Computing a theory of everything | Stephen Wolfram

608,756 views ・ 2010-04-27

TED


請雙擊下方英文字幕播放視頻。

譯者: Wenjer Leuschel 審譯者: Zhu Jie
00:16
So I want to talk today about an idea. It's a big idea.
0
16260
3000
我今天要談的是一個想法,很大的想法
00:19
Actually, I think it'll eventually
1
19260
2000
其實我認為這個想法
00:21
be seen as probably the single biggest idea
2
21260
2000
終究會被視爲上個世紀
00:23
that's emerged in the past century.
3
23260
2000
最具有意義的想法
00:25
It's the idea of computation.
4
25260
2000
那就是計算的想法
00:27
Now, of course, that idea has brought us
5
27260
2000
當然,這想法已為我們帶來
00:29
all of the computer technology we have today and so on.
6
29260
3000
今日電腦科技上所有的成就等等
00:32
But there's actually a lot more to computation than that.
7
32260
3000
但計算的想法其實並不止這些
00:35
It's really a very deep, very powerful, very fundamental idea,
8
35260
3000
它實在很深入、很強又很基本
00:38
whose effects we've only just begun to see.
9
38260
3000
我們才剛開始明白它的效應
00:41
Well, I myself have spent the past 30 years of my life
10
41260
3000
我自己過去30年來
00:44
working on three large projects
11
44260
2000
進行了三個大型計劃
00:46
that really try to take the idea of computation seriously.
12
46260
3000
認真研究關於計算的想法
00:50
So I started off at a young age as a physicist
13
50260
3000
早年我是物理學家
00:53
using computers as tools.
14
53260
2000
把電腦當作工具使用
00:55
Then, I started drilling down,
15
55260
2000
然後開始深入這個領域
00:57
thinking about the computations I might want to do,
16
57260
2000
思考我想做的計算
00:59
trying to figure out what primitives they could be built up from
17
59260
3000
試圖找出建構那些計算的基本要素
01:02
and how they could be automated as much as possible.
18
62260
3000
以及如何盡量自動化那些計算
01:05
Eventually, I created a whole structure
19
65260
2000
最後我創造出一個完整的架構
01:07
based on symbolic programming and so on
20
67260
2000
建構在符號程式設計等等之上
01:09
that let me build Mathematica.
21
69260
2000
這讓我建構了Mathematica
01:11
And for the past 23 years, at an increasing rate,
22
71260
2000
其後23年來加快速度
01:13
we've been pouring more and more ideas
23
73260
2000
將越來越多的想法和産能
01:15
and capabilities and so on into Mathematica,
24
75260
2000
注入Mathematica
01:17
and I'm happy to say that that's led to many good things
25
77260
3000
我很高興能說許多好東西由此産生
01:20
in R & D and education,
26
80260
2000
應用到研發和教育方面
01:22
lots of other areas.
27
82260
2000
以及其他許多領域上
01:24
Well, I have to admit, actually,
28
84260
2000
我必須承認
01:26
that I also had a very selfish reason for building Mathematica:
29
86260
3000
我建構Mathematica其實有個很自私的理由
01:29
I wanted to use it myself,
30
89260
2000
我自己想利用它
01:31
a bit like Galileo got to use his telescope
31
91260
2000
有點像四百年前
01:33
400 years ago.
32
93260
2000
伽利略利用他的望遠鏡那樣
01:35
But I wanted to look not at the astronomical universe,
33
95260
3000
但我並不想觀察天文的宇宙
01:38
but at the computational universe.
34
98260
3000
而是想觀察計算的宇宙
01:41
So we normally think of programs as being
35
101260
2000
通常我們認爲程式是
01:43
complicated things that we build
36
103260
2000
我們爲了特定的目的
01:45
for very specific purposes.
37
105260
2000
所建構出來的複雜東西
01:47
But what about the space of all possible programs?
38
107260
3000
可是所有可能的程式之空間又如何呢?
01:50
Here's a representation of a really simple program.
39
110260
3000
這裡有個極簡單的程式之代表式
01:53
So, if we run this program,
40
113260
2000
如果跑這個程式
01:55
this is what we get.
41
115260
2000
得到的就是這個結果
01:57
Very simple.
42
117260
2000
很簡單
01:59
So let's try changing the rule
43
119260
2000
那麽稍稍改變
02:01
for this program a little bit.
44
121260
2000
這個程式的規則
02:03
Now we get another result,
45
123260
2000
現在得到別的結果
02:05
still very simple.
46
125260
2000
還是很簡單
02:07
Try changing it again.
47
127260
3000
再改變一下看看
02:10
You get something a little bit more complicated.
48
130260
2000
結果稍微複雜了一點
02:12
But if we keep running this for a while,
49
132260
2000
但如果讓它再跑一陣子
02:14
we find out that although the pattern we get is very intricate,
50
134260
3000
結果看來雖然錯綜複雜
02:17
it has a very regular structure.
51
137260
3000
但具有很規律的結構
02:20
So the question is: Can anything else happen?
52
140260
3000
那麼問題是:還能產生出別的東西嗎?
02:23
Well, we can do a little experiment.
53
143260
2000
那麽來做個小小的實驗
02:25
Let's just do a little mathematical experiment, try and find out.
54
145260
3000
小小的數學實驗-試試看就知道
02:29
Let's just run all possible programs
55
149260
3000
我們來跑某種特殊類型
02:32
of the particular type that we're looking at.
56
152260
2000
可能的所有程式
02:34
They're called cellular automata.
57
154260
2000
此類程式叫細胞自動機
02:36
You can see a lot of diversity in the behavior here.
