2000
๋ชจ๋“  ๋ถ„์•ผ์—์„œ ๊ถŒ์œ„ ์žˆ๋Š”
07:44
source in all areas.
186
464260
2000
์ •๋ณด์›์ด ๋˜์–ด
07:46
To be able to compute answers to specific questions that people have,
187
466260
3000
์‚ฌ๋žŒ๋“ค์ด ๊ฐ€์ง„ ํŠน์ • ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๊ณ„์‚ฐ๋œ ๋‹ต์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด์ฃ .
07:49
not by searching what other people
188
469260
2000
๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์ด ์ด์ „์ด ์ž‘์„ฑํ–ˆ๋˜
07:51
may have written down before,
189
471260
2000
์ •๋ณด๋ฅผ ๊ฒ€์ƒ‰ํ•ด์ฃผ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ,
07:53
but by using built in knowledge
190
473260
2000
๋‚ด์žฅ๋œ ์ง€์‹์„ ์ด์šฉํ•˜์—ฌ
07:55
to compute fresh new answers to specific questions.
191
475260
3000
ํŠน์ • ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์‹ ์„ ํ•˜๊ณ  ์ƒˆ๋กœ์šด ๋‹ต์„ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ฒƒ์ด์ฃ .
07:58
Now, of course, Wolfram Alpha
192
478260
2000
๋ฌผ๋ก  ์šธํ”„๋žจ ์•ŒํŒŒ๋Š” ํ˜„์žฌ
08:00
is a monumentally huge, long-term project
193
480260
2000
๊ธฐ๋…๋น„์ ์œผ๋กœ ๊ฑฐ๋Œ€ํ•˜๊ณ  ์žฅ๊ธฐ์ ์ธ ํ”„๋กœ์ ํŠธ๋กœ
08:02
with lots and lots of challenges.
194
482260
2000
์ˆ˜ ๋งŽ์€ ๋„์ „๊ณผ์ œ๋ฅผ ์•ˆ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
08:04
For a start, one has to curate a zillion
195
484260
3000
๋งจ ์ฒ˜์Œ, ์ˆ˜ ๋งŽ์€ ์‚ฌ์‹ค๊ณผ ๋ฐ์ดํ„ฐ ์†Œ์Šค๋ฅผ
08:07
different sources of facts and data,
196
487260
3000
์ •๋ฆฌํ•ด์•ผ ํ–ˆ๊ณ ,
08:10
and we built quite a pipeline of Mathematica automation
197
490260
3000
๋งค์Šค๋งคํ‹ฐ์นด ์ž๋™ํ™”์™€ ์ด ์ผ์— ๋Šฅ์ˆ™ํ•œ
08:13
and human domain experts for doing this.
198
493260
3000
๊ฐ ๋ถ„์•ผ์˜ ์ „๋ฌธ๊ฐ€์™€ ์—ฐ๊ณ„ํ•˜๋Š” ์ž‘์—…์„ ํ–ˆ์ฃ .
08:16
But that's just the beginning.
199
496260
2000
๊ทธ๊ฑด ์‹œ์ž‘์— ๋ถˆ๊ณผํ–ˆ์ฃ .
08:18
Given raw facts or data
200
498260
2000
์ฃผ์–ด์ง„ ์›์ฒœ ์‚ฌ์‹ค์ด๋‚˜ ์ž๋ฃŒ๋ฅผ ํ†ตํ•ด
08:20
to actually answer questions,
201
500260
2000
์‹ค์ œ ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต์„ ๊ตฌํ•˜๋ ค๋ฉด,
08:22
one has to compute:
202
502260
2000
๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๊ณ ,
08:24
one has to implement all those methods and models
203
504260
2000
์ด ๋ชจ๋“  ๋ฐฉ๋ฒ•๊ณผ ๋ชจ๋ธ์„ ๋น„๋กฏํ•ด
08:26
and algorithms and so on
204
506260
2000
์•Œ๊ณ ๋ฆฌ๋“ฌ ๋“ฑ์„ ๊ตฌํ˜„ํ•ด์•ผ๋งŒ ํ–ˆ์ฃ .
08:28
that science and other areas have built up over the centuries.
205
508260
3000
์ด๊ฒƒ๋“ค์€ ์ˆ˜ ์„ธ๊ธฐ์— ๊ฑธ์ณ ์Œ“์•„์˜จ ๊ณผํ•™๊ณผ ์—ฌ๋Ÿฌ ์˜์—ญ์— ๋Œ€ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
08:31
Well, even starting from Mathematica,
206
511260
3000
์‚ฌ์‹ค ๋งค์Šค๋งคํ‹ฐ์นด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ์ž‘ํ•˜๋”๋ผ๋„
08:34
this is still a huge amount of work.
207
514260
2000
์ด๊ฒƒ์€ ์—ฌ์ „ํžˆ ์—„์ฒญ๋‚œ ์–‘์˜ ์ผ์ด์ฃ .
08:36
So far, there are about 8 million lines
208
516260
2000
์ง€๊ธˆ๊นŒ์ง€ 8๋ฐฑ๋งŒ ์ค„์˜ ๋งค์Šค๋งคํ‹ฐ์นด ์ฝ”๋“œ๊ฐ€
08:38
of Mathematica code in Wolfram Alpha
209
518260
2000
์šธํ”„๋žจ ์•ŒํŒŒ์— ์ž…๋ ฅ๋˜์—ˆ์œผ๋ฉฐ,
08:40
built by experts from many, many different fields.
210
520260
3000
์•„์ฃผ ๋งŽ์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ถ„์•ผ์˜ ์ „๋ฌธ๊ฐ€๋“ค์ด ์ž‘์„ฑ์— ์ฐธ์—ฌํ–ˆ์ฃ .
08:43
Well, a crucial idea of Wolfram Alpha
211
523260
3000
์šธํ”„๋žจ ์•ŒํŒŒ์˜ ํ•ต์‹ฌ์ ์ธ ์•„์ด๋””์–ด ํ•˜๋‚˜๋Š”
08:46
is that you can just ask it questions
212
526260
2000
์ผ๋ฐ˜์ ์ธ ์ธ๊ฐ„์˜ ์–ธ์–ด๋ฅผ ํ†ตํ•ด
08:48
using ordinary human language,
213
528260
3000
์งˆ๋ฌธ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ธ๋ฐ,
08:51
which means that we've got to be able to take
214
531260
2000
์ด๊ฒƒ์€ ์‚ฌ๋žŒ๋“ค์ด ๊ฒ€์ƒ‰์ฐฝ์— ์ž…๋ ฅํ•˜๋Š”
08:53
all those strange utterances that people type into the input field
215
533260
3000
๋ชจ๋“  ์ด์ƒํ•œ ๋งํˆฌ๋ฅผ ๋ฐ›์•„๋“ค์ผ ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๊ณ 
08:56
and understand them.
216
536260
2000
์ดํ•ดํ•ด์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
08:58
And I must say that I thought that step
217
538260
2000
๋ถ„๋ช…ํžˆ ๋งํ•ด์•ผ ํ•˜๋Š” ๊ฒƒ์€ ์ œ ์ƒ๊ฐ์—
09:00
might just be plain impossible.
218
540260
3000
๊ทธ๋Ÿฐ ๋‹จ๊ณ„๋Š” ๋‹จ์ˆœํžˆ ๋ถˆ๊ฐ€๋Šฅํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑฐ์—์š”.
09:04
Two big things happened:
219
544260
2000
๋‘ ๊ฐ€์ง€ ํฐ ์ผ์ด ๋ฐœ์ƒํ–ˆ์ฃ .
09:06
First, a bunch of new ideas about linguistics
220
546260
3000
์ฒซ์งธ, ๊ณ„์‚ฐ์  ์šฐ์ฃผ๋ฅผ ์—ฐ๊ตฌํ•œ ๊ฒฐ๊ณผ
09:09
that came from studying the computational universe;
221
549260
3000
์–ธ์–ดํ•™์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๋งŽ์€ ์•„์ด๋””์–ด๋ฅผ ์–ป์—ˆ์ฃ .
09:12
and second, the realization that having actual computable knowledge
222
552260
3000
๋‘˜์งธ, ์‹ค์ œ ๊ณ„์‚ฐ์  ์ง€์‹์„ ์–ป๋Š” ๊ฒƒ์€ ์–ธ์–ด๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐฉ์‹์„
09:15
completely changes how one can
223
555260
2000
์™„์ „ํžˆ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„
09:17
set about understanding language.
