Why People and AI Make Good Business Partners | Shervin Khodabandeh | TED

53,200 views ・ 2022-05-22

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: Grace Man
00:04
I've been working in AI for most of my career,
0
4292
3128
我大部分的职业生涯 都在研究 AI 领域,
00:07
helping companies build artificial intelligence capabilities
1
7462
3378
帮助公司培养 人工智能(AI)的技术能力,
00:10
to improve their business,
2
10840
1752
改进业务,
00:12
which is why I think what I'm about to tell you
3
12634
2336
这就是为什么我认为 我接下来要告诉你的事
00:15
is quite shocking.
4
15011
1418
十分令人震惊。
00:16
Every year, thousands of companies across the world
5
16763
4087
每年,全球成千上万家公司
00:20
spend collectively tens of billions of dollars to build AI capabilities.
6
20892
4838
都会在培养 AI 的技术能力上 花费上亿美元。
00:26
But according to research my colleagues and I have done,
7
26106
2669
但是根据我和我同事做的研究,
00:28
only about 10 percent of these companies get any meaningful financial impact
8
28775
4922
只有大约 10% 的企业 从这类投资中
00:33
from their investments.
9
33738
1502
收获了显著的财务改善。
00:35
These 10 percent winners with AI have a secret.
10
35740
2670
这 10% 的 AI 赢家 有它们的秘诀。
00:38
And their secret is not about fancy algorithms or sophisticated technology.
11
38868
5256
它们的秘诀与酷炫的算法 或者复杂的技术无关。
00:44
It's something far more basic.
12
44165
1919
这个秘诀简单得很。
00:46
It's how they get their people and AI to work together.
13
46751
4129
就是如何让人与 AI 协作。
00:50
Together, not against each other,
14
50880
2294
通力合作,而不是针锋相对,
00:53
not instead of each other.
15
53174
1794
也不是取而代之。
00:54
Together in a mutually beneficial relationship.
16
54968
2919
是互利共赢。
00:58
Unfortunately, when most people think about AI,
17
58555
2753
不幸的是, 大多数人想到 AI 的时候,
01:01
they think about the most extreme cases.
18
61349
2127
会联想到最极端的例子。
01:04
That AI is here only to replace us
19
64019
2294
AI 只会取代我们,
01:06
or overtake our intelligence and make us unnecessary.
20
66354
2878
或者超越我们的智力, 让我们没有用武之地。
01:09
But what I'm saying
21
69608
1418
但是我要说的是
01:11
is that we don't seem to quite appreciate the huge opportunity that exists
22
71026
4212
我们似乎并没有关注中间地带上
01:15
in the middle ground,
23
75280
1460
存在的丰富机会,
01:16
where humans and AI come together
24
76781
3087
在这里,人类和 AI 可以携手
01:19
to achieve outcomes that neither one could do alone on their own.
25
79909
5047
达到二者缺一不可 才能创造的成果。
01:24
Consider the game of chess.
26
84998
1501
比如国际象棋。
01:26
You probably knew that AI today can beat any human grandmaster.
27
86541
4880
你可能已经知道,现在的 AI 已经 可以赢过所有人类国际特级大师。
01:32
But did you know that the combination of a human chess player and AI
28
92088
4004
但是你知道 人类棋手和 AI 的组合
01:36
can beat not only any human but also any machine.
29
96134
3754
可以战胜的不仅是所有人类, 还有所有的机器吗?
01:40
The combination is much more powerful than the sum of its parts.
30
100263
4338
这个组合比双方的总和 要厉害得多。
01:45
In a perfect combination, AI will do what it does best,
31
105226
3838
在一个完美的组合里, AI 会发挥所长——
01:49
which is dealing with massive amounts of data and solving complex problems.
32
109105
4547
处理海量数据, 解决复杂问题。
01:53
And humans do what we do best
33
113693
2461
人类也发挥其所长,
01:56
using our creativity, our judgment, our empathy, our ethics
34
116196
4671
充分利用我们的创造力、判断力、 同理心、道德感
02:00
and our ability to compromise.
35
120867
2294
和妥协的能力。
02:03
For several years,
36
123161
1335
多年以来,
02:04
my colleagues and I have studied
37
124537
2086
我和我的同事们学习
02:06
and worked with hundreds of winning companies
38
126623
3045
并与数百家成功利用 AI 获利的公司合作,
02:09
who are successfully building these human-AI relationships.