58
156260
2000
這兒可看到許多不同的行爲表現
02:38
Most of them do very simple things,
59
158260
2000
大多只能做出很簡單的東西
02:40
but if you look along all these different pictures,
60
160260
2000
但逐一檢視所有這些圖片
02:42
at rule number 30,
61
162260
2000
在規則30上可以看到
02:44
you start to see something interesting going on.
62
164260
2000
開始發生有趣的情況
02:46
So let's take a closer look
63
166260
2000
那麼仔細看看
02:48
at rule number 30 here.
64
168260
2000
在規則30這裡
02:50
So here it is.
65
170260
2000
就在這裡
02:52
We're just following this very simple rule at the bottom here,
66
172260
3000
程式跑的是底下這個很簡單的規則
02:55
but we're getting all this amazing stuff.
67
175260
2000
得到的可是如此驚人的東西
02:57
It's not at all what we're used to,
68
177260
2000
這不是平常看得到的東西
02:59
and I must say that, when I first saw this,
69
179260
2000
我必須說我第一次看到時
03:01
it came as a huge shock to my intuition.
70
181260
3000
它對我的直覺造成很大的震撼
03:04
And, in fact, to understand it,
71
184260
2000
事實上要理解這東西
03:06
I eventually had to create
72
186260
2000
我最後不得不
03:08
a whole new kind of science.
73
188260
2000
創造一個嶄新的科學
03:11
(Laughter)
74
191260
2000
(笑聲)
03:13
This science is different, more general,
75
193260
3000
這個科學如果有所不同
03:16
than the mathematics-based science that we've had
76
196260
2000
那就是比起我們300年來
03:18
for the past 300 or so years.
77
198260
3000
在數學基礎上建構的科學更為通泛
03:21
You know, it's always seemed like a big mystery:
78
201260
2000
這向來有如謎團
03:23
how nature, seemingly so effortlessly,
79
203260
3000
大自然怎麼會如此輕鬆
03:26
manages to produce so much
80
206260
2000
自如地產出那麼多
03:28
that seems to us so complex.
81
208260
3000
看來如此複雜的東西
03:31
Well, I think we've found its secret:
82
211260
3000
我想我們已經找到其中的奧秘
03:34
It's just sampling what's out there in the computational universe
83
214260
3000
只要在計算空間裡進行採樣
03:37
and quite often getting things like Rule 30
84
217260
3000
往往就會找到像規則30
03:40
or like this.
85
220260
3000
那樣的東西或像這樣的東西
03:44
And knowing that starts to explain
86
224260
2000
瞭解到這一點
03:46
a lot of long-standing mysteries in science.
87
226260
3000
便可開始解釋許多長久以來的科學謎題
03:49
It also brings up new issues, though,
88
229260
2000
但這也帶來新的問題
03:51
like computational irreducibility.
89
231260
3000
比方說計算上的不可分解性
03:54
I mean, we're used to having science let us predict things,
90
234260
3000
我是說我們向來利用科學做預測
03:57
but something like this
91
237260
2000
但是像這樣的東西
03:59
is fundamentally irreducible.
92
239260
2000
基本上是不可分解的
04:01
The only way to find its outcome
93
241260
2000
要看到結果的唯一辦法
04:03
is, effectively, just to watch it evolve.
94
243260
3000
只能是看著它演化下去
04:06
It's connected to, what I call,
95
246260
2000
它關係到我稱為
04:08
the principle of computational equivalence,
96
248260
2000
「計算的等價」這個原則:
04:10
which tells us that even incredibly simple systems
97
250260
3000
也就是,即便是極其簡單的系統
04:13
can do computations as sophisticated as anything.
98
253260
3000
也能做出極其複雜的計算
04:16
It doesn't take lots of technology or biological evolution
99
256260
3000
並不需要許多生物演化科技
04:19
to be able to do arbitrary computation;
100
259260
2000
方能進行任意無常的計算
04:21
just something that happens, naturally,
101
261260
2000
就這樣自自然然地
04:23
all over the place.
102
263260
2000
到處發生了
04:25
Things with rules as simple as these can do it.
103
265260
3000
具有這麼簡單規則的東西就行了
04:29
Well, this has deep implications
104
269260
2000
這對於科學的極限
04:31
about the limits of science,
105
271260
2000
具有深沉的暗示意涵
04:33
about predictability and controllability
106
273260
2000
對於像是生物演化過程
04:35
of things like biological processes or economies,
107
275260
3000
或經濟的可預測及可控制性
04:38
about intelligence in the universe,
108
278260
2000
對於宇宙中的智識
04:40
about questions like free will
109
280260
2000
對於自由意志問題
04:42
and about creating technology.
110
282260
3000
以及對科技的創造都有暗示意涵
04:45
You know, in working on this science for many years,
111
285260
2000
研究這門科學多年
04:47
I kept wondering,
112
287260
2000
我始終有個異想
04:49
"What will be its first killer app?"
113
289260
2000
應用這門科學能有何等驚人之舉?
04:51
Well, ever since I was a kid,
114
291260
2000
打從孩提時代開始
04:53
I'd been thinking about systematizing knowledge
115
293260
2000
我便想把知識系統化
04:55
and somehow making it computable.
116
295260
2000
將它化為可計算
04:57
People like Leibniz had wondered about that too
117
297260
2000
三百年前
04:59
300 years earlier.
118
299260
2000
萊布尼茲也有這個異想
05:01
But I'd always assumed that to make progress,
119
301260
2000
但我原來的假設若要得到進展
05:03
I'd essentially have to replicate a whole brain.