224
557260
3000
์ธ์ง€ํ•˜๊ฒŒ ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
09:20
And, of course, now
225
560260
2000
๋ฌผ๋ก  ์ง€๊ธˆ์€
09:22
with Wolfram Alpha actually out in the wild,
226
562260
2000
์‹ค์ œ ์„ธ์ƒ์— ์„ ์„ ๋ณด์ธ ์šธํ”„๋žจ ์•ŒํŒŒ๋ฅผ ํ†ตํ•ด
09:24
we can learn from its actual usage.
227
564260
2000
์‹ค์ œ ์‚ฌ๋ก€๋กœ๋ถ€ํ„ฐ ๋ฐฐ์šธ ์ˆ˜ ์žˆ์ฃ .
09:26
And, in fact, there's been
228
566260
2000
์‚ฌ์‹ค์ƒ ํฅ๋ฏธ๋กœ์šด ์ƒํ˜ธ์ง„ํ™”๊ฐ€
09:28
an interesting coevolution that's been going on
229
568260
2000
์šธํ”„๋žจ ์•ŒํŒŒ์™€ ์ธ๊ฐ„ ์‚ฌ์šฉ์ž๋“ค ์‚ฌ์ด์—์„œ
09:30
between Wolfram Alpha
230
570260
2000
์ผ์–ด๋‚˜๊ณ  ์žˆ๋Š” ๊ฒƒ์„
09:32
and its human users,
231
572260
2000
๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
09:34
and it's really encouraging.
232
574260
2000
๋งค์šฐ ๊ณ ๋ฌด์ ์ธ ์ผ์ด์ฃ .
09:36
Right now, if we look at web queries,
233
576260
2000
๋ฐ”๋กœ ์ง€๊ธˆ ์›น ๊ฒ€์ƒ‰์–ด๋ฅผ ๋ณธ๋‹ค๋ฉด,
09:38
more than 80 percent of them get handled successfully the first time.
234
578260
3000
80% ์ด์ƒ์˜ ์งˆ๋ฌธ์ด ์ตœ์ดˆ ์‹œ๋„์—์„œ ์„ฑ๊ณต์ ์ธ ๋‹ต์„ ์–ป๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
09:41
And if you look at things like the iPhone app,
235
581260
2000
์•„์ดํฐ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์„ ๋ณด์‹œ๋ฉด,
09:43
the fraction is considerably larger.
236
583260
2000
์ด๊ฒŒ ์ƒ๋‹นํžˆ ํฐ ๋ถ€๋ถ„์ด๋ผ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์ฃ .
09:45
So, I'm pretty pleased with it all.
237
585260
2000
๊ทธ๋ž˜์„œ ๋งค์šฐ ๊ธฐ์˜๊ฒŒ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
09:47
But, in many ways,
238
587260
2000
ํ•˜์ง€๋งŒ, ๋งŽ์€ ๋ถ€๋ถ„์— ์žˆ์–ด์„œ
09:49
we're still at the very beginning with Wolfram Alpha.
239
589260
3000
์šธํ”„๋žจ ์•ŒํŒŒ์˜ ์•„์ฃผ ์‹œ์ž‘ ๋‹จ๊ณ„์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ์ฃ .
09:52
I mean, everything is scaling up very nicely
240
592260
2000
๋ชจ๋“  ๊ฒƒ์ด ์•„์ฃผ ์ˆœ์กฐ๋กญ๊ฒŒ ํ™•๋Œ€๋˜๋Š” ์ค‘์ด์ฃ .
09:54
and we're getting more confident.
241
594260
2000
๋” ๋งŽ์€ ํ™•์‹ ์„ ๊ฐ–๊ฒŒ ๋˜์—ˆ์ฃ .
09:56
You can expect to see Wolfram Alpha technology
242
596260
2000
์šธํ”„๋žจ ์•ŒํŒŒ ๊ธฐ์ˆ ์„
09:58
showing up in more and more places,
243
598260
2000
๋” ๋งŽ์€ ๊ณณ์—์„œ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:00
working both with this kind of public data, like on the website,
244
600260
3000
์›น์‚ฌ์ดํŠธ์˜ ๊ณต๊ณต ์ž๋ฃŒ๋Š” ๋ฌผ๋ก ์ด๊ณ 
10:03
and with private knowledge
245
603260
2000
๊ฐœ์ธ, ๊ธฐ์—… ๋“ฑ ์‚ฌ์ ์ธ ์ง€์‹๊ณผ๋„
10:05
for people and companies and so on.
246
605260
3000
์—ฐ๋™ํ•˜๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:08
You know, I've realized that Wolfram Alpha actually gives one
247
608260
3000
์•Œ๋‹ค์‹œํ”ผ, ์ „ ์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€ ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜
10:11
a whole new kind of computing
248
611260
2000
๊ณ„์‚ฐ์„ ์ œ๊ณตํ•ด์ค„ ๊ฒƒ์„ ์ธ์ง€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
10:13
that one can call knowledge-based computing,
249
613260
2000
์ง€์‹๊ธฐ๋ฐ˜ ๊ณ„์‚ฐ์ด๋ผ๊ณ  ๋ถ€๋ฅด๋Š” ๊ฒƒ์ด์ฃ .
10:15
in which one's starting not just from raw computation,
250
615260
3000
๋‹จ์ง€ ์›์ฒœ ๊ณ„์‚ฐ์—์„œ ๋‚˜์˜ค๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ
10:18
but from a vast amount of built-in knowledge.
251
618260
3000
๋ฐฉ๋Œ€ํ•œ ๋‚ด์žฅ ์ง€์‹์—์„œ ๋‚˜์˜ค๋Š” ๊ฒƒ์ด์ฃ .
10:21
And when one does that, one really changes
252
621260
2000
์ด๋Ÿฐ ์ผ์ด ๊ฐ€๋Šฅํ•ด์ง€๋ฉด, ๊ณ„์‚ฐ๋œ ๊ฒฐ๊ณผ๋ฅผ
10:23
the economics of delivering computational things,
253
623260
3000
์ „๋‹ฌํ•˜๋Š” ๊ฒฝ์ œ์—์„œ ํฐ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์˜ฌ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:26
whether it's on the web or elsewhere.
254
626260
2000
์›น์ด๋‚˜ ๊ทธ ๋ฐ–์˜ ์˜์—ญ ๋ชจ๋‘์— ํ•ด๋‹น๋ฉ๋‹ˆ๋‹ค.
10:28
You know, we have a fairly interesting situation right now.
255
628260
3000
์•Œ๋‹ค์‹œํ”ผ, ์ง€๊ธˆ ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ์ƒํ™ฉ์— ์žˆ์Šต๋‹ˆ๋‹ค.
10:31
On the one hand, we have Mathematica,
256
631260
2000
ํ•œ ์†์—๋Š” ๋งค์Šค๋งคํ‹ฐ์นด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
10:33
with its sort of precise, formal language
257
633260
3000
์ •ํ™•ํ•˜๊ณ , ์ •ํ˜•ํ™”๋œ ์–ธ์–ด์ด๋ฉฐ
10:36
and a huge network
258
636260
2000
๋งŽ์€ ์ผ์„ ๋‹จ ๋ช‡ ์ค„์•ˆ์— ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก
10:38
of carefully designed capabilities
259
638260
2000
์ž˜ ๋””์ž์ธ๋œ ๊ธฐ๋Šฅ๋“ค์„ ๋ชจ์€
10:40
able to get a lot done in just a few lines.
260
640260
3000
๊ฑฐ๋Œ€ํ•œ ๋„คํŠธ์›Œํฌ์ž…๋‹ˆ๋‹ค.
10:43
Let me show you a couple of examples here.
261
643260
3000
๋ช‡ ๊ฐ€์ง€ ์˜ˆ๋ฅผ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
10:47
So here's a trivial piece of Mathematica programming.
262
647260
3000
์ด๊ฒƒ์€ ๋งค์Šค๋งคํ‹ฐ์นด ํ”„๋กœ๊ทธ๋žจ์˜ ์ผ๋ถ€์— ๋ถˆ๊ณผํ•ฉ๋‹ˆ๋‹ค.