39
129668
3628
它们已经成功地建立了 这种人类与 AI 的关系。
02:13
And what we've seen is quite interesting.
40
133338
2627
我们所见的非常有趣。
02:15
First of all, these companies get five times more financial value
41
135965
4130
首先,这些公司 比那些仅仅只为了取代人类而
02:20
than companies who use AI only to replace people.
42
140136
3379
利用 AI 的公司多获取了 五倍的经济价值。
02:24
Most importantly, they have a happier workforce.
43
144140
2920
最重要的是, 它们的员工更快乐。
02:27
Their employees are more proud, more fulfilled,
44
147060
2919
它们的员工更自豪、 更有满足感,
02:29
they collaborate better with each other, and they're more effective.
45
149979
3254
他们更有效地合作,更加高效。
02:33
Five times more value and a happier workforce.
46
153233
4045
多五倍的价值, 更快乐的员工。
02:37
So the question is, how do these companies do it?
47
157320
2753
问题是,这些公司是怎么做到的?
02:40
How do they achieve these symbiotic human-AI relationships?
48
160115
4504
它们是如何达到这种 人类与 AI 的共生关系的?
02:44
I have some answers.
49
164661
1501
我有几个答案。
02:46
First of all, they don't think of AI in the most extreme case
50
166204
3378
首先,它们不会用极端的情况——
02:49
only to replace humans.
51
169624
1585
取代人类,来看待 AI 。
02:51
Instead, they look deep inside their organizations
52
171251
3295
相反,它们深入研究组织内部,
02:54
and at the various roles their people play.
53
174546
2294
研究员工扮演的不同角色。
02:56
And they ask:
54
176881
1126
它们会问:
02:58
How can AI make our people more fulfilled, more effective,
55
178049
4713
“AI 如何让我们的员工 更满足、更高效、
03:02
more amplified?
56
182762
1585
价值最大化?”
03:04
Let me give you an example.
57
184347
1710
我来举个例子。
03:06
Humana is a health care company here in the US.
58
186057
3962
休曼纳公司(Humana) 是美国的一家医疗服务公司。
03:10
It has pharmacy call centers where pharmacists work with patients
59
190019
3379
它有药房呼叫中心, 药剂师通过电话
03:13
over the phone.
60
193398
1418
与患者交流。
03:14
It's a job that requires a fair amount of empathy and humanity.
61
194858
3962
这个岗位需要相当的同理心 和人道主义精神。
03:19
Humana has developed an AI system
62
199362
2127
休曼纳研发了一个 AI 系统,
03:21
that listens to the pharmacists' conversation
63
201531
2711
收录药剂师与患者的对话内容,
03:24
and picks up emotional and tone signals
64
204284
2752
监测情感和语调的信号,
03:27
and then gives real-time suggestions to the pharmacists
65
207078
3003
给药剂师提供实时建议,
03:30
on how to improve the quality of that conversation.
66
210123
3086
告诉他们如何提高对话的质量。
03:33
For example, it might say “Slow down” or “Pause”
67
213835
3211
比如,它会提示 “慢一点”或者“停一下”,
03:37
or "Hey, consider how the other person is feeling right now."
68
217088
4046
或者“嘿,想想对方 现在是什么感受。”
03:41
All to improve the quality of that conversation.
69
221176
3128
这些提示都是为了提高对话的质量。
03:45
I'm pretty sure my wife would buy me one of these if she could,
70
225096
4505
我很确定如果 我太太买得到这个系统,
她肯定会给我买一个,
03:49
just to help me in some of my conversations with her.
71
229642
2586
让我更好地和她对话。
03:52
(Laughter)
72
232270
1001
(笑声)
03:53
Turns out the pharmacists like it quite a lot, too.
73
233271
2544
结果是药剂师们 也很喜欢这个系统。
03:56
They're more effective in their jobs,
74
236191
1793
他们工作更高效,
03:57
but they also learn something about themselves,
75
237984
2211
同时也更了解自己,
04:00
their own behaviors and biases.
76
240236
2253
了解自己的行为和偏见。
04:02
The result has been more effective pharmacists
77
242989
2544
这个系统带来了 更高效的药剂师、
04:05
and much higher customer satisfaction scores.