120
303260
3000
那根本就必須複製整個大腦
05:06
Well, then I got to thinking:
121
306260
2000
我現在的想法是
05:08
This scientific paradigm of mine suggests something different --
122
308260
3000
我這個科學思維隱含著不同的東西
05:11
and, by the way, I've now got
123
311260
2000
另外順道一提
05:13
huge computation capabilities in Mathematica,
124
313260
3000
Mathematica現在具有龐大的計算能力
05:16
and I'm a CEO with some worldly resources
125
316260
3000
我是執行長,擁有世界上的一些資源
05:19
to do large, seemingly crazy, projects --
126
319260
3000
可以用來進行看似瘋狂的大型計劃
05:22
So I decided to just try to see
127
322260
2000
因此我決定試看看
05:24
how much of the systematic knowledge that's out there in the world
128
324260
3000
外間世界到底有多少系統化的知識
05:27
we could make computable.
129
327260
2000
可以被轉化成能夠計算
05:29
So, it's been a big, very complex project,
130
329260
2000
這是一個很複雜的大計劃
05:31
which I was not sure was going to work at all.
131
331260
3000
我原本也不確定是否可行
05:34
But I'm happy to say it's actually going really well.
132
334260
3000
不過我很高興這個計劃進行得不錯
05:37
And last year we were able
133
337260
2000
去年我們已經達到可以
05:39
to release the first website version
134
339260
2000
公布第一個網站版的
05:41
of Wolfram Alpha.
135
341260
2000
Wolfram Alpha
05:43
Its purpose is to be a serious knowledge engine
136
343260
3000
其目的是要成為嚴肅的知識引擎
05:46
that computes answers to questions.
137
346260
3000
能計算出解答,有求必應
05:49
So let's give it a try.
138
349260
2000
那麼我們來試試看
05:51
Let's start off with something really easy.
139
351260
2000
先從極為簡單的開始
05:53
Hope for the best.
140
353260
2000
但願不會出糗
05:55
Very good. Okay.
141
355260
2000
很好,可以
05:57
So far so good.
142
357260
2000
到目前為止還順利
05:59
(Laughter)
143
359260
3000
(笑聲)
06:02
Let's try something a little bit harder.
144
362260
3000
再試一下稍微困難的
06:05
Let's do
145
365260
2000
那麼...
06:07
some mathy thing,
146
367260
3000
做點數學上的東西吧
06:10
and with luck it'll work out the answer
147
370260
3000
運氣好的話會有解答
06:13
and try and tell us some interesting things
148
373260
2000
試試看能不能告訴我們一些有趣的東西
06:15
things about related math.
149
375260
2000
關於與數學相關的東西
06:17
We could ask it something about the real world.
150
377260
3000
我們可以提問真實世界的東西
06:20
Let's say -- I don't know --
151
380260
2000
比方說-隨便提問-
06:22
what's the GDP of Spain?
152
382260
3000
西班牙的國內生產毛額是多少?
06:25
And it should be able to tell us that.
153
385260
2000
這應該還能告訴我們
06:27
Now we could compute something related to this,
154
387260
2000
也可以計算與此相關的東西
06:29
let's say ... the GDP of Spain
155
389260
2000
比方說西班牙的國內生產毛額
06:31
divided by, I don't know,
156
391260
2000
除以-隨便舉例-
06:33
the -- hmmm ...
157
393260
2000
嗯...就說
06:35
let's say the revenue of Microsoft.
158
395260
2000
除以微軟的營業額
06:37
(Laughter)
159
397260
2000
(笑聲)
06:39
The idea is that we can just type this in,
160
399260
2000
不管對問題有何想法
06:41
this kind of question in, however we think of it.
161
401260
3000
重點是,想提什麼問題都可以輸入
06:44
So let's try asking a question,
162
404260
2000
那麼試試看提個問題
06:46
like a health related question.
163
406260
2000
比方說與醫療保健相關的問題
06:48
So let's say we have a lab finding that ...
164
408260
3000
那麼比方說化驗室發現
06:51
you know, we have an LDL level of 140
165
411260
2000
一位50歲男子
06:53
for a male aged 50.
166
413260
3000
低密度脂蛋白水平達140
06:56
So let's type that in, and now Wolfram Alpha
167
416260
2000
我們把這輸入Wolfram Alpha
06:58
will go and use available public health data
168
418260
2000
搜尋所有公共醫療的資料
07:00
and try and figure out
169
420260
2000
然後嘗試弄清楚
07:02
what part of the population that corresponds to and so on.
170
422260
3000
哪部分人口符合這個情況等等
07:05
Or let's try asking about, I don't know,
171
425260
3000
或是試試看-隨便舉例-
07:08
the International Space Station.
172
428260
2000
比方說國際太空站
07:10
And what's happening here is that
173
430260
2000
這裡發生的是
07:12
Wolfram Alpha is not just looking up something;
174
432260
2000
Wolfram Alpha不只查出東西
07:14
it's computing, in real time,
175
434260
3000
還計算出,實時計算出
07:17
where the International Space Station is right now at this moment,
176
437260
3000
太空站目前所在的位置,現在的位置
07:20
how fast it's going, and so on.
177
440260
3000
你們看它計算得多快
07:24
So Wolfram Alpha knows about lots and lots of kinds of things.
178
444260
3000
Wolfram Alpha知道許許多多種東西
07:27
It's got, by now,
179
447260
2000
目前涵蓋已經相當廣泛
07:29
pretty good coverage of everything you might find
180
449260
2000
你可能查找的所有東西
07:31
in a standard reference library.
181
451260
3000
全都在標準的參考資料庫裡
07:34
But the goal is to go much further
182
454260
2000
但目標還在更遠的地方
07:36
and, very broadly, to democratize
183
456260
3000
而且更廣泛地說就是要
07:39
all of this knowledge,
184
459260
3000
民主化所有的這類知識
07:42
and to try and be an authoritative
185
462260
2000
試圖在所有的領域中
07:44
source in all areas.