10:51
Here's something where we're sort of
263
651260
2000
์—ฌ๊ธฐ์— ๋ฐ”๋กœ ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ์„œ๋กœ ๋‹ค๋ฅธ
10:53
integrating a bunch of different capabilities here.
264
653260
3000
๊ธฐ๋Šฅ์„ ํ•œ๋ฐ ๋ชจ์•„ ํ†ตํ•ฉํ•œ ๊ฒƒ์ด ์ž๋ฆฌํ•˜๊ณ  ์žˆ์ฃ .
10:56
Here we'll just create, in this line,
265
656260
3000
๋ฐ”๋กœ ์—ฌ๊ธฐ์— ์กฐ๊ทธ๋งŒ ์œ ์ € ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ
10:59
a little user interface that allows us to
266
659260
3000
์ƒ์„ฑํ•˜๋Š” ๋ผ์ธ์„ ์ถ”๊ฐ€ํ•˜์—ฌ
11:02
do something fun there.
267
662260
2000
์žฌ๋ฏธ์žˆ๋Š” ๊ฒƒ์„ ํ•  ์ˆ˜ ์žˆ์ฃ .
11:05
If you go on, that's a slightly more complicated program
268
665260
2000
๊ณ„์†ํ•  ๊ฒฝ์šฐ, ์ข€ ๋” ๋ณต์žกํ•œ ํ”„๋กœ๊ทธ๋žจ์„ ํ†ตํ•ด
11:07
that's now doing all sorts of algorithmic things
269
667260
3000
๋ชจ๋“  ์ข…๋ฅ˜์˜ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ˆ˜ํ–‰ํ•˜๊ณ 
11:10
and creating user interface and so on.
270
670260
2000
์œ ์ € ์ธํ„ฐํŽ˜์ด์Šค์™€ ๊ฐ™์€ ๊ฒƒ๋“ค์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์ฃ .
11:12
But it's something that is very precise stuff.
271
672260
3000
ํ•˜์ง€๋งŒ ์ด๊ฒƒ๋“ค์€ ๋งค์šฐ ์ •ํ™•ํ•œ ๊ฒƒ๋“ค์ž…๋‹ˆ๋‹ค.
11:15
It's a precise specification with a precise formal language
272
675260
3000
์ •ํ™•ํ•œ ์ •ํ˜• ์–ธ์–ด๋กœ ์ž‘์„ฑ๋œ ์ •ํ™•ํ•œ ๋ช…์„ธ๋Š”
11:18
that causes Mathematica to know what to do here.
273
678260
3000
๋งค์Šค๋งคํ‹ฐ์นด๋กœ ํ•˜์—ฌ๊ธˆ ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋Š”์ง€ ์•Œ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.
11:21
Then on the other hand, we have Wolfram Alpha,
274
681260
3000
๋˜ ๋‹ค๋ฅธ ์†์—๋Š” ์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
11:24
with all the messiness of the world
275
684260
2000
์ง€๊ตฌ์ƒ์— ์žˆ๋Š” ๋ชจ๋“  ์ข…๋ฅ˜์˜ ํ˜ผ๋™๊ณผ
11:26
and human language and so on built into it.
276
686260
2000
์ธ๊ฐ„์˜ ์–ธ์–ด ๋“ฑ์ด ๋‚ด์žฅ๋˜์–ด ์žˆ์ฃ .
11:28
So what happens when you put these things together?
277
688260
3000
์ž ์ด ๋‘ ๊ฐ€์ง€๋ฅผ ํ•ฉ์น˜๋ฉด ๋ฌด์Šจ ์ผ์ด ์ƒ๊ธธ๊นŒ์š”?
11:31
I think it's actually rather wonderful.
278
691260
2000
์ €๋Š” ๋งค์šฐ ๋ฉ‹์ง„ ๊ฒƒ์„ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
11:33
With Wolfram Alpha inside Mathematica,
279
693260
2000
๋งค์Šค๋งคํ‹ฐ์นด๊ฐ€ ๋‚ด์žฅ๋œ ์šธํ”„๋žจ ์•ŒํŒŒ๋กœ
11:35
you can, for example, make precise programs
280
695260
2000
์‹ค์„ธ๊ณ„ ๋ฐ์ดํ„ฐ๋ฅผ ์š”๊ตฌํ•˜๋Š”
11:37
that call on real world data.
281
697260
2000
์ •ํ™•ํ•œ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๊ฑฐ์ฃ .
11:39
Here's a real simple example.
282
699260
2000
์—ฌ๊ธฐ ๊ฐ„๋‹จํ•œ ์‹ค์ œ ์‚ฌ๋ก€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
11:44
You can also just sort of give vague input
283
704260
3000
๊ทธ๋ƒฅ ๋ถˆ๋ช…ํ™•ํ•œ ๊ฒƒ๋“ค์„ ์ž…๋ ฅํ•œ ํ›„
11:47
and then try and have Wolfram Alpha
284
707260
2000
์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€ ๋ฌด์—‡์„ ์˜๋ฏธํ•œ ๊ฒƒ์ธ์ง€
11:49
figure out what you're talking about.
285
709260
2000
ํŒŒ์•…ํ•˜๋„๋ก ํ•  ์ˆ˜๋„ ์žˆ์ฃ .
11:51
Let's try this here.
286
711260
2000
์ด๊ฑธ ํ•œ ๋ฒˆ ํ•ด๋ณด์ฃ .
11:53
But actually I think the most exciting thing about this
287
713260
3000
์ €๋Š” ์ด์— ๊ด€ํ•ด ๊ฐ€์žฅ ํฅ๋ฏธ๋กœ์šด ๊ฒƒ ์ค‘์— ํ•˜๋‚˜๊ฐ€ ๋ฐ”๋กœ
11:56
is that it really gives one the chance
288
716260
2000
๋ฏผ์ฃผํ™”๋œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์˜ ๊ธฐํšŒ๋ฅผ
11:58
to democratize programming.
289
718260
3000
์‹ค์ œ๋กœ ์ œ๊ณตํ•ด์ค„ ๊ฒƒ์ด๋ž€ ์ƒ๊ฐ์ž…๋‹ˆ๋‹ค.
12:01
I mean, anyone will be able to say what they want in plain language.
290
721260
3000
์ด ๋ง์€ ๋ˆ„๊ตฐ๊ฐ€ ์›ํ•˜๋Š” ๊ฒƒ์„ ํ‰๋ฒ”ํ•œ ์–ธ์–ด๋กœ ๋งํ•˜๊ณ  ๋‚˜๋ฉด,
12:04
Then, the idea is that Wolfram Alpha will be able to figure out
291
724260
3000
์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€ ์ •ํ™•ํžˆ ์–ด๋–ค ์ฝ”๋“œ ์กฐ๊ฐ์ด
12:07
what precise pieces of code
292
727260
2000
์š”๊ตฌํ•˜๋Š” ๊ฒƒ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์ง€
12:09
can do what they're asking for
293
729260
2000
ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๋Š” ๋ง์ž…๋‹ˆ๋‹ค.
12:11
and then show them examples that will let them pick what they need
294
731260
3000
๊ทธ๋Ÿฐ ๋‹ค์Œ์—๋Š” ์‚ฌ์šฉ์ž์—๊ฒŒ ์˜ˆ์‹œ๋“ค์„ ๋ณด์—ฌ์ค„ ๊ฒƒ์ด๋ฉฐ ์‚ฌ์šฉ์ž๋Š” ์ด๋“ค์„ ๊ณจ๋ผ
12:14
to build up bigger and bigger, precise programs.
295
734260
3000
๋” ํฐ ์ •ํ™•ํ•œ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“ค ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:17
So, sometimes, Wolfram Alpha
296
737260
2000
๋”ฐ๋ผ์„œ ๋•Œ๋กœ๋Š” ์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€
12:19
will be able to do the whole thing immediately
297
739260
2000
์ „์ฒด๋ฅผ ์ฆ‰๊ฐ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๊ณ 
12:21
and just give back a whole big program that you can then compute with.