78
245533
3170
更高的客户满意度。
04:09
Now, this is just one example of many possibilities where human AI collaborate.
79
249037
6047
这只是人类和 AI 合作的 众多例子中的一个。
04:15
In this example, AI was a recommender.
80
255126
2795
在这个例子中, AI 是一个建议者。
04:17
It didn't replace the human or make any decisions of its own.
81
257962
3420
它没有取代人类, 或者自主做任何决定。
04:21
It simply made suggestions,
82
261758
1460
它只是提建议,
04:23
and it was up to the person to decide and act.
83
263259
3837
由人类决定如何 做出决定,采取行动。
04:27
And at the heart of it is a feedback loop,
84
267806
2752
它的核心是一个反馈回路,
04:30
which, by the way, is very critical for any human-AI relationship.
85
270558
4338
对人类与 AI 的关系至关重要。
04:35
By that I mean that in this example,
86
275605
1752
我的意思是,在这个例子中,
04:37
first AI had to learn from humans the qualities that would make up a good
87
277357
5213
AI 首先需要向人类学习 优秀和不怎么样的对话
04:42
or not so good conversation.
88
282612
1585
有什么样的特质。
04:44
And then over time, as AI built more intelligence,
89
284697
3587
随着时间流逝, AI 积累了更多智能,
04:48
it would be able to make suggestions,
90
288284
1919
它就能够提出建议,
04:50
but it would be up to the person to decide and act.
91
290745
3337
但是由人类决定 如何做决定和执行。
04:54
And if they didn't agree with the recommendation
92
294582
3045
如果人类无法赞同这个建议,
04:57
because it might have not made sense to them,
93
297669
2127
也许这个建议没什么道理,
04:59
they didn't have to.
94
299838
1292
这个人就可以选择不采纳。
05:01
In which case AI might learn something and adapt for the future.
95
301172
3671
无论如何选择,AI 都可以 学到一些东西并为以后调整。
05:05
It's basically open, frequent, two-way communication,
96
305426
3921
这种公开、频繁、双向的交流,
05:09
like any couples therapist will tell you,
97
309389
1960
婚姻治疗师也会这么告诉你,
05:11
is very important for any good relationship.
98
311391
3086
对任何良好的关系都非常重要。
05:15
Now the key word here is relationship.
99
315270
2627
此处的关键词是“关系”。
05:18
Think about your own personal relationships with other people.
100
318481
4004
想想你和其他人的私人关系。
05:22
You don't have the same kind of relationship with your accountant
101
322527
3462
你和你的会计师、
05:26
or your boss or your spouse, do you?
102
326030
2753
你的老板或者配偶 都不会有同样的关系吧?
05:28
Well, I certainly hope not.
103
328783
1627
希望没有。
05:30
And just like that,
104
330451
1669
就像这样,
05:32
the right relationship between human and AI in a company
105
332120
4171
公司里 人类和 AI 之间的正确关系
05:36
is not a one-size-fits-all.
106
336332
2461
并没有“均码”。
05:38
So in the case of Humana, AI was a recommender
107
338835
3295
以休曼纳为例, AI 是一个建议者,
05:42
and a human was decision-maker and actor.
108
342171
2795
人类是决策者和执行者。
05:45
In some other examples, AI might be an evaluator
109
345425
4129
在其他的例子中, AI 可以是一个评审员,
05:49
where a human comes up with ideas or scenarios,
110
349596
2961
人类提出想法或者场景,
05:52
and AI evaluates the complex implications and tradeoffs of those ideas
111
352599
4754
AI 评估这些想法的 复杂影响和优劣,
05:57
and makes it easy for humans to decide the best course of action.
112
357395
4046
让人类更容易做出最佳决定。
06:02
In some other examples, AI might take a more creative role.
113
362108
3921
还有别的例子, AI 扮演了更有创意的角色。
06:06
It could be an illuminator where it can take a complex problem
114
366362
3796
它可以指点迷津, 针对复杂的问题
06:10
and come up with potential solutions to that problem
115
370199
2920
提出可能的解决方案,
06:13
and illuminate some options
116
373161
1877
指出一些人类可能
06:15
that might have been impossible for humans to see.