186
464260
2000
成為權威
07:46
To be able to compute answers to specific questions that people have,
187
466260
3000
為人們所提的特定問題計算出解答
07:49
not by searching what other people
188
469260
2000
這並不是去搜尋
07:51
may have written down before,
189
471260
2000
別人寫過的東西
07:53
but by using built in knowledge
190
473260
2000
而是利用內建的知識
07:55
to compute fresh new answers to specific questions.
191
475260
3000
為特定的問題計算出嶄新的解答
07:58
Now, of course, Wolfram Alpha
192
478260
2000
當然,Wolfram Alpha是一個
08:00
is a monumentally huge, long-term project
193
480260
2000
龐然大物的長期計劃
08:02
with lots and lots of challenges.
194
482260
2000
會遭遇到許許多多的挑戰
08:04
For a start, one has to curate a zillion
195
484260
3000
首先必須張羅極大量的
08:07
different sources of facts and data,
196
487260
3000
不同的事實與資料的來源
08:10
and we built quite a pipeline of Mathematica automation
197
490260
3000
我們為Mathematica建構相當強大的自動化安排
08:13
and human domain experts for doing this.
198
493260
3000
還有人文領域的專家處理這方面問題
08:16
But that's just the beginning.
199
496260
2000
但這只是開始而已
08:18
Given raw facts or data
200
498260
2000
有了原始事實或資料
08:20
to actually answer questions,
201
500260
2000
要真正回答問題
08:22
one has to compute:
202
502260
2000
還必須進行計算
08:24
one has to implement all those methods and models
203
504260
2000
必須建構所有那些方法和模型
08:26
and algorithms and so on
204
506260
2000
以及演算式等等
08:28
that science and other areas have built up over the centuries.
205
508260
3000
幾個世紀以來科學和其他領域所建構的東西
08:31
Well, even starting from Mathematica,
206
511260
3000
即使以Mathematica為基礎開始
08:34
this is still a huge amount of work.
207
514260
2000
也還是很大量的工作
08:36
So far, there are about 8 million lines
208
516260
2000
至今約有八百萬行的
08:38
of Mathematica code in Wolfram Alpha
209
518260
2000
Mathematica編碼用在Wolfram Alpha裡
08:40
built by experts from many, many different fields.
210
520260
3000
由許許多多領域的專家所建構
08:43
Well, a crucial idea of Wolfram Alpha
211
523260
3000
Wolfram Alpha有一個關鍵性的想法
08:46
is that you can just ask it questions
212
526260
2000
那就是你可以隨興
08:48
using ordinary human language,
213
528260
3000
使用人類的語言提問
08:51
which means that we've got to be able to take
214
531260
2000
那是說我們必須能夠解讀
08:53
all those strange utterances that people type into the input field
215
533260
3000
人們輸入的所有那些奇怪的言語
08:56
and understand them.
216
536260
2000
還要明白意思
08:58
And I must say that I thought that step
217
538260
2000
我必須說我原本
09:00
might just be plain impossible.
218
540260
3000
以為可能無法做到那個地步
09:04
Two big things happened:
219
544260
2000
其間發生兩件重大的事
09:06
First, a bunch of new ideas about linguistics
220
546260
3000
第一件是在進行計算宇宙的研究中
09:09
that came from studying the computational universe;
221
549260
3000
我們取得了大量語言學上的見解
09:12
and second, the realization that having actual computable knowledge
222
552260
3000
第二件是實現了
09:15
completely changes how one can
223
555260
2000
擁有實際可計算的知識
09:17
set about understanding language.
224
557260
3000
便會徹底改變人對語言理解的態度
09:20
And, of course, now
225
560260
2000
當然,現在
09:22
with Wolfram Alpha actually out in the wild,
226
562260
2000
Wolfram Alpha已經問世了
09:24
we can learn from its actual usage.
227
564260
2000
我們能在實際使用中學習
09:26
And, in fact, there's been
228
566260
2000
在Wolfram Alpha
09:28
an interesting coevolution that's been going on
229
568260
2000
及其人類使用者之間
09:30
between Wolfram Alpha
230
570260
2000
實際上存在著有趣的
09:32
and its human users,
231
572260
2000
相輔相成的互動演進
09:34
and it's really encouraging.
232
574260
2000
這很令人振奮
09:36
Right now, if we look at web queries,
233
576260
2000
若此時看網站上的查詢
09:38
more than 80 percent of them get handled successfully the first time.
234
578260
3000
80%以上在首次查詢就順利得到解答
09:41
And if you look at things like the iPhone app,
235
581260
2000
若再較之於Phone之類的應用
09:43
the fraction is considerably larger.
236
583260
2000
這個百分比已可說相當大了
09:45
So, I'm pretty pleased with it all.
237
585260
2000
因此我對此感到相當欣慰
09:47
But, in many ways,
238
587260
2000
不過在許多方面
09:49
we're still at the very beginning with Wolfram Alpha.
239
589260
3000
我們還在Wolfram Alpha的開端
09:52
I mean, everything is scaling up very nicely
240
592260
2000
我是說一切都在順利進展之中
09:54
and we're getting more confident.
241
594260
2000
我們越來越有信心
09:56
You can expect to see Wolfram Alpha technology
242
596260
2000
Wolfram Alpha的科技指日可待
09:58
showing up in more and more places,
243
598260
2000
會在越來越多的地方出現
10:00
working both with this kind of public data, like on the website,
244
600260
3000
利用像網站上的這類資料
10:03
and with private knowledge
245
603260
2000
也會利用私有的知識
10:05
for people and companies and so on.
