Why People and AI Make Good Business Partners | Shervin Khodabandeh | TED
52,901 views ・ 2022-05-22
請雙擊下方英文字幕播放視頻。
譯者: Lilian Chiu
審譯者: Helen Chang
00:04
I've been working in AI
for most of my career,
0
4292
3128
我的職涯大部分
都投入在人工智慧中,
00:07
helping companies build
artificial intelligence capabilities
1
7462
3378
協助企業建構人工智慧的能力,
00:10
to improve their business,
2
10840
1752
改善它們的事業,
00:12
which is why I think
what I'm about to tell you
3
12634
2336
這就是為什麼我認為
我接著要分享的內容
00:15
is quite shocking.
4
15011
1418
會蠻震撼的。
00:16
Every year, thousands
of companies across the world
5
16763
4087
每年,
全世界有數以千計的企業
00:20
spend collectively tens of billions
of dollars to build AI capabilities.
6
20892
4838
總共花費數百億美金
在建構人工智慧能力上。
00:26
But according to research
my colleagues and I have done,
7
26106
2669
但根據我和我同事所做的研究,
00:28
only about 10 percent of these companies
get any meaningful financial impact
8
28775
4922
只有大約 10% 的企業,
能讓它們的投資在財務面上
產生有意義的影響。
00:33
from their investments.
9
33738
1502
00:35
These 10 percent winners
with AI have a secret.
10
35740
2670
這 10% 的人工智慧
贏家有一個秘密。
00:38
And their secret is not about fancy
algorithms or sophisticated technology.
11
38868
5256
它們的秘密和很炫的演算法
或精密的科技無關,
00:44
It's something far more basic.
12
44165
1919
反而更基本許多,
00:46
It's how they get their people
and AI to work together.
13
46751
4129
那就是如何讓它們的員工和人工智慧
一起工作。
00:50
Together, not against each other,
14
50880
2294
合作,不是對抗彼此,
00:53
not instead of each other.
15
53174
1794
不是取代彼此,
00:54
Together in a mutually
beneficial relationship.
16
54968
2919
是在雙方都能受益的關係中合作。
00:58
Unfortunately, when most people
think about AI,
17
58555
2753
不幸的是,大部分人
想到人工智慧時,
01:01
they think about the most extreme cases.
18
61349
2127
就會想到最極端的狀況。
01:04
That AI is here only to replace us
19
64019
2294
比如人工智慧只是要來取代我們,
01:06
or overtake our intelligence
and make us unnecessary.
20
66354
2878
或者會追上我們的智慧,
讓我們無足輕重。
01:09
But what I'm saying
21
69608
1418
但我要說的,
01:11
is that we don't seem to quite appreciate
the huge opportunity that exists
22
71026
4212
是我們似乎不太懂得感念
在這中間所存在的巨大機會,
01:15
in the middle ground,
23
75280
1460
01:16
where humans and AI come together
24
76781
3087
也就是讓人類和人工智慧共同達成
01:19
to achieve outcomes that neither one
could do alone on their own.
25
79909
5047
單方面所無法達成的結果。
01:24
Consider the game of chess.
26
84998
1501
想想西洋棋。
01:26
You probably knew that AI today
can beat any human grandmaster.
27
86541
4880
你可能知道,現今的
人工智慧可以打敗
任何人類大師。
01:32
But did you know that the combination
of a human chess player and AI
28
92088
4004
但你可知道,人類棋手
和人工智慧的組合
01:36
can beat not only any human
but also any machine.
29
96134
3754
不僅能打敗任何人類,
也能打敗任何機器?
01:40
The combination is much more powerful
than the sum of its parts.
30
100263
4338
合體遠遠勝過當中的任何一部分。
01:45
In a perfect combination,
AI will do what it does best,
31
105226
3838
在完美的組合中,
人工智慧會做它最擅長的,也就是
01:49
which is dealing with massive amounts
of data and solving complex problems.
32
109105
4547
處理非常大量的資料
以及解決複雜的問題。
01:53
And humans do what we do best
33
113693
2461
而人類做人類最擅長的,
01:56
using our creativity, our judgment,
our empathy, our ethics
34
116196
4671
運用我們的創意、判斷力、
同理心、倫理,
02:00
and our ability to compromise.
35
120867
2294
以及妥協的能力。
02:03
For several years,
36
123161
1335
數年來,
02:04
my colleagues and I have studied
37
124537
2086
我和同事
研究了數百間贏家級企業,
並且與它們合作,
02:06
and worked with hundreds
of winning companies
38
126623
3045
02:09
who are successfully building
these human-AI relationships.