298
741260
3000
๋‚˜์ค‘์— ๊ณ„์‚ฐํ•  ๋•Œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ปค๋‹ค๋ž€ ํ”„๋กœ๊ทธ๋žจ์„ ๋‹จ์ง€ ๋Œ๋ ค์ค„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
12:24
Here's a big website
299
744260
2000
์ž ์—ฌ๊ธฐ ๋Œ€ํ˜• ์›น์‚ฌ์ดํŠธ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
12:26
where we've been collecting lots of educational
300
746260
3000
์—ฌ๋Ÿฌ ๊ต์œก์ ์ธ ๊ฒƒ๋“ค๊ณผ ๋งŽ์€ ๊ฒƒ๋“ค์— ๋Œ€ํ•œ
12:29
and other demonstrations about lots of kinds of things.
301
749260
3000
๋ฐ๋ชจ๋“ค์„ ์ˆ˜์ง‘ํ•ด ์˜ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
12:32
I'll show you one example here.
302
752260
3000
์–ด๋–ค ๊ฒƒ์„ ๋ณด์—ฌ๋“œ๋ ค์•ผ ํ• ์ง€ ๋ชจ๋ฅด๊ฒ ์ง€๋งŒ, ์ด๊ฒƒ์€ ์–ด๋–จ๊นŒ์š”.
12:36
This is just an example of one of these computable documents.
303
756260
3000
์ด๊ฑด ๋‹จ์ˆœํžˆ ๊ณ„์‚ฐ ๊ฐ€๋Šฅํ•œ ๋ฌธ์„œ์˜ ํ•œ ์˜ˆ์ž…๋‹ˆ๋‹ค.
12:39
This is probably a fairly small
304
759260
2000
์—ฌ๊ธฐ์„œ ์ž‘๋™๋˜๋Š”
12:41
piece of Mathematica code
305
761260
2000
๋งค์Šค๋งคํ‹ฐ์นด ์ฝ”๋“œ๋Š”
12:43
that's able to be run here.
306
763260
2000
์•„๋งˆ๋„ ๋งค์šฐ ์งง์„ ๊ฒ๋‹ˆ๋‹ค.
12:47
Okay. Let's zoom out again.
307
767260
3000
์ข‹์•„์š”. ๋‹ค์‹œ ๋…ผ์˜๋ฅผ ๋„“ํ˜€๋ณด์ฃ .
12:50
So, given our new kind of science,
308
770260
2000
์šฐ๋ฆฌ์˜ ์ƒˆ๋กœ์šด ์ข…๋ฅ˜์˜ ๊ณผํ•™์ด ์žˆ์„ ๋•Œ,
12:52
is there a general way to use it to make technology?
309
772260
3000
๊ธฐ์ˆ ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์ด ์žˆ์„๊นŒ์š”?
12:55
So, with physical materials,
310
775260
2000
๋ฌผ๋ฆฌ ์žฌ๋ฃŒ์˜ ๊ฒฝ์šฐ์—๋Š”,
12:57
we're used to going around the world
311
777260
2000
์šฐ๋ฆฌ๋Š” ์„ธ๊ณ„๋ฅผ ๋Œ๋ฉด์„œ
12:59
and discovering that particular materials
312
779260
2000
ํŠน์ • ๋ฌผ์งˆ์ด
13:01
are useful for particular
313
781260
2000
ํŠน์ • ๋ชฉ์ ์— ์œ ์šฉํ•˜๋‹ค๋Š” ์‚ฌ์‹ค์„
13:03
technological purposes.
314
783260
2000
๋ฐœ๊ฒฌํ•ด์˜ค๊ณ ๋Š” ํ–ˆ์Šต๋‹ˆ๋‹ค.
13:05
Well, it turns out we can do very much the same kind of thing
315
785260
2000
๋ฐ”๋กœ ์ด๊ฒƒ๊ณผ ๋™์ผํ•œ ๋ฐฉ์‹์ด ๊ณ„์‚ฐ์  ์šฐ์ฃผ์—์„œ๋„
13:07
in the computational universe.
316
787260
2000
์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋ฐœ๊ฒฌ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
13:09
There's an inexhaustible supply of programs out there.
317
789260
3000
๋Š์ž„์—†๋Š” ํ”„๋กœ๊ทธ๋žจ์˜ ๊ณต๊ธ‰์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.
13:12
The challenge is to see how to
318
792260
2000
๊ณผ์ œ๋Š” ์–ด๋–ป๊ฒŒ ์ด๊ฒƒ๋“ค์„
13:14
harness them for human purposes.
319
794260
2000
์ธ๊ฐ„์˜ ๋ชฉ์ ์„ ์œ„ํ•ด ์‚ฌ์šฉํ•  ๊ฒƒ์ธ๊ฐ€ ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
13:16
Something like Rule 30, for example,
320
796260
2000
์˜ˆ๋ฅผ ๋“ค์–ด ๊ทœ์น™ 30 ๋ฒˆ๊ณผ ๊ฐ™์€ ๊ฒƒ์€
13:18
turns out to be a really good randomness generator.
321
798260
2000
์ž„์˜์„ฑ(randomness) ๋ฐœ์ƒ๊ธฐ๋กœ์„œ ๋งค์šฐ ํ›Œ๋ฅญํ•˜๋‹ค๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ž…๋‹ˆ๋‹ค.
13:20
Other simple programs are good models
322
800260
2000
๋‹ค๋ฅธ ๊ฐ„๋‹จํ•œ ํ”„๋กœ๊ทธ๋žจ๋“ค๋„ ์ž์—ฐ๊ณ„๋‚˜ ์‚ฌํšŒ์—์„œ
13:22
for processes in the natural or social world.
323
802260
3000
๋ฐœ์ƒํ•˜๋Š” ๊ณผ์ •์— ๋Œ€ํ•œ ์ข‹์€ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
13:25
And, for example, Wolfram Alpha and Mathematica
324
805260
2000
์˜ˆ๋ฅผ ๋“ค์–ด, ์šธํ”„๋žจ ์•ŒํŒŒ์™€ ๋งค์Šค๋งคํ‹ฐ์นด๋Š”
13:27
are actually now full of algorithms
325
807260
2000
์‹ค์ œ๋กœ ๊ณ„์‚ฐ์  ์šฐ์ฃผ๋ฅผ ์ฐพ์œผ๋ฉด์„œ ๋ฐœ๊ฒฌํ•œ
13:29
that we discovered by searching the computational universe.
326
809260
3000
์•Œ๊ณ ๋ฆฌ๋“ฌ์œผ๋กœ ๊ฐ€๋“ ์ฐจ ์žˆ์ฃ .
13:33
And, for example, this -- if we go back here --
327
813260
3000
์˜ˆ๋ฅผ ๋“ค์–ด, ์—ฌ๊ธฐ๋กœ ๋Œ์•„๊ฐ€ ๋ณด์ฃ .
13:37
this has become surprisingly popular
328
817260
2000
์ด๊ฑด ์ž‘๊ณก๊ฐ€๋“ค ์‚ฌ์ด์—
13:39
among composers
329
819260
2000
์ƒ๋‹นํ•œ ์ธ๊ธฐ๋ฅผ ๋Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ
13:41
finding musical forms by searching the computational universe.
330
821260
3000
๊ณ„์‚ฐ์  ์šฐ์ฃผ๋ฅผ ํƒ์ƒ‰ํ•˜์—ฌ ์Œ์•…์  ํ˜•ํƒœ๋ฅผ ์ฐพ์•„์ค๋‹ˆ๋‹ค.
13:45
In a sense, we can use the computational universe
331
825260
2000
์–ด๋–ค ์˜๋ฏธ์—์„œ, ์šฐ๋ฆฌ๋Š” ๊ณ„์‚ฐ์  ์šฐ์ฃผ๋ฅผ ์ด์šฉํ•˜์—ฌ
13:47
to get mass customized creativity.
332
827260
3000
๋Œ€๋Ÿ‰ ๋งž์ถคํ˜• ์ฐฝ์กฐ์„ฑ์„ ์–ป์„ ์ˆ˜ ์žˆ์ฃ .