246
605260
3000
為個人和公司等等進行工作
10:08
You know, I've realized that Wolfram Alpha actually gives one
247
608260
3000
我實現了讓Wolfram Alpha真正
10:11
a whole new kind of computing
248
611260
2000
給人嶄新的一種計算
10:13
that one can call knowledge-based computing,
249
613260
2000
可稱之為以知識為基的計算
10:15
in which one's starting not just from raw computation,
250
615260
3000
這種計算不僅從原始的計算開始
10:18
but from a vast amount of built-in knowledge.
251
618260
3000
也從大量的內建知識開始進行
10:21
And when one does that, one really changes
252
621260
2000
若是如此則會實際改變
10:23
the economics of delivering computational things,
253
623260
3000
計算結果交付的經濟表現
10:26
whether it's on the web or elsewhere.
254
626260
2000
無論是在網上或在其它地方
10:28
You know, we have a fairly interesting situation right now.
255
628260
3000
各位知道,我們目前有一個蠻有趣的情況
10:31
On the one hand, we have Mathematica,
256
631260
2000
在一方面,我們有Mathematica
10:33
with its sort of precise, formal language
257
633260
3000
它使用精確的形式語言
10:36
and a huge network
258
636260
2000
還有一個龐大的網絡
10:38
of carefully designed capabilities
259
638260
2000
具有經過仔細設計的能力
10:40
able to get a lot done in just a few lines.
260
640260
3000
能在極少行的編碼內做許多事
10:43
Let me show you a couple of examples here.
261
643260
3000
讓大家看這裡的幾個例子
10:47
So here's a trivial piece of Mathematica programming.
262
647260
3000
這是Mathematica的一個趣味雅程式設計
10:51
Here's something where we're sort of
263
651260
2000
在這裡頭可以說
10:53
integrating a bunch of different capabilities here.
264
653260
3000
我們融入了許多不同的能力
10:56
Here we'll just create, in this line,
265
656260
3000
就在這行編碼裡,我們創造了一個
10:59
a little user interface that allows us to
266
659260
3000
小小的使用者介面,讓我們能做出
11:02
do something fun there.
267
662260
2000
一點好玩的事
11:05
If you go on, that's a slightly more complicated program
268
665260
2000
若再仔細看看,那是稍微
11:07
that's now doing all sorts of algorithmic things
269
667260
3000
複雜些的程式-用來處理所有的演算
11:10
and creating user interface and so on.
270
670260
2000
並用來建構使用者介面等等
11:12
But it's something that is very precise stuff.
271
672260
3000
但它是很精確的東西
11:15
It's a precise specification with a precise formal language
272
675260
3000
是一個用精確形式語言表達的精確指示
11:18
that causes Mathematica to know what to do here.
273
678260
3000
讓Mathematica知道在此該做什麼
11:21
Then on the other hand, we have Wolfram Alpha,
274
681260
3000
然後在另一方面,我們有Wolfram Alpha
11:24
with all the messiness of the world
275
684260
2000
內建了世上的各式各樣紛亂
11:26
and human language and so on built into it.
276
686260
2000
以及人類語言等等
11:28
So what happens when you put these things together?
277
688260
3000
那麼把這些東西放在一起會發生什麼呢?
11:31
I think it's actually rather wonderful.
278
691260
2000
我認為這其實是很美妙的
11:33
With Wolfram Alpha inside Mathematica,
279
693260
2000
把Wolfram Alpha放到Mathematica裡
11:35
you can, for example, make precise programs
280
695260
2000
就能做出精確的程式-比方說-
11:37
that call on real world data.
281
697260
2000
用來調用真實世界的資料
11:39
Here's a real simple example.
282
699260
2000
這兒有個簡單的實例
11:44
You can also just sort of give vague input
283
704260
3000
這可以輸入不清晰的表述
11:47
and then try and have Wolfram Alpha
284
707260
2000
然後嘗試讓Wolfram Alpha
11:49
figure out what you're talking about.
285
709260
2000
弄清楚你說的是什麼
11:51
Let's try this here.
286
711260
2000
試試看這個
11:53
But actually I think the most exciting thing about this
287
713260
3000
但其實我認為在這頂上最令人興奮的
11:56
is that it really gives one the chance
288
716260
2000
是它真的給予
11:58
to democratize programming.
289
718260
3000
程式設計一個民主化的機會
12:01
I mean, anyone will be able to say what they want in plain language.
290
721260
3000
我是說誰都可用平常語言說出他們所要的
12:04
Then, the idea is that Wolfram Alpha will be able to figure out
291
724260
3000
然後-我們的想法是-Wolfram Alpha就能弄清楚
12:07
what precise pieces of code
292
727260
2000
確實是哪一段編碼
12:09
can do what they're asking for
293
729260
2000
能做到被要求做到的事情
12:11
and then show them examples that will let them pick what they need
294
731260
3000
然後舉例讓使用者選擇他們所要的
12:14
to build up bigger and bigger, precise programs.
295
734260
3000
以便逐步建構越來越大的精確程式
12:17
So, sometimes, Wolfram Alpha
296
737260
2000
那麼,有時Wolfram Alpha
12:19
will be able to do the whole thing immediately
297
739260
2000
可能馬上什麼都做好了
12:21
and just give back a whole big program that you can then compute with.
298
741260
3000
回應出整個能用來計算的大型程式
12:24
Here's a big website
299
744260
2000
那麼,這兒是個大網站
12:26
where we've been collecting lots of educational
300
746260
3000
我們在這兒一直收集著許多教育性質的
12:29
and other demonstrations about lots of kinds of things.