39
129668
3628
這些企業都成功建立了
人類與人工智慧的關係。
02:13
And what we've seen is quite interesting.
40
133338
2627
我們的發現相當有趣。
02:15
First of all, these companies get
five times more financial value
41
135965
4130
首先,比起只用人工智慧
來取代人類的企業,
02:20
than companies who use AI
only to replace people.
42
140136
3379
這些贏家級企業的
財務價值有五倍之多。
02:24
Most importantly,
they have a happier workforce.
43
144140
2920
更重要的是,它們的
整體職工都更快樂。
02:27
Their employees are more
proud, more fulfilled,
44
147060
2919
它們的員工更驕傲、更滿足,
02:29
they collaborate better with each other,
and they're more effective.
45
149979
3254
他們彼此合作得更佳,且效率更高。
02:33
Five times more value
and a happier workforce.
46
153233
4045
價值是五倍,
整體職工還更快樂。
02:37
So the question is,
how do these companies do it?
47
157320
2753
所以,問題是,
這些企業怎麼做到的?
02:40
How do they achieve these symbiotic
human-AI relationships?
48
160115
4504
它們如何達成這種人類
與人工智慧共生的關係?
02:44
I have some answers.
49
164661
1501
我有一些答案。
02:46
First of all, they don't think of AI
in the most extreme case
50
166204
3378
首先,它們不偏頗地認定人工智慧
02:49
only to replace humans.
51
169624
1585
只用來取代人類。
02:51
Instead, they look deep
inside their organizations
52
171251
3295
反之,它們更深入探究自己的組織,
02:54
and at the various roles
their people play.
53
174546
2294
以及其人員所扮演的角色。
02:56
And they ask:
54
176881
1126
它們還問:人工智慧
如何能讓我們的人
02:58
How can AI make our people
more fulfilled, more effective,
55
178049
4713
更滿足,更有效,
03:02
more amplified?
56
182762
1585
更能發揮?
03:04
Let me give you an example.
57
184347
1710
讓我舉個例子。
03:06
Humana is a health care
company here in the US.
58
186057
3962
哈門那是一間美國的健康照護公司。
03:10
It has pharmacy call centers
where pharmacists work with patients
59
190019
3379
該公司有藥局客服中心,
讓藥師透過電話服務病人。
03:13
over the phone.
60
193398
1418
03:14
It's a job that requires a fair amount
of empathy and humanity.
61
194858
3962
這份工作需要相當的同理心和愛心。
03:19
Humana has developed an AI system
62
199362
2127
哈門那開發了一套人工智慧系統,
03:21
that listens to the
pharmacists' conversation
63
201531
2711
系統會聽藥師的談話,
03:24
and picks up emotional and tone signals
64
204284
2752
找出情緒和語調上的信號,
03:27
and then gives real-time
suggestions to the pharmacists
65
207078
3003
接著即時提供藥師建議,
03:30
on how to improve the quality
of that conversation.
66
210123
3086
說明如何改善那次談話的品質。
03:33
For example, it might say
“Slow down” or “Pause”
67
213835
3211
比如,它可能會建議
「說慢一點」,或「停一下」,
03:37
or "Hey, consider how the other person
is feeling right now."
68
217088
4046
或「嘿,想想對方現在的感受。」
03:41
All to improve the quality
of that conversation.
69
221176
3128
全都是在改善那次談話的品質。
03:45
I'm pretty sure my wife
would buy me one of these if she could,
70
225096
4505
我很確定,如果可以的話,
我老婆會買這個系統給我,
03:49
just to help me in some
of my conversations with her.
71
229642
2586
以協助改善我與她的對話。(笑聲)
03:52
(Laughter)
72
232270
1001
03:53
Turns out the pharmacists
like it quite a lot, too.
73
233271
2544
結果發現,藥師也很喜歡這個系統。
03:56
They're more effective in their jobs,
74
236191
1793
他們不只把工作做得更有效率,
03:57
but they also learn something
about themselves,
75
237984
2211
還更了解自己,
04:00
their own behaviors and biases.
76
240236
2253
認識自己的行為和偏見。
04:02
The result has been
more effective pharmacists
77
242989
2544
結果就是,藥師更有效率,
04:05
and much higher customer
satisfaction scores.