13:50
I'm hoping we can, for example,
333
830260
2000
์ €๋Š” ์šฐ๋ฆฌ๊ฐ€ ์šธํ”„๋žจ ์•ŒํŒŒ๋ฅผ
13:52
use that even to get Wolfram Alpha
334
832260
2000
์ด์šฉํ•˜์—ฌ ๋ฐœ๋ช…๊ณผ ๋ฐœ๊ฒฌ์„
13:54
to routinely do invention and discovery on the fly,
335
834260
3000
์‚ฌ์šฉ ๋„์ค‘ ์ •๊ธฐ์ ์œผ๋กœ ์ด๋ค„๋‚ด๊ณ 
13:57
and to find all sorts of wonderful stuff
336
837260
2000
์—”์ง€๋‹ˆ์–ด์™€ ์ ์ง„์  ์ง„ํ™”๋ฅผ ํ†ตํ•ด์„œ๋Š”
13:59
that no engineer
337
839260
2000
์—ฌ์ง€๊ป ์ฐพ์•„๋‚ผ ์ˆ˜ ์—†์—ˆ๋˜
14:01
and no process of incremental evolution would ever come up with.
338
841260
3000
๋ชจ๋“  ๋ฉ‹์ง„ ๊ฒƒ๋“ค์„ ์ฐพ์„ ์ˆ˜ ์žˆ๊ธฐ๋ฅผ ํฌ๋งํ•ฉ๋‹ˆ๋‹ค.
14:05
Well, so, that leads to kind of an ultimate question:
339
845260
3000
์ž ์ด๊ฒƒ๋“ค์€ ๊ถ๊ทน์ ์ธ ์งˆ๋ฌธ์— ๋‹ค๋‹ค๋ฅด๊ฒŒ ํ•˜์ฃ .
14:08
Could it be that someplace out there in the computational universe
340
848260
3000
๊ณ„์‚ฐ์  ์šฐ์ฃผ ์–ด๋”˜๊ฐ€์— ์šฐ๋ฆฌ์˜ ๋ฌผ๋ฆฌ์  ์šฐ์ฃผ๋ฅผ
14:11
we might find our physical universe?
341
851260
3000
์ฐพ์„ ์ˆ˜ ์žˆ๋Š” ์˜์—ญ์ด ์žˆ์„๊นŒ์š”?
14:14
Perhaps there's even some quite simple rule,
342
854260
2000
์•„๋งˆ๋„ ์‹ฌ์ง€์–ด ์–ด๋”˜๊ฐ€์— ์šฐ๋ฆฌ ์šฐ์ฃผ๋ฅผ ๋งŒ๋“ 
14:16
some simple program for our universe.
343
856260
3000
ํ›จ์”ฌ ๋” ๊ฐ„๋‹จํ•œ ๊ทœ์น™๊ณผ ๊ฐ„๋‹จํ•œ ํ”„๋กœ๊ทธ๋žจ์ด ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:19
Well, the history of physics would have us believe
344
859260
2000
๋ฌผ๋ฆฌํ•™์˜ ์—ญ์‚ฌ๋Š” ์šฐ์ฃผ๋ฅผ ๋งŒ๋“  ๊ทœ์น™์ด
14:21
that the rule for the universe must be pretty complicated.
345
861260
3000
๋งค์šฐ ๋ณต์žกํ•ด์•ผ๋งŒ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ฏฟ๋„๋ก ํ–ˆ์ฃ .
14:24
But in the computational universe,
346
864260
2000
ํ•˜์ง€๋งŒ ๊ณ„์‚ฐ์  ์šฐ์ฃผ์—์„œ๋Š”
14:26
we've now seen how rules that are incredibly simple
347
866260
3000
๋ฏฟ์„ ์ˆ˜ ์—†์„ ์ •๋„๋กœ ๊ฐ„๋‹จํ•œ ๊ทœ์น™์ด ์–ด๋–ป๊ฒŒ
14:29
can produce incredibly rich and complex behavior.
348
869260
3000
์ƒ์ƒํ•  ์ˆ˜ ์—†์„ ์ •๋„๋กœ ํ’๋ถ€ํ•˜๊ณ  ๋ณต์žกํ•œ ํ–‰๋™์„ ํ•˜๋Š”์ง€ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
14:32
So could that be what's going on with our whole universe?
349
872260
3000
๊ทธ๊ฒƒ์ด ์ „์ฒด ์šฐ์ฃผ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋Œ์•„๊ฐ€๋Š”์ง€ ๋ณด์—ฌ์ค„ ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ์š”?
14:36
If the rules for the universe are simple,
350
876260
2000
์šฐ์ฃผ์˜ ๊ทœ์น™์ด ๊ฐ„๋‹จํ•˜๋‹ค๋ฉด,
14:38
it's kind of inevitable that they have to be
351
878260
2000
๊ทธ๊ฒƒ๋“ค์€ ํ•„์—ฐ์ ์œผ๋กœ ๋งค์šฐ ์ถ”์ƒ์ ์ด๊ณ 
14:40
very abstract and very low level;
352
880260
2000
๋งค์šฐ ๋‚ฎ์€ ์ˆ˜์ค€์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
14:42
operating, for example, far below
353
882260
2000
์˜ˆ๋ฅผ ๋“ค์–ด ์‚ฌ๋ฌผ์„ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ์„
14:44
the level of space or time,
354
884260
2000
์–ด๋ ต๊ฒŒ ๋งŒ๋“œ๋Š” ์‹œ๊ฐ„์ด๋‚˜ ๊ณต๊ฐ„ ์ˆ˜์ค€๋ณด๋‹ค
14:46
which makes it hard to represent things.
355
886260
2000
ํ›จ์”ฌ ๋‚ฎ์€ ์ˆ˜์ค€์—์„œ ์ผ์–ด๋‚˜๋Š” ์—ฐ์‚ฐ์ด๋ผ๋Š” ๊ฑฐ์ฃ .
14:48
But in at least a large class of cases,
356
888260
2000
ํ•˜์ง€๋งŒ ์ ์–ด๋„ ๊ทœ๋ชจ๊ฐ€ ํด ๊ฒฝ์šฐ์—๋Š”
14:50
one can think of the universe as being
357
890260
2000
์šฐ์ฃผ๊ฐ€ ์ผ์ข…์˜ ๋„คํŠธ์›Œํฌ์ฒ˜๋Ÿผ
14:52
like some kind of network,
358
892260
2000
์ƒ๊ฒผ๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ,
14:54
which, when it gets big enough,
359
894260
2000
์ถฉ๋ถ„ํžˆ ์ปค์งˆ ๊ฒฝ์šฐ์—”
14:56
behaves like continuous space
360
896260
2000
์—ฐ์† ์šฐ์ฃผ์ฒ˜๋Ÿผ ํ–‰๋™ํ•œ๋‹ค๋Š” ๊ฑฐ์ฃ .
14:58
in much the same way as having lots of molecules
361
898260
2000
์—ฐ์† ์œ ์ฒด์—์„œ ๋‹ค์ˆ˜์˜ ๋ถ„์ž๊ฐ€
15:00
can behave like a continuous fluid.
362
900260
2000
ํ–‰๋™ํ•˜๋Š” ๊ฒƒ๊ณผ ๋งค์šฐ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
15:02
Well, then the universe has to evolve by applying
363
902260
3000
๊ทธ ์ดํ›„์—” ์šฐ์ฃผ๊ฐ€ ์ด ๋„คํŠธ์›Œํฌ์— ์ž‘์€ ๊ทœ์น™์„
15:05
little rules that progressively update this network.
364
905260
3000
์ ์ง„์ ์œผ๋กœ ์ ์šฉํ•˜๋ฉด์„œ ์ง„ํ™”ํ•ด์•ผ ํ•˜์ฃ .
15:08
And each possible rule, in a sense,
365
908260
2000
์–ด๋–ค ์˜๋ฏธ์—์„œ๋Š” ๊ฐ๊ฐ ๊ฐ€๋Šฅํ•œ ๊ทœ์น™์ด
15:10
corresponds to a candidate universe.
366
910260
2000
๊ฐ ์šฐ์ฃผ ๋ชจ๋ธ ํ›„๋ณด์™€ ๊ด€๋ จ๋˜๋Š” ๊ฑฐ์ฃ .
15:12
Actually, I haven't shown these before,
367
912260
3000
์‚ฌ์‹ค ์ „์—๋Š” ์ด๊ฒƒ๋“ค์„ ๋ณด์—ฌ๋“œ๋ฆฌ์ง€ ์•Š์•˜์ง€๋งŒ,
15:16
but here are a few of the candidate universes
368
916260
3000
์—ฌ๊ธฐ์— ์ œ๊ฐ€ ๊ณ ๋ คํ•ด์™”๋˜ ๋ช‡ ๊ฐ€์ง€ ์šฐ์ฃผ ๋ชจ๋ธ์˜ ํ›„๋ณด๊ฐ€
15:19
that I've looked at.