301
749260
3000
和其它許許多多種東西的示範
12:32
I'll show you one example here.
302
752260
3000
那麼-隨便舉個例子-就這個好了
12:36
This is just an example of one of these computable documents.
303
756260
3000
這只是可計算之文件例子中的一個
12:39
This is probably a fairly small
304
759260
2000
這可能是一段相當短的
12:41
piece of Mathematica code
305
761260
2000
能放在這兒跑的
12:43
that's able to be run here.
306
763260
2000
Mathematica編碼
12:47
Okay. Let's zoom out again.
307
767260
3000
好,把它縮小吧
12:50
So, given our new kind of science,
308
770260
2000
那麼,有了的新科學
12:52
is there a general way to use it to make technology?
309
772260
3000
就會有通泛的方法來建構科技嗎?
12:55
So, with physical materials,
310
775260
2000
那麼,我們一向利用
12:57
we're used to going around the world
311
777260
2000
物理材料來處理事物
12:59
and discovering that particular materials
312
779260
2000
然後發現特殊的材料
13:01
are useful for particular
313
781260
2000
有助於達到
13:03
technological purposes.
314
783260
2000
特殊的科技目的等等
13:05
Well, it turns out we can do very much the same kind of thing
315
785260
2000
結果發現在計算的空間裡
13:07
in the computational universe.
316
787260
2000
我們也可以做到同樣的事
13:09
There's an inexhaustible supply of programs out there.
317
789260
3000
那兒有取之不盡、用之不竭的程式
13:12
The challenge is to see how to
318
792260
2000
挑戰則在於如何駕馭它們
13:14
harness them for human purposes.
319
794260
2000
以達到人想要達到的目的
13:16
Something like Rule 30, for example,
320
796260
2000
比方說規則30這樣的東西
13:18
turns out to be a really good randomness generator.
321
798260
2000
真是個不錯的隨機產生器
13:20
Other simple programs are good models
322
800260
2000
其它簡單的程式是不錯的模型
13:22
for processes in the natural or social world.
323
802260
3000
用於處理自然世界或社群生活的事物
13:25
And, for example, Wolfram Alpha and Mathematica
324
805260
2000
又比方說Wolfram Alpha和Mathematica
13:27
are actually now full of algorithms
325
807260
2000
現今已充滿著演算式
13:29
that we discovered by searching the computational universe.
326
809260
3000
都是在計算空間裡搜尋得來的
13:33
And, for example, this -- if we go back here --
327
813260
3000
又比方說這個-我們回到這兒-
13:37
this has become surprisingly popular
328
817260
2000
這個在作曲者之間
13:39
among composers
329
819260
2000
已經意外地大受歡迎
13:41
finding musical forms by searching the computational universe.
330
821260
3000
搜尋計算空間,以便找到音樂形式
13:45
In a sense, we can use the computational universe
331
825260
2000
在某種意義上是
13:47
to get mass customized creativity.
332
827260
3000
利用計算空間取得大量客製化的創造力
13:50
I'm hoping we can, for example,
333
830260
2000
我希望甚至能夠-比方說-
13:52
use that even to get Wolfram Alpha
334
832260
2000
利用它使Wolfram Alpha
13:54
to routinely do invention and discovery on the fly,
335
834260
3000
能利用套式快速地進行發明與發現
13:57
and to find all sorts of wonderful stuff
336
837260
2000
並找到各種美妙的事物
13:59
that no engineer
337
839260
2000
這不是任何工程師
14:01
and no process of incremental evolution would ever come up with.
338
841260
3000
任何逐步演化的流程所能做到的
14:05
Well, so, that leads to kind of an ultimate question:
339
845260
3000
那麼,最終的問題是:
14:08
Could it be that someplace out there in the computational universe
340
848260
3000
我們有可能在計算空間的某處
14:11
we might find our physical universe?
341
851260
3000
找到我們的物理宇宙嗎?
14:14
Perhaps there's even some quite simple rule,
342
854260
2000
也許我們的宇宙甚至有
14:16
some simple program for our universe.
343
856260
3000
某種相當簡單的規則、相當簡單的程式
14:19
Well, the history of physics would have us believe
344
859260
2000
然而,物理的歷史讓我們
14:21
that the rule for the universe must be pretty complicated.
345
861260
3000
以為宇宙的規則肯定是相當複雜的
14:24
But in the computational universe,
346
864260
2000
但在計算的空間裡
14:26
we've now seen how rules that are incredibly simple
347
866260
3000
我們已經看到簡單得難以置信的規則
14:29
can produce incredibly rich and complex behavior.
348
869260
3000
也能產出難以置信的豐富又複雜的行為
14:32
So could that be what's going on with our whole universe?
349
872260
3000
我們整個宇宙莫非不也是如此產生的嗎?
14:36
If the rules for the universe are simple,
350
876260
2000
如果宇宙的規則是簡單的
14:38
it's kind of inevitable that they have to be
351
878260
2000
那麼無可避免地必須是
14:40
very abstract and very low level;
352
880260
2000
很抽象也很低層次的規則
14:42
operating, for example, far below
353
882260
2000
操作在-例如-遠低於
14:44
the level of space or time,
354
884260
2000
空間或時間的層次之下
14:46
which makes it hard to represent things.
355
886260
2000
這使得事物不容易表示
14:48
But in at least a large class of cases,
356
888260
2000
但至少在某大類的情況下
14:50
one can think of the universe as being
357
890260
2000
可以把宇宙想像為
14:52
like some kind of network,
358
892260
2000
像是某種網絡那樣的東西
14:54
which, when it gets big enough,
359
894260
2000
只要大到足夠的程度
14:56
behaves like continuous space
360
896260
2000
其表現就會像是連綿的空間
14:58
in much the same way as having lots of molecules
361
898260
2000
如同許多分子聚合在一起
15:00
can behave like a continuous fluid.