78
245533
3170
客人給的滿意度分數也更高許多。
04:09
Now, this is just one example of many
possibilities where human AI collaborate.
79
249037
6047
這只是一個例子,
還有很多人類與人工智慧
合作的可能性。
04:15
In this example, AI was a recommender.
80
255126
2795
在這個例子中,人工智慧是建議者。
04:17
It didn't replace the human
or make any decisions of its own.
81
257962
3420
它沒有取代人,也沒有自己做決定。
04:21
It simply made suggestions,
82
261758
1460
它就只是提出建議而已,
04:23
and it was up to the person
to decide and act.
83
263259
3837
仍然由人類來決定和採取行動。
04:27
And at the heart of it is a feedback loop,
84
267806
2752
它的核心,是回饋的迴圈,
04:30
which, by the way, is very critical
for any human-AI relationship.
85
270558
4338
對任何人類與人工智慧的關係,
這種迴圈都很重要。
04:35
By that I mean that in this example,
86
275605
1752
我的意思是,在這個例子中,首先,
04:37
first AI had to learn from humans
the qualities that would make up a good
87
277357
5213
人工智慧得要先向人類學習
好的談話或不好的談話有什麼特性。
04:42
or not so good conversation.
88
282612
1585
04:44
And then over time,
as AI built more intelligence,
89
284697
3587
隨時間,當人工智慧
建構了更多智慧,
04:48
it would be able to make suggestions,
90
288284
1919
它就能做出建議,
04:50
but it would be up to the person
to decide and act.
91
290745
3337
但還是由人類來下決定和採取行動。
04:54
And if they didn't agree
with the recommendation
92
294582
3045
如果人類不認同人工智慧的建議,
04:57
because it might have not
made sense to them,
93
297669
2127
人類可能會覺得建議不見得合理。
04:59
they didn't have to.
94
299838
1292
05:01
In which case AI might learn something
and adapt for the future.
95
301172
3671
此時,人工智慧就可以學起來,
做為未來的參考。
05:05
It's basically open, frequent,
two-way communication,
96
305426
3921
基本上,這是開放、
頻繁、雙向的溝通。
05:09
like any couples therapist will tell you,
97
309389
1960
就像任何婚姻治療師都會講的,
05:11
is very important for any
good relationship.
98
311391
3086
這種溝通有助於發展好的關係。
05:15
Now the key word here is relationship.
99
315270
2627
這裡的關鍵字是「關係」。
05:18
Think about your own personal
relationships with other people.
100
318481
4004
想想你自己和其他人的關係。
05:22
You don't have the same kind
of relationship with your accountant
101
322527
3462
你和你的會計師、
你的老闆,或你的另一半
05:26
or your boss or your spouse, do you?
102
326030
2753
都有不同的關係,對吧?
05:28
Well, I certainly hope not.
103
328783
1627
但願是不同的啦。
05:30
And just like that,
104
330451
1669
同樣的,
05:32
the right relationship
between human and AI in a company
105
332120
4171
在企業中,人類
與人工智慧的理想關係
05:36
is not a one-size-fits-all.
106
336332
2461
並非一體適用。
05:38
So in the case of Humana,
AI was a recommender
107
338835
3295
在哈門那的例子中,
人工智慧是建議者,
05:42
and a human was decision-maker and actor.
108
342171
2795
而人類是決策者和行動者。
05:45
In some other examples,
AI might be an evaluator
109
345425
4129
在其他的例子中,
人工智慧可能是評估者,
05:49
where a human comes up
with ideas or scenarios,
110
349596
2961
由人類提出點子或情境,
05:52
and AI evaluates the complex implications
and tradeoffs of those ideas
111
352599
4754
人工智慧來評估
那些想法的複雜牽扯及權衡,
05:57
and makes it easy for humans to decide
the best course of action.
112
357395
4046
讓人類更容易決定
哪種行動步驟最理想。
06:02
In some other examples,
AI might take a more creative role.
113
362108
3921
還有一些例子,
人工智慧的角色可能需要更多創意。
06:06
It could be an illuminator
where it can take a complex problem
114
366362
3796
人工智慧可扮演照明者,
它可以接受複雜的問題,
06:10
and come up with potential
solutions to that problem
115
370199
2920
並提出可能解決那個問題的方案,
06:13
and illuminate some options
116
373161
1877
照明一些人類可能看不見的選項。
06:15
that might have been impossible
for humans to see.
117
375038
2669
06:18
Let me give you another example.
118
378207
1877
讓我再舉個例子。
06:21
During the COVID pandemic,
119
381085
1794
在新冠肺炎疫情期間,
06:22
if you walked into a retail
or grocery store,
120
382921
2711
如果你走進零售店或雜貨店,
06:25
you saw that many retailers
were struggling.
121
385673
3295
會看到許多零售商經營得很辛苦。
它們的架上空無一物,
06:29
Their shelves were empty,
122
389010
1501
06:30
their suppliers were not able
to fulfill the orders,
123
390553
2878
它們的供應商無法履約,
06:33
and with all the uncertainties
of the pandemic,
124
393473
3086
因為疫情中的不確定性,
06:36
they simply had no idea how many people
would be walking into what stores,
125
396559
4713
它們完全不知道
會有多少人走進什麼商店,
06:41
demanding what products.
126
401314
1752
想買什麼產品。
06:43
Now, to put this in perspective,
127
403733
2085
讓我說明一下,
06:45
this is a problem that's already quite
hard when things are normal.
128
405860
4004
在正常狀況下,
這個問題就相當難解了。
06:49
Retailers have to predict demand
129
409906
2085
零售商必須要預測
幾千個地點每日
06:52
for tens of thousands of products
across thousands of locations
130
412033
4254
對數萬種產品的需求,
還會牽扯到數千家供應商,
06:56
and thousands of suppliers every day
131
416329
2836
06:59
to manage and optimize their inventory.
132
419207
2794
以管理庫存並將庫存最佳化。
07:02
Add to that the uncertainties of COVID
and the global supply chain disruptions,
133
422043
5255
此外,還有
新冠肺炎的不確定性
以及全球供應鏈中斷,
07:07
and this became 100 times more difficult.
134
427340
2961
難度提高了一百倍。
07:10
And many retailers were simply paralyzed.
135
430301
2294
許多零售商就癱瘓了。
07:13
But there were a few who had built
strong foundations with AI
136
433096
4087
但有少數幾間
建立了強力的基礎,用的是人工智慧
07:17
and the human-AI feedback loop
that we talked about.
137
437225
3336
及我們剛才談到的人類
與人工智慧間的回饋迴圈。
07:20
And these guys were able
to navigate all this uncertainty
138
440603
3128
這些零售商在這種不確定性當中就能
07:23
much better than others.
139
443731
1710
比其他零售商更清楚方向。
07:26
They used AI to analyze
tens of billions of data points
140
446150
3254
它們用人工智慧來分析
數百億筆資料,
07:29
on consumer behavior
and global supply chain disruptions
141
449445
3712
資料內容包括消費者行為、
全球供應鏈中斷、
07:33
and local government closures and mandates
142
453199
2878
當地政府的關閉及命令、
07:36
and traffic on highways
143
456119
1918
還有高速公路及海運
通路的交通流量,
07:38
and ocean freight lanes and many,
many other factors
144
458079
2794
以及許多其他因素,
07:40
and get a pretty good handle on what
consumers in each unique area
145
460915
4755
就能好好掌握
在每個特定的地區中消費者
07:45
wanted the most,
146
465670
1335
最想要什麼、
07:47
what would have been feasible,
147
467046
1543
什麼做法可行,
07:48
and for items that were not available,
148
468631
1835
至於無法取得的品項,
07:50
what substitutions could be made.
149
470508
2002
可以用什麼取代。
07:53
But AI alone without the human touch
wouldn't work either.
150
473011
3962
但光有人工智慧,
少了人類獨有的特性
也行不通。
07:57
There were ethical and economic tradeoffs
that had to be considered.
151
477015
3795
倫理和經濟之間的權衡也得要考量。
08:00
For example, deciding
to bring in a product
152
480852
2878
比如,決定要進一種產品,
08:03
that didn't have a good margin
for the retailer
153
483771
2461
零售商的利潤不大,
08:06
but would really help support
the local community
154
486274
2794
但能在地方社區需要的時候,
08:09
at their time of need.
155
489068
2127
提供協助支持。
08:11
After all, AI couldn't quite understand
156
491195
2336
畢竟,人工智慧不是很能
了解一些人類獨有的行為,
08:13
the uniquely human behavior
of panic-buying toilet paper
157
493531
3504
比如恐慌性搶購廁所衛生紙,
08:17
or tens of gallons of liquor,
158
497076
2378
或者買數加侖的酒精
08:19
only to be used as hand sanitizer.
159
499495
2336
卻只用來做手部清潔。
08:22
It was the combination that was the key.
160
502665
2544
組合,才是關鍵。
08:25
And the winning companies know this.
161
505710
2377
贏家級的企業知道這一點。
08:28
They also know that inside
their companies,
162
508129
2377
它們也知道在自己內部,
08:30
there's literally hundreds of these
opportunities for human-AI combination,
163
510548
4630
真的有數百個機會可以用到
人類與人工智慧的組合,
08:35
and they actively identify
and pursue them.
164
515219
2878
它們會主動找出
這些機會並投入去做。
08:38
They think of AI as much more broadly
a means to replace people.
165
518973
4630
它們用更廣的視野去看人工智慧,
不只把它視為取代人類的手段。
08:44
They look inside their organizations
166
524187
2127
它們在自己內部檢視,
08:46
and re-imagine how the biggest challenges
and opportunities of their company
167
526355
5089
重新想像
它們最大的難題和機會
08:51
can be addressed
168
531444
1168
如何能用人工智慧
和人類的組合來處理。
08:52
by the combination of human and AI.
169
532653
2461
08:55
And they put in place the right
combination for each unique situation.
170
535531
3921
它們針對每個獨特的情況,
安排適合的組合。
09:00
Whether it's the recommender
or the evaluator
171
540078
3128
不論人工智慧扮演的是建議者、
評估者、照明者、
09:03
or the illuminator or optimizer
or many, many other ones.
172
543247
3754
優化者,或許多其他角色。
09:07
They build and evolve the feedback loops
that we talked about.
173
547919
3461
它們會建構並改進我們
剛才談到的回饋迴圈。
09:11
And finally and most importantly,
they don't just throw technology at it.
174
551380
4213
最後,也最重要的是,
它們不是就只把技術投下去。
09:16
In fact, this has been
the biggest pitfall of companies
175
556094
3878
事實上,這一直都是
在人工智慧上做投資
卻無法回收的那些企業
09:20
who don't get their return
from their AI investments.
176
560014
3003
最容易犯的錯誤。
09:23
If they overinvest in technology
177
563059
2210
它們在科技上投資過多,
09:25
expecting a piece of tech
to solve all their problems.
178
565269
3629
預期靠科技就能解決
它們所有的問題。
09:29
But there is no silver bullet.
179
569273
1669
但萬靈丹並不存在。
09:30
Technology and automation
can only go so far,
180
570983
2878
科技和自動化也有它們的極限,
09:33
and for every one automation
opportunity inside a company,
181
573861
3295
在企業中,每有一個自動化的機會,
09:37
there's literally ten for collaboration.
182
577198
3003
就會有十個合作的機會。
09:40
But collaboration's hard.
183
580493
1793
但合作很困難。
09:42
It requires a new mindset
184
582328
2085
合作需要新的心態,
09:44
and doing things differently
than how we've always done it.
185
584413
3629
且要用和我們平時
不同的做法來做事。
09:48
And the winning companies
know this, too,
186
588084
2085
而贏家級企業也知道這一點,
09:50
which is why they don't just
invest in technology,
187
590211
2502
這就是為什麼它們不僅投資科技,
09:52
but so much more on human factors,
188
592713
2878
還在人相關的因素上投資更多,
09:55
on their people,
on training and reskilling
189
595633
2628
投資在人身上、訓練他們、
教他們新技能,並重新想像
09:58
and reimagining how their people
and AI work together in new ways.
190
598302
4713
它們的員工和人工智慧
如何能用新方式合作。
10:03
Inside these companies,
it's not just machines replacing humans.
191
603474
4380
這些企業並不只是以機器取代人類,
10:07
It's machines and humans working together,
192
607895
2753
而是機器和人合作,
10:10
learning from each other.
193
610648
1710
彼此互相學習。
10:12
And when that happens,
194
612650
1376
實現這一點時,
10:14
the organization's overall rate
of learning increases,
195
614068
3462
組織的整體學習率會增加,
10:17
which in turn makes the company
much more agile,
196
617572
2711
反過來,就會讓企業
更靈活也更有彈性,
10:20
much more resilient,
197
620324
1252
10:21
ready to adapt
and take on any challenge.
198
621617
2795
準備好適應並面對任何挑戰。
10:25
It is the human touch
that will bring the best out of AI.
199
625413
4212
是人,讓人工智慧發揮到最好。
10:29
Thank you.
200
629917
1168
謝謝。
(掌聲)
10:31
(Applause)
201
631127
5547
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。