369
919260
2000
์žˆ์Šต๋‹ˆ๋‹ค.
15:21
Some of these are hopeless universes,
370
921260
2000
์ด๊ฒƒ๋“ค ์ค‘ ์ผ๋ถ€๋Š” ์ „ํ˜€ ๊ฐ€๋ง์ด ์—†๊ณ ,
15:23
completely sterile,
371
923260
2000
์™„์ „ํžˆ ์˜๋ฏธ๊ฐ€ ์—†๋Š” ๊ฒƒ๋“ค๋กœ์„œ
15:25
with other kinds of pathologies like no notion of space,
372
925260
2000
๊ณต๊ฐ„์˜ ๊ฐœ๋…์ด ์—†๋‹ค๊ฑฐ๋‚˜, ์‹œ๊ฐ„์˜ ๊ฐœ๋…์ด ์—†๋‹ค๊ฑฐ๋‚˜ ๋“ฑ๋“ฑ
15:27
no notion of time, no matter,
373
927260
3000
์•„๋ฌดํŠผ ๋ฌธ์ œ๋ฅผ ์ง€๋‹Œ
15:30
other problems like that.
374
930260
2000
๋น„์ •์ƒ์„ ํฌํ•จํ•˜๊ณ  ์žˆ์ฃ .
15:32
But the exciting thing that I've found in the last few years
375
932260
3000
ํ•˜์ง€๋งŒ ์‹ ๋‚˜๋Š” ๊ฒƒ์€ ์ง€๋‚œ ๋ช‡ ๋…„ ๋™์•ˆ
15:35
is that you actually don't have to go very far
376
935260
2000
์™„์ „ํžˆ ์šฐ๋ฆฌ์˜ ์šฐ์ฃผ๊ฐ€ ์•„๋‹ˆ๋ผ๊ณ 
15:37
in the computational universe
377
937260
2000
ํ•  ์ˆ˜ ์—†๋Š” ์ˆ˜์ค€์˜ ํ›„๋ณด๋ฅผ
15:39
before you start finding candidate universes
378
939260
2000
์ฐพ๋Š” ๊ฒƒ์€ ๊ทธ๋ ‡๊ฒŒ ์˜ค๋ž˜ ๊ฑธ๋ฆฌ์ง€
15:41
that aren't obviously not our universe.
379
941260
3000
์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•œ ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
15:44
Here's the problem:
380
944260
2000
๊ทธ๋Ÿฌ๋‚˜ ๋ฌธ์ œ๊ฐ€ ํ•œ ๊ฐ€์ง€ ์žˆ์Šต๋‹ˆ๋‹ค:
15:46
Any serious candidate for our universe
381
946260
3000
์šฐ๋ฆฌ ์šฐ์ฃผ์— ๋Œ€ํ•œ ์–ด๋– ํ•œ ๊ทธ๋Ÿด๋“ฏํ•œ ํ›„๋ณด๋„
15:49
is inevitably full of computational irreducibility.
382
949260
3000
ํ•„์—ฐ์ ์œผ๋กœ ํ•„์š”ํ•œ ๊ณ„์‚ฐ๋Ÿ‰์„ ๋” ์ค„์ผ ์ˆ˜ ์—†๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ€๋“์ฐจ ์žˆ๋Š”๋ฐ,
15:52
Which means that it is irreducibly difficult
383
952260
3000
์ด๋Š” ๊ทธ๊ฒƒ์ด ์‹ค์ œ๋กœ ์–ด๋–ป๊ฒŒ ๋™์ž‘ํ•  ์ง€,
15:55
to find out how it will really behave,
384
955260
2000
์šฐ๋ฆฌ์˜ ๋ฌผ๋ฆฌ ์šฐ์ฃผ์™€๋Š” ์ผ์น˜ํ•˜๋Š”์ง€ ์•Œ์•„๋‚ด๋Š”๋ฐ
15:57
and whether it matches our physical universe.
385
957260
3000
ํ•„์š”ํ•œ ๊ณ„์‚ฐ์„ ๋๊นŒ์ง€ ํ•ด๋ณด์ง€ ์•Š์œผ๋ฉด ์•Œ ์ˆ˜ ์—†์„ ์ •๋„๋กœ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
16:01
A few years ago, I was pretty excited to discover
386
961260
3000
๋ช‡ ๋…„ ์ „์— ๋งค์šฐ ํฅ๋ฏธ๋กœ์šด ๋ฐœ๊ฒฌ์„ ํ–ˆ๋Š”๋ฐ,
16:04
that there are candidate universes with incredibly simple rules
387
964260
3000
๊ทน๋„๋กœ ๊ฐ„๋‹จํ•œ ๊ทœ์น™์„ ๊ฐ€์ง„ ์ด ํ›„๋ณด ์šฐ์ฃผ๋“ค์ด
16:07
that successfully reproduce special relativity,
388
967260
2000
ํŠน์ˆ˜ ์ƒ๋Œ€์„ฑ, ์ผ๋ฐ˜ ์ƒ๋Œ€์„ฑ, ์ค‘๋ ฅ์„ ๋น„๋กฏํ•˜์—ฌ
16:09
and even general relativity and gravitation,
389
969260
3000
์•ฝ๊ฐ„์˜ ์–‘์ž์—ญํ•™์— ๋Œ€ํ•œ ์‹ค๋งˆ๋ฆฌ๋ฅผ
16:12
and at least give hints of quantum mechanics.
390
972260
3000
์„ฑ๊ณต์ ์œผ๋กœ ์žฌํ˜„ํ•œ ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค.
16:15
So, will we find the whole of physics?
391
975260
2000
๊ทธ๋Ÿผ ์šฐ๋ฆฌ๊ฐ€ ๋ฌผ๋ฆฌํ•™ ์ „์ฒด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์„๊นŒ์š”?
16:17
I don't know for sure,
392
977260
2000
ํ™•์‹คํ•˜๊ฒŒ๋Š” ๋ชจ๋ฅด๊ฒ ์–ด์š”.
16:19
but I think at this point it's sort of
393
979260
2000
ํ•˜์ง€๋งŒ ํ˜„์žฌ๋กœ์„œ๋Š” ์‹œ๋„์กฐ์ฐจ ์•ˆ ํ•˜๋Š” ๊ฒƒ์€
16:21
almost embarrassing not to at least try.
394
981260
2000
๋ถ€๋„๋Ÿฌ์šด ์ผ์ด๋ผ ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
16:23
Not an easy project.
395
983260
2000
์‰ฌ์šด ํ”„๋กœ์ ํŠธ๊ฐ€ ์•„๋‹ˆ์ฃ .
16:25
One's got to build a lot of technology.
396
985260
2000
๋งŽ์€ ๊ธฐ์ˆ ์„ ์Œ“์•„์•ผ๋งŒ ํ•ฉ๋‹ˆ๋‹ค.
16:27
One's got to build a structure that's probably
397
987260
2000
๊ทธ ๊ธฐ์ˆ ์˜ ์ •๋„๋Š” ํ˜„์กดํ•˜๋Š” ๋ฌผ๋ฆฌํ•™ ๋งŒํผ์˜
16:29
at least as deep as existing physics.
398
989260
2000
๊นŠ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์„ ์ˆ˜ ์žˆ์ฃ .
16:31
And I'm not sure what the best way to organize the whole thing is.
399
991260
3000
๊ทธ๋ฆฌ๊ณ  ๊ทธ ์ „์ฒด๋ฅผ ์กฐ์งํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์„ ์˜ ๋ฐฉ๋ฒ•์ด ๋ฌด์—‡์ธ์ง€๋„ ํ™•์‹ ํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
16:34
Build a team, open it up, offer prizes and so on.
400
994260
3000
ํŒ€์„ ๋งŒ๋“ค๊ณ , ๊ฐœ๋ฐฉํ•˜๊ณ , ์ƒ์„ ์ˆ˜์—ฌํ•˜๋Š” ๊ฒƒ ๋“ฑ์„ ์‹œ๋„ํ•˜๊ณ  ์žˆ์ฃ .
16:37
But I'll tell you, here today,
401
997260
2000
ํ•˜์ง€๋งŒ ์˜ค๋Š˜ ์ด ์ž๋ฆฌ์—์„œ ๋“œ๋ฆด ๋ง์”€์€
16:39
that I'm committed to seeing this project done,
402
999260
2000
์ด ํ”„๋กœ์ ํŠธ๋ฅผ ์ข…๋ฃŒ์‹œํ‚ค๋Š”๋ฐ ์ „๋ ฅ์„ ํˆฌ๊ตฌํ•˜๊ณ  ์žˆ๊ณ ,
16:41
to see if, within this decade,
403
1001260
3000
๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด, ์ด๋ฒˆ ์‹ญ๋…„ ์•ˆ์—
16:44
we can finally hold in our hands
404
1004260
2000
์šฐ๋ฆฌ๋Š” ์šฐ์ฃผ์˜ ๋ฒ•์น™์„
16:46
the rule for our universe
405
1006260
2000
์†์— ์ฅ๊ฒŒ ๋  ๊ฒƒ์ด๋ฉฐ,
16:48
and know where our universe lies
406
1008260
2000
๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ์šฐ์ฃผ ์ค‘์—
16:50
in the space of all possible universes ...
407
1010260
2000
์šฐ๋ฆฌ์˜ ์šฐ์ฃผ๊ฐ€ ์–ด๋””์— ์œ„์น˜ํ•˜๋Š”์ง€์™€
16:52
and be able to type into Wolfram Alpha, "the theory of the universe,"
408
1012260
3000
์šธํ”„๋žจ ์•ŒํŒŒ๊ฐ€ ์šฐ์ฃผ์˜ ์ด๋ก ์„ ๊ฒ€์ƒ‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์–ด,
16:55
and have it tell us.
409
1015260
2000
๊ทธ๊ฒƒ์„ ์šฐ๋ฆฌ์—๊ฒŒ ์•Œ๋ ค์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
16:57
(Laughter)
410
1017260
2000
(์›ƒ์Œ)
17:00
So I've been working on the idea of computation
411
1020260
2000
์ €๋Š” ๊ณ„์‚ฐ์ด๋ผ๋Š” ์•„์ด๋””์–ด์— ๋Œ€ํ•ด
17:02
now for more than 30 years,
412
1022260
2000
30๋…„ ์ด์ƒ ์—ฐ๊ตฌํ•ด ์™”์œผ๋ฉฐ,
17:04
building tools and methods and turning intellectual ideas
413
1024260
3000
๋„๊ตฌ์™€ ๋ฐฉ๋ฒ•์„ ๋งŒ๋“ค์–ด ์ง€์  ์•„์ด๋””์–ด๋“ค์„
17:07
into millions of lines of code
414
1027260
2000
์ˆ˜๋ฐฑ๋งŒ ์ค„์งœ๋ฆฌ ์ฝ”๋“œ๋กœ ๋งŒ๋“ค์—ˆ๊ณ ,
17:09
and grist for server farms and so on.
415
1029260
2000
๋ฐฉ๋Œ€ํ•œ ์„œ๋ฒ„ ํŒœ๋„ ์šด์˜ํ•˜๊ณ  ์žˆ์ฃ .
17:11
With every passing year,
416
1031260
2000
์„ธ์›”์ด ์ง€๋‚˜๋ฉด์„œ
17:13
I realize how much more powerful
417
1033260
2000
๊นจ๋‹ฌ์€ ๊ฒƒ์€ ๊ณ„์‚ฐ์ด๋ผ๋Š” ์•„์ด๋””์–ด๊ฐ€
17:15
the idea of computation really is.
418
1035260
2000
์ง„์ • ์–ผ๋งˆ๋‚˜ ๊ฐ•๋ ฅํ•œ ๊ฒƒ์ธ๊ฐ€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
17:17
It's taken us a long way already,
419
1037260
2000
์ด๋ฏธ ์šฐ๋ฆฌ๋ฅผ ์ด ๋ฉ€๋ฆฌ ๋ฐ๋ ค์™”์ง€๋งŒ,
17:19
but there's so much more to come.
420
1039260
2000
์•„์ง๋„ ๋” ๊ฐ€์•ผํ•  ๊ธธ์ด ํ›จ์”ฌ ๋งŽ์•„์š”.
17:21
From the foundations of science
421
1041260
2000
๊ณผํ•™์˜ ๊ธฐ๋ณธ๋ถ€ํ„ฐ
17:23
to the limits of technology
422
1043260
2000
๊ธฐ์ˆ ์˜ ํ•œ๊ณ„์— ์ด๋ฅด๊ธฐ๊นŒ์ง€,
17:25
to the very definition of the human condition,
423
1045260
2000
์ธ๊ฐ„์˜ ์กฐ๊ฑด์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ •์˜์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€,
17:27
I think computation is destined to be
424
1047260
2000
์ €๋Š” ๊ณ„์‚ฐ์ด์•ผ ๋ง๋กœ ์šฐ๋ฆฌ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ์ƒ๊ฐ์„
17:29
the defining idea of our future.
425
1049260
2000
์ •์˜ํ•˜๋„๋ก ๋˜์–ด ์žˆ๋Š” ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค.
17:31
Thank you.
426
1051260
2000
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
17:33
(Applause)
427
1053260
14000
(๋ฐ•์ˆ˜)
17:47
Chris Anderson: That was astonishing.
428
1067260
2000
ํฌ๋ฆฌ์Šค ์•ค๋”์Šจ: ์™€ ๋ฉ‹์ง€๋„ค์š”.
17:49
Stay here. I've got a question.
429
1069260
2000
๊ฐ€๋งŒ ๊ณ„์„ธ์š”. ์งˆ๋ฌธ์ด ์žˆ์–ด์š”.
17:51
(Applause)
430
1071260
4000
(๋ฐ•์ˆ˜)
17:57
So, that was, fair to say, an astonishing talk.
431
1077260
3000
์ •๋ง ๋†€๋ผ์šด ๊ฐ•์—ฐ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
18:01
Are you able to say in a sentence or two
432
1081260
3000
ํ•œ ๋‘ ๋ฌธ์žฅ์œผ๋กœ ์š”์•ฝํ•ด์„œ
18:04
how this type of thinking
433
1084260
3000
์ด๋Ÿฌํ•œ ์ƒ๊ฐ์˜ ํ˜•ํƒœ๊ฐ€
18:07
could integrate at some point
434
1087260
2000
์–ด๋–ค ์ ์—์„œ ๋ˆ ์ด๋ก ์ด๋‚˜
18:09
to things like string theory or the kind of things that people think of
435
1089260
2000
์ด์™€ ์œ ์‚ฌํ•œ ์šฐ์ฃผ์˜ ๊ธฐ๋ณธ์„ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ก ์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ์„ ์ง€
18:11
as the fundamental explanations of the universe?
436
1091260
3000
์„ค๋ช…ํ•ด์ฃผ์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๊นŒ?
18:14
Stephen Wolfram: Well, the parts of physics
437
1094260
2000
์Šคํ‹ฐ๋ธ ์šธํ”„๋žจ: ๊ธ€์Ž„์š”, ๋ฌผ๋ฆฌํ•™์˜ ์ผ๋ถ€ ์ค‘์—
18:16
that we kind of know to be true,
438
1096260
2000
์šฐ๋ฆฌ๊ฐ€ ์ง„์‹ค์ด๋ผ๊ณ  ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ๋“ค์€
18:18
things like the standard model of physics:
439
1098260
2000
๋ฌผ๋ฆฌํ•™์˜ ํ‘œ์ค€ ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ๊ฒƒ๋“ค์ด ์žˆ์ฃ .
18:20
what I'm trying to do better reproduce the standard model of physics
440
1100260
3000
์ œ๊ฐ€ ํ•˜๋ ค๋Š” ๊ฒƒ์€ ์ด ๋ฌผ๋ฆฌํ•™์˜ ํ‘œ์ค€ ๋ชจ๋ธ์„ ๋” ์ž˜ ์žฌํ˜„ํ•˜๋Š” ๊ฒƒ์ด๊ฑฐ๋‚˜
18:23
or it's simply wrong.
441
1103260
2000
ํ˜น์€ ๋‹จ์ˆœํžˆ ์ž˜๋ชป๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:25
The things that people have tried to do in the last 25 years or so
442
1105260
2000
์‚ฌ๋žŒ๋“ค์ด ์ง€๋‚œ 25๋…„ ๊ฐ„ ํ•˜๋ ค๊ณ  ํ•œ ๊ฒƒ์€
18:27
with string theory and so on
443
1107260
2000
๋ˆ ์ด๋ก ์ด๋‚˜ ๊ธฐํƒ€ ์ด๋ก ๋“ค์„ ํ†ตํ•ด
18:29
have been an interesting exploration
444
1109260
2000
๋ฐ”๋กœ ์ด ํ‘œ์ค€ ๋ชจ๋ธ๋กœ ํšŒ๊ท€ํ•˜๋ ค๋Š”
18:31
that has tried to get back to the standard model,
445
1111260
3000
ํฅ๋ฏธ๋กœ์šด ํƒํ—˜์ด์—ˆ์ฃ .
18:34
but hasn't quite gotten there.
446
1114260
2000
ํ•˜์ง€๋งŒ, ๊ทธ ๋ชฉํ‘œ์— ์ „ํ˜€ ๋„๋‹ฌํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ์–ด์š”.
18:36
My guess is that some great simplifications of what I'm doing
447
1116260
3000
์ œ ์ถ”์ธก์€ ์ œ๊ฐ€ ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์•„์ฃผ ๋‹จ์ˆœํ™”ํ•œ ๊ฒƒ์ด
18:39
may actually have considerable resonance
448
1119260
3000
์‹ค์ œ๋กœ ๋ˆ ์ด๋ก ์—์„œ ํ•ด์˜ค๊ณ  ์žˆ๋˜ ๊ฒƒ๊ณผ
18:42
with what's been done in string theory,
449
1122260
2000
ํฐ ๊ด€๋ จ์ด ์žˆ์„์ง€ ๋ชจ๋ฅธ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
18:44
but that's a complicated math thing
450
1124260
3000
ํ•˜์ง€๋งŒ ๋งค์šฐ ๋ณต์žกํ•œ ์ˆ˜ํ•™์ด ์š”๊ตฌ๋˜๊ณ 
18:47
that I don't yet know how it's going to work out.
451
1127260
3000
์–ด๋–ป๊ฒŒ ํ•ด๊ฒฐ์ด ๋‚ ์ง€ ์•„์ง๋„ ๋ชจ๋ฅด๊ฒ ์–ด์š”.
18:50
CA: Benoit Mandelbrot is in the audience.
452
1130260
2000
CA: ์—ฌ๊ธฐ ๋ฒ ๋ˆ„์•„ ๋งŒ๋ธ๋ธŒ๋กœ(Benoit Mandlebrot)๊ฐ€ ์ฒญ์ค‘์œผ๋กœ ์™€ ์žˆ์Šต๋‹ˆ๋‹ค๋งŒ.
18:52
He also has shown how complexity
453
1132260
2000
๊ทธ๋„ ๋‹จ์ˆœํ•œ ์‹œ์ž‘์— ์–ผ๋งˆ๋‚˜ ๋ณต์žกํ•œ ๊ฒƒ์ด
18:54
can arise out of a simple start.
454
1134260
2000
๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋Š”๊ฐ€๋ฅผ ๋ณด์—ฌ์ค€ ๋ฐ” ์žˆ์–ด์š”.
18:56
Does your work relate to his?
455
1136260
2000
๋‹น์‹ ์˜ ์ผ์ด ๊ทธ์™€ ๊ด€๋ จ์ด ์žˆ๋‚˜์š”?
18:58
SW: I think so.
456
1138260
2000
SW: ๊ทธ๋Ÿด๊ฒƒ์ž…๋‹ˆ๋‹ค.
19:00
I view Benoit Mandelbrot's work
457
1140260
2000
์ „ ๋ฒ ๋ˆ„์•„ ๋งŒ๋ธ๋ธŒ๋กœ์˜ ์„ฑ๊ณผ๋ฅผ
19:02
as one of the founding contributions
458
1142260
3000
์ด๋Ÿฐ ์ข…๋ฅ˜์˜ ๋ถ„์•ผ์— ์žˆ์–ด์„œ
19:05
to this kind of area.
459
1145260
3000
๊ทผ๋ณธ์ ์ธ ๊ณตํ—Œ ์ค‘์— ํ•˜๋‚˜๋กœ ๋ด…๋‹ˆ๋‹ค.
19:08
Benoit has been particularly interested
460
1148260
2000
๋ฒ ๋ˆ„์•„๋Š” ํŠนํžˆ ํ”„๋ž™ํƒˆ(fractal)๊ณผ ๊ฐ™์€ ๊ฒƒ๋“ค์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋Š”
19:10
in nested patterns, in fractals and so on,
461
1150260
2000
์ค‘์ฒฉ๋œ(nested) ํŒจํ„ด์— ๊ด€์‹ฌ์ด ์žˆ์—ˆ์ฃ .
19:12
where the structure is something
462
1152260
2000
์ด ๊ฒฝ์šฐ ๊ตฌ์กฐ๋ฌผ์€
19:14
that's kind of tree-like,
463
1154260
2000
๋‚˜๋ฌด์™€ ๊ฐ™์€ ๋ชจ์–‘์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ 
19:16
and where there's sort of a big branch that makes little branches
464
1156260
2000
์ผ์ข…์˜ ํฐ ๊ฐ€์ง€๊ฐ€ ์ž‘์€ ๊ฐ€์ง€๋“ค์„ ๋งŒ๋“ค๊ณ 
19:18
and even smaller branches and so on.
465
1158260
3000
๋”์šฑ ์ž‘์€ ๊ฐ€์ง€๋“ค์„ ๋งŒ๋“œ๋Š” ์‹์ด์ฃ .
19:21
That's one of the ways
466
1161260
2000
์ด๊ฒƒ์€ ์ง„์ •ํ•œ ๋ณต์žก์„ฑ์„
19:23
that you get towards true complexity.
467
1163260
3000
ํ–ฅํ•˜๋Š” ๋ฐฉ๋ฒ• ์ค‘์— ํ•˜๋‚˜์ฃ .
19:26
I think things like the Rule 30 cellular automaton
468
1166260
3000
์ €๋Š” ๊ทœ์น™ 30๋ฒˆ๊ณผ ๊ฐ™์€ ์„ธํฌ ์ž๋™์ž๋“ค(cellular automaton)์ด
19:29
get us to a different level.
469
1169260
2000
๋˜ ๋‹ค๋ฅธ ์ˆ˜์ค€์˜ ๋ณต์žก์„ฑ์„ ๋งŒ๋“ ๋‹ค๊ณ  ๋ด…๋‹ˆ๋‹ค.
19:31
In fact, in a very precise way, they get us to a different level
470
1171260
3000
์‚ฌ์‹ค์ƒ, ๋งค์šฐ ์ •ํ™•ํ•˜๊ฒŒ ๋งํ•ด์„œ ๋‹ค๋ฅธ ์ˆ˜์ค€์— ๋„๋‹ฌํ•˜๋Š” ๊ฑฐ์ฃ .
19:34
because they seem to be things that are
471
1174260
2000
์™œ๋ƒ๋ฉด ๊ทธ๊ฒƒ๋“ค์€ ๋ณต์žก์„ฑ์„ ๋ฐœํœ˜ํ•  ์ˆ˜ ์žˆ๋Š”
19:37
capable of complexity
472
1177260
3000
๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด๋Š”๋ฐ,
19:40
that's sort of as great as complexity can ever get ...
473
1180260
3000
์ด๋Ÿฌํ•œ ์ข…๋ฅ˜์˜ ๋ณต์žก์„ฑ์€ ์—ฌํƒœ ๋ณธ ์ ์ด ์—†๋Š” ๊ฒƒ์ด์ฃ ...
19:44
I could go on about this at great length, but I won't. (Laughter) (Applause)
474
1184260
3000
์—„์ฒญ ๊ธธ๊ฒŒ ์„ค๋ช…ํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ, ํ•˜์ง€ ์•Š๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
19:47
CA: Stephen Wolfram, thank you.
475
1187260
2000
CA: ์Šคํ‹ฐ๋ธ ์šธํ”„๋žจ, ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
19:49
(Applause)
476
1189260
2000
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7