362
900260
2000
就會表現得像是不間斷的流體
15:02
Well, then the universe has to evolve by applying
363
902260
3000
那麼,宇宙的演進必須通過
15:05
little rules that progressively update this network.
364
905260
3000
應用小小的規則逐步更新這個網絡
15:08
And each possible rule, in a sense,
365
908260
2000
而每個可能的規則,某種意義上
15:10
corresponds to a candidate universe.
366
910260
2000
相當於一個候選的宇宙
15:12
Actually, I haven't shown these before,
367
912260
3000
其實,我以前還沒有展示過這些
15:16
but here are a few of the candidate universes
368
916260
3000
不過請看我已經檢視過的
15:19
that I've looked at.
369
919260
2000
這一些候選的宇宙
15:21
Some of these are hopeless universes,
370
921260
2000
這些宇宙中有些毫無發展希望
15:23
completely sterile,
371
923260
2000
完全沒有繁衍能力
15:25
with other kinds of pathologies like no notion of space,
372
925260
2000
因為帶有他類的病因:
15:27
no notion of time, no matter,
373
927260
3000
不具備空間或時間概念
15:30
other problems like that.
374
930260
2000
不含有物質、其它問題等等
15:32
But the exciting thing that I've found in the last few years
375
932260
3000
但我最近幾年發現最令人興奮的是
15:35
is that you actually don't have to go very far
376
935260
2000
是:其實不必深遠
15:37
in the computational universe
377
937260
2000
進入計算的空間
15:39
before you start finding candidate universes
378
939260
2000
便會開始找到一些候選的宇宙
15:41
that aren't obviously not our universe.
379
941260
3000
它們並不顯然不是我們的宇宙
15:44
Here's the problem:
380
944260
2000
這裡有個問題:
15:46
Any serious candidate for our universe
381
946260
3000
任何可嚴重考慮為我們的宇宙之候選者
15:49
is inevitably full of computational irreducibility.
382
949260
3000
無可避免地會充滿計算上的不可分解性
15:52
Which means that it is irreducibly difficult
383
952260
3000
即是要弄清楚它的行為確切會是如何
15:55
to find out how it will really behave,
384
955260
2000
以及它是否符合我們的
15:57
and whether it matches our physical universe.
385
957260
3000
物理宇宙,這將會是無解的困難
16:01
A few years ago, I was pretty excited to discover
386
961260
3000
幾年前,我相當興奮地發現
16:04
that there are candidate universes with incredibly simple rules
387
964260
3000
有些候選的宇宙具有難以置信的簡單規則
16:07
that successfully reproduce special relativity,
388
967260
2000
它們成功地複製了狹義相對論
16:09
and even general relativity and gravitation,
389
969260
3000
甚至複製了廣義相對論和重力現象
16:12
and at least give hints of quantum mechanics.
390
972260
3000
還至少提示了量子力學的物理原則
16:15
So, will we find the whole of physics?
391
975260
2000
那麼,我們會發現整個物理嗎?
16:17
I don't know for sure,
392
977260
2000
這我還不能確定
16:19
but I think at this point it's sort of
393
979260
2000
但我認為在這個節骨眼上
16:21
almost embarrassing not to at least try.
394
981260
2000
如果連試都不試,那就太不好意思了
16:23
Not an easy project.
395
983260
2000
這是不容易的計劃
16:25
One's got to build a lot of technology.
396
985260
2000
必須建構出大量的科技
16:27
One's got to build a structure that's probably
397
987260
2000
可能必須至少建構出
16:29
at least as deep as existing physics.
398
989260
2000
像現有的物理那樣深入的結構
16:31
And I'm not sure what the best way to organize the whole thing is.
399
991260
3000
我還不確定如何妥善組織這一切
16:34
Build a team, open it up, offer prizes and so on.
400
994260
3000
組織團隊、對外開放、提供獎金等等
16:37
But I'll tell you, here today,
401
997260
2000
但我現在就可以告訴各位
16:39
that I'm committed to seeing this project done,
402
999260
2000
我決心投入實現這個計劃
16:41
to see if, within this decade,
403
1001260
3000
要看我們能否在這十年內
16:44
we can finally hold in our hands
404
1004260
2000
終於將我們的宇宙的規則
16:46
the rule for our universe
405
1006260
2000
掌握在手中
16:48
and know where our universe lies
406
1008260
2000
並得知我們的宇宙位於
16:50
in the space of all possible universes ...
407
1010260
2000
所有可能宇宙的空間中的何處
16:52
and be able to type into Wolfram Alpha, "the theory of the universe,"
408
1012260
3000
也能將宇宙的理論輸入Wolfram Alpha
16:55
and have it tell us.
409
1015260
2000
讓它來告訴我們
16:57
(Laughter)
410
1017260
2000
(笑聲)
17:00
So I've been working on the idea of computation
411
1020260
2000
那麼,我研究計算的想法
17:02
now for more than 30 years,
412
1022260
2000
至今已經超過30年
17:04
building tools and methods and turning intellectual ideas
413
1024260
3000
建構著工具和方法,並將心智思想
17:07
into millions of lines of code
414
1027260
2000
化為幾百萬行的程式編碼
17:09
and grist for server farms and so on.
415
1029260
2000
以及強力的伺服器聯合場等等
17:11
With every passing year,
416
1031260
2000
每過一個年
17:13
I realize how much more powerful
417
1033260
2000
我就越明白計算的想法
17:15
the idea of computation really is.