117
375038
2669
无法察觉的选项。
06:18
Let me give you another example.
118
378207
1877
我再举一个例子。
06:21
During the COVID pandemic,
119
381085
1794
新冠疫情期间,
06:22
if you walked into a retail or grocery store,
120
382921
2711
如果你走进一家 零售商店或者超市,
06:25
you saw that many retailers were struggling.
121
385673
3295
你会发现很多零售商都处境艰难。
06:29
Their shelves were empty,
122
389010
1501
他们的货架空空,
06:30
their suppliers were not able to fulfill the orders,
123
390553
2878
供应商无法完成订单,
06:33
and with all the uncertainties of the pandemic,
124
393473
3086
疫情带来的不确定性
06:36
they simply had no idea how many people would be walking into what stores,
125
396559
4713
让他们对有多少人会前来购物、
06:41
demanding what products.
126
401314
1752
购买什么商品毫无头绪。
06:43
Now, to put this in perspective,
127
403733
2085
我们来仔细看一下这个问题,
06:45
this is a problem that's already quite hard when things are normal.
128
405860
4004
就算一切正常的时候, 这都是一个很难的问题。
06:49
Retailers have to predict demand
129
409906
2085
零售商每天都需要预测
06:52
for tens of thousands of products across thousands of locations
130
412033
4254
来自成千上万的地点和供应商的
06:56
and thousands of suppliers every day
131
416329
2836
数以万计的商品需求,
06:59
to manage and optimize their inventory.
132
419207
2794
管理并优化仓储。
07:02
Add to that the uncertainties of COVID and the global supply chain disruptions,
133
422043
5255
加上新冠带来的不确定性 和全球供应链冲击,
07:07
and this became 100 times more difficult.
134
427340
2961
难度增加了百倍。
07:10
And many retailers were simply paralyzed.
135
430301
2294
许多零售商直接瘫痪。
07:13
But there were a few who had built strong foundations with AI
136
433096
4087
但是有些零售商之前 就打下了 AI 的坚实基础,
07:17
and the human-AI feedback loop that we talked about.
137
437225
3336
建立了我之前谈到的 人类与 AI 之间的反馈回路。
07:20
And these guys were able to navigate all this uncertainty
138
440603
3128
这些公司比其他公司更好地
07:23
much better than others.
139
443731
1710
在不确定性中站稳脚跟。
07:26
They used AI to analyze tens of billions of data points
140
446150
3254
它们利用 AI 分析数亿数据点,
07:29
on consumer behavior and global supply chain disruptions
141
449445
3712
分析消费者行为、 全球供应链冲击、
07:33
and local government closures and mandates
142
453199
2878
当地政府关闭情况和指令、
07:36
and traffic on highways
143
456119
1918
高速公路交通、
07:38
and ocean freight lanes and many, many other factors
144
458079
2794
海运航线和许多别的因素,
07:40
and get a pretty good handle on what consumers in each unique area
145
460915
4755
很好地掌握了 每一个领域的消费者
07:45
wanted the most,
146
465670
1335
最想要什么,
07:47
what would have been feasible,
147
467046
1543
怎么样最可行,
07:48
and for items that were not available,
148
468631
1835
缺货的商品
07:50
what substitutions could be made.
149
470508
2002
有什么替代品。
07:53
But AI alone without the human touch wouldn't work either.
150
473011
3962
但是,单单靠 AI, 没有人类的影响也无法成功。
07:57
There were ethical and economic tradeoffs that had to be considered.
151
477015
3795
还需要考虑道德和经济影响。
08:00
For example, deciding to bring in a product
152
480852
2878
比如,决定要不要引进一款
08:03
that didn't have a good margin for the retailer
153
483771
2461
对零售商没有什么利润,
08:06
but would really help support the local community
154
486274
2794
但是可以为本地的社区
08:09
at their time of need.
155
489068
2127
在它们需要的时候 提供支持的产品。
08:11
After all, AI couldn't quite understand
156
491195
2336
AI 毕竟并不能完全理解
08:13
the uniquely human behavior of panic-buying toilet paper
157
493531
3504
人类疯抢厕纸或者
08:17
or tens of gallons of liquor,
158
497076
2378
只是用作洗手液的大量酒水
08:19
only to be used as hand sanitizer.
159
499495
2336
这样的独特行为。
08:22
It was the combination that was the key.
160
502665
2544
组合在一起才是关键。
08:25
And the winning companies know this.
161
505710
2377
那些获胜的公司懂得这点。
08:28
They also know that inside their companies,
162
508129
2377
它们也知道在公司内部,
08:30
there's literally hundreds of these opportunities for human-AI combination,
163
510548
4630
存在着成百上千 留给人类与 AI 组合的机会,
08:35
and they actively identify and pursue them.
164
515219
2878
它们主动地发掘并追寻这些机会。
08:38
They think of AI as much more broadly a means to replace people.
165
518973
4630
它们不会把 AI 看作取代人类的 方式,而是思维更加开阔。
08:44
They look inside their organizations
166
524187
2127
它们观察企业内部,
08:46
and re-imagine how the biggest challenges and opportunities of their company
167
526355
5089
重新考虑公司最大的挑战和机遇
08:51
can be addressed
168
531444
1168
应该如何利用
08:52
by the combination of human and AI.
169
532653
2461
人类与 AI 的组合解决。
08:55
And they put in place the right combination for each unique situation.
170
535531
3921
它们会为每一种具体的情况 采取最佳的组合。
09:00
Whether it's the recommender or the evaluator
171
540078
3128
无论是建议者、评审员、
09:03
or the illuminator or optimizer or many, many other ones.
172
543247
3754
引路人、优化器还是其他角色。
09:07
They build and evolve the feedback loops that we talked about.
173
547919
3461
它们建立并改进了 我们之前谈到的反馈回路。
09:11
And finally and most importantly, they don't just throw technology at it.
174
551380
4213
最后一点,也是最重要的一点, 它们不会一门心思只搞技术。
09:16
In fact, this has been the biggest pitfall of companies
175
556094
3878
实际上有很多公司都遭遇了危机,
09:20
who don't get their return from their AI investments.
176
560014
3003
它们在 AI 上的投资 没有得到回报。
09:23
If they overinvest in technology
177
563059
2210
它们过度投资技术,
09:25
expecting a piece of tech to solve all their problems.
178
565269
3629
指望一项技术可以解决所有问题。
09:29
But there is no silver bullet.
179
569273
1669
并没有什么一招鲜。
09:30
Technology and automation can only go so far,
180
570983
2878
科技和自动化止步于此,
09:33
and for every one automation opportunity inside a company,
181
573861
3295
但是公司里每一个自动化的机会,
09:37
there's literally ten for collaboration.
182
577198
3003
都对应着十个合作的机会。
09:40
But collaboration's hard.
183
580493
1793
但是合作很难。
09:42
It requires a new mindset
184
582328
2085
这需要一种崭新的思维,
09:44
and doing things differently than how we've always done it.
185
584413
3629
抛开传统的方式, 采取与众不同的行动。
09:48
And the winning companies know this, too,
186
588084
2085
获胜的公司也懂这些,
09:50
which is why they don't just invest in technology,
187
590211
2502
这就是为什么 它们不会只投资于技术,
09:52
but so much more on human factors,
188
592713
2878
还会投资于人力,
09:55
on their people, on training and reskilling
189
595633
2628
于员工,于培训和技能提升,
09:58
and reimagining how their people and AI work together in new ways.
190
598302
4713
于重新考虑人类和 AI 协作的全新方式。
10:03
Inside these companies, it's not just machines replacing humans.
191
603474
4380
在这些公司里, 机器没有要取代人类。
10:07
It's machines and humans working together,
192
607895
2753
机器会和人类一起工作,
10:10
learning from each other.
193
610648
1710
互相学习。
10:12
And when that happens,
194
612650
1376
这时,
10:14
the organization's overall rate of learning increases,
195
614068
3462
这个公司的总体学习率提升了,
10:17
which in turn makes the company much more agile,
196
617572
2711
从而让公司变得更加敏捷、
10:20
much more resilient,
197
620324
1252
更加能屈能伸,
10:21
ready to adapt and take on any challenge.
198
621617
2795
适应性更强, 应对各种挑战。
10:25
It is the human touch that will bring the best out of AI.
199
625413
4212
人类的介入能让 AI 物尽其用。
10:29
Thank you.
200
629917
1168
谢谢。
10:31
(Applause)
201
631127
5547
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7