418
1035260
2000
實在有多麼強大
17:17
It's taken us a long way already,
419
1037260
2000
它已經帶領著我們走過長長的道路
17:19
but there's so much more to come.
420
1039260
2000
但是還會有許許多多事情發生
17:21
From the foundations of science
421
1041260
2000
從科學的基礎
17:23
to the limits of technology
422
1043260
2000
到科技的極限
17:25
to the very definition of the human condition,
423
1045260
2000
到人類狀況的精確定義
17:27
I think computation is destined to be
424
1047260
2000
我認為計算註定會是
17:29
the defining idea of our future.
425
1049260
2000
定義著我們的未來之想法
17:31
Thank you.
426
1051260
2000
謝謝大家聆聽
17:33
(Applause)
427
1053260
14000
(喝彩)
17:47
Chris Anderson: That was astonishing.
428
1067260
2000
克里斯•安德森:太令人驚訝了
17:49
Stay here. I've got a question.
429
1069260
2000
請留步,我有個問題請教
17:51
(Applause)
430
1071260
4000
(喝彩)
17:57
So, that was, fair to say, an astonishing talk.
431
1077260
3000
必須老實說,這場演講太令人驚訝了
18:01
Are you able to say in a sentence or two
432
1081260
3000
您是否能用一兩句話說明
18:04
how this type of thinking
433
1084260
3000
如何能在某一個點上
18:07
could integrate at some point
434
1087260
2000
將這種想法融入像弦理論
18:09
to things like string theory or the kind of things that people think of
435
1089260
2000
或人們所想的那些東西
18:11
as the fundamental explanations of the universe?
436
1091260
3000
使它成為能夠解釋宇宙的基礎呢?
18:14
Stephen Wolfram: Well, the parts of physics
437
1094260
2000
史蒂芬•沃夫朗:嗯
18:16
that we kind of know to be true,
438
1096260
2000
我們所知為真的那部分物理
18:18
things like the standard model of physics:
439
1098260
2000
比方說物理的標準模型
18:20
what I'm trying to do better reproduce the standard model of physics
440
1100260
3000
我試圖改善的是複製物理的標準模型
18:23
or it's simply wrong.
441
1103260
2000
或者說,錯的是
18:25
The things that people have tried to do in the last 25 years or so
442
1105260
2000
大約近25年來人們試圖
18:27
with string theory and so on
443
1107260
2000
利用弦理論等等所做的研究
18:29
have been an interesting exploration
444
1109260
2000
都是很有趣的探討
18:31
that has tried to get back to the standard model,
445
1111260
3000
那樣的研究試圖回歸到標準模型
18:34
but hasn't quite gotten there.
446
1114260
2000
但是並沒有達到理想
18:36
My guess is that some great simplifications of what I'm doing
447
1116260
3000
我想我正在做的,若加以大大簡化
18:39
may actually have considerable resonance
448
1119260
3000
實際上可能與弦理論裡所做的
18:42
with what's been done in string theory,
449
1122260
2000
會有相當的共鳴
18:44
but that's a complicated math thing
450
1124260
3000
不過那是很複雜的數學東西
18:47
that I don't yet know how it's going to work out.
451
1127260
3000
我還不知道它會達到怎樣的地步
18:50
CA: Benoit Mandelbrot is in the audience.
452
1130260
2000
克•安:貝諾特•曼德爾博特就在聽眾裡
18:52
He also has shown how complexity
453
1132260
2000
他也曾經演示如何從簡單的開始
18:54
can arise out of a simple start.
454
1134260
2000
發展出複雜的東西
18:56
Does your work relate to his?
455
1136260
2000
您的研究和他的有些相關嗎?
18:58
SW: I think so.
456
1138260
2000
史•沃:我想是有的
19:00
I view Benoit Mandelbrot's work
457
1140260
2000
我看過曼德爾博特的著作
19:02
as one of the founding contributions
458
1142260
3000
他的著作可以說是開創這個領域
19:05
to this kind of area.
459
1145260
3000
研究的奠基著作之一
19:08
Benoit has been particularly interested
460
1148260
2000
貝諾特對套疊式模式
19:10
in nested patterns, in fractals and so on,
461
1150260
2000
對不規則碎片等等特別有興趣
19:12
where the structure is something
462
1152260
2000
那種結構有點像
19:14
that's kind of tree-like,
463
1154260
2000
樹的分叉結構
19:16
and where there's sort of a big branch that makes little branches
464
1156260
2000
而且有那種大枝分成小枝
19:18
and even smaller branches and so on.
465
1158260
3000
又甚至分成更細的小枝等等
19:21
That's one of the ways
466
1161260
2000
那是逐步達到
19:23
that you get towards true complexity.
467
1163260
3000
真正複雜的一種方法
19:26
I think things like the Rule 30 cellular automaton
468
1166260
3000
我認為規則30那樣的細胞自動機
19:29
get us to a different level.
469
1169260
2000
把我們帶到一個不同的層次上
19:31
In fact, in a very precise way, they get us to a different level
470
1171260
3000
事實上,此類規則確實把我們帶到不同的層次上
19:34
because they seem to be things that are
471
1174260
2000
因為它們顯然有
19:37
capable of complexity
472
1177260
3000
繼續發展到極其複雜的能力
19:40
that's sort of as great as complexity can ever get ...
473
1180260
3000
那是複雜到不能再複雜的程度 ...
19:44
I could go on about this at great length, but I won't. (Laughter) (Applause)
474
1184260
3000
這點我還可以談很久,不過先到此為止了
19:47
CA: Stephen Wolfram, thank you.
475
1187260
2000
克•安:史蒂夫•沃夫朗,謝謝您
19:49
(Applause)
476
1189260
2000
(喝彩)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog