How to use data to make a hit TV show | Sebastian Wernicke

133,338 views ・ 2016-01-27

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Milenka Okuka Lektor: Mile Živković
00:12
Roy Price is a man that most of you have probably never heard about,
0
12820
4276
Roj Prajs je čovek za koga većina vas verovatno nije nikad čula,
00:17
even though he may have been responsible
1
17120
2496
iako je možda odgovoran
00:19
for 22 somewhat mediocre minutes of your life on April 19, 2013.
2
19640
6896
za 22 prilično osrednja minuta vašeg života, 19. aprila 2013.
00:26
He may have also been responsible for 22 very entertaining minutes,
3
26560
3176
Možda je takođe odgovoran za 22 veoma zabavna minuta,
00:29
but not very many of you.
4
29760
2256
ali za mali broj vas.
00:32
And all of that goes back to a decision
5
32040
1896
A sve se svodi na odluku
00:33
that Roy had to make about three years ago.
6
33960
2000
koju je Roj morao da donese pre oko tri godine.
00:35
So you see, Roy Price is a senior executive with Amazon Studios.
7
35984
4832
Dakle, vidite, Roj Prajs je viši producent u Amazon Studios.
00:40
That's the TV production company of Amazon.
8
40840
3016
To je Amazonova TV produkcijska firma.
00:43
He's 47 years old, slim, spiky hair,
9
43880
3256
On ima 47 godina, vitak je, ima jež frizuru,
00:47
describes himself on Twitter as "movies, TV, technology, tacos."
10
47160
4816
sebe opisuje na Tviteru kao nekog ko voli "filmove, TV, tehnologiju i takose".
00:52
And Roy Price has a very responsible job, because it's his responsibility
11
52000
5176
A Roj Prajs ima veoma odgovoran posao jer je njegova odgovornost
00:57
to pick the shows, the original content that Amazon is going to make.
12
57200
4056
da izabere serije, originalne sadržine, koje će Amazon da snima.
01:01
And of course that's a highly competitive space.
13
61280
2336
I naravno, to je izuzetno konkurentan prostor.
01:03
I mean, there are so many TV shows already out there,
14
63640
2736
Mislim, već postoji toliko TV serija
01:06
that Roy can't just choose any show.
15
66400
2176
te Roj ne može prosto da izabere bilo koju.
01:08
He has to find shows that are really, really great.
16
68600
4096
Mora da pronađe serije koje su zaista, zaista sjajne.
01:12
So in other words, he has to find shows
17
72720
2816
Drugim rečima, mora da pronađe serije
01:15
that are on the very right end of this curve here.
18
75560
2376
koje su na samom desnom kraju ove krive ovde.
01:17
So this curve here is the rating distribution
19
77960
2656
Dakle, ova kriva ovde predstavlja raspodelu ocena
01:20
of about 2,500 TV shows on the website IMDB,
20
80640
4376
oko 2,500 TV serija sa vebsajta IMDB,
01:25
and the rating goes from one to 10,
21
85040
2896
a ocene se kreću od jedan do deset,
01:27
and the height here shows you how many shows get that rating.
22
87960
2976
a visina krive vam pokazuje koliko je serija imalo tu ocenu.
01:30
So if your show gets a rating of nine points or higher, that's a winner.
23
90960
4696
Pa, ako vaša serija dobije ocenu od devet poena ili više, to je pobednik.
01:35
Then you have a top two percent show.
24
95680
1816
Onda imate seriju iz prvih dva posto.
01:37
That's shows like "Breaking Bad," "Game of Thrones," "The Wire,"
25
97520
3896
To su serije, poput: "Čiste hemije", "Igre prestola", "Žice",
01:41
so all of these shows that are addictive,
26
101440
2296
dakle, sve te serije koje vam uđu pod kožu,
01:43
whereafter you've watched a season, your brain is basically like,
27
103760
3056
gde nakon što ste odgledali prvu sezonu, vaš mozak je u fazonu:
01:46
"Where can I get more of these episodes?"
28
106840
2176
"Gde da nađem još ovih epizoda?"
01:49
That kind of show.
29
109040
1200
Taj tip serije.
01:50
On the left side, just for clarity, here on that end,
30
110920
2496
Na levoj strani, čisto da bude jasno, ovde na kraju,
01:53
you have a show called "Toddlers and Tiaras" --
31
113440
3176
imate seriju koja se zove "Devojčice i dijademe" -
01:56
(Laughter)
32
116640
2656
(Smeh)
01:59
-- which should tell you enough
33
119320
1536
- to vam dovoljno govori
02:00
about what's going on on that end of the curve.
34
120880
2191
o tome šta se dešava na tom kraju krive.
02:03
Now, Roy Price is not worried about getting on the left end of the curve,
35
123095
4161
E sad, Roja Prajsa ne brine da će završiti na levoj strani krive
02:07
because I think you would have to have some serious brainpower
36
127280
2936
jer mislim da morate da posedujete prilično ozbiljne umne moći
02:10
to undercut "Toddlers and Tiaras."
37
130240
1696
da podrijete "Devojčice i dijademe".
02:11
So what he's worried about is this middle bulge here,
38
131960
3936
Dakle, njega brine ovo središnje ispupčenje ovde,
02:15
the bulge of average TV,
39
135920
1816
tu su prosečne TV serije,
02:17
you know, those shows that aren't really good or really bad,
40
137760
2856
znate, one serije koje nisu naročito dobre, ni loše,
02:20
they don't really get you excited.
41
140639
1656
zbog njih se ne uzbuđujete previše.
02:22
So he needs to make sure that he's really on the right end of this.
42
142320
4856
Pa mora da se postara da zaista bude na desnom kraju ovoga.
02:27
So the pressure is on,
43
147200
1576
Dakle, prisutan je pritisak
02:28
and of course it's also the first time
44
148800
2176
i, naravno, takođe je prvi put
02:31
that Amazon is even doing something like this,
45
151000
2176
da Amazon uopšte radi nešto slično,
02:33
so Roy Price does not want to take any chances.
46
153200
3336
pa Roj Prajs ne želi da rizikuje.
02:36
He wants to engineer success.
47
156560
2456
Želi da isplanira uspeh.
02:39
He needs a guaranteed success,
48
159040
1776
Potreban mu je zagarantovan uspeh,
02:40
and so what he does is, he holds a competition.
49
160840
2576
pa on organizuje takmičenje.
02:43
So he takes a bunch of ideas for TV shows,
50
163440
3136
Uzima gomilu ideja za TV serije
02:46
and from those ideas, through an evaluation,
51
166600
2296
i od tih ideja, kroz procenu,
02:48
they select eight candidates for TV shows,
52
168920
4096
biraju osam kandidata za TV serije,
02:53
and then he just makes the first episode of each one of these shows
53
173040
3216
a potom samo snimaju prvu epizodu svake od ovih serija
02:56
and puts them online for free for everyone to watch.
54
176280
3136
i postavljaju ih besplatno na internet gde ih svako može gledati.
02:59
And so when Amazon is giving out free stuff,
55
179440
2256
A kada Amazon poklanja nešto,
03:01
you're going to take it, right?
56
181720
1536
uzećete to, zar ne?
03:03
So millions of viewers are watching those episodes.
57
183280
5136
Dakle, milioni gledalaca gledaju ove epizode.
03:08
What they don't realize is that, while they're watching their shows,
58
188440
3216
Međutim, ne shvataju da dok gledaju svoje serije,
03:11
actually, they are being watched.
59
191680
2296
zapravo njih gledaju.
03:14
They are being watched by Roy Price and his team,
60
194000
2336
Posmatraju ih Roj Prajs i njegova ekipa,
03:16
who record everything.
61
196360
1376
koji sve snimaju.
03:17
They record when somebody presses play, when somebody presses pause,
62
197760
3376
Snimaju kad neko pritisne start, kad neko pritisne pauzu,
03:21
what parts they skip, what parts they watch again.
63
201160
2536
koje delove preskaču, koje delove iznova gledaju.
03:23
So they collect millions of data points,
64
203720
2256
Tako su sakupili milione jedinica podataka
03:26
because they want to have those data points
65
206000
2096
jer su im potrebne te jedinice podataka
03:28
to then decide which show they should make.
66
208120
2696
kako bi potom odlučili koju će seriju snimati.
03:30
And sure enough, so they collect all the data,
67
210840
2176
I svakako, sakupili su sve podatke,
03:33
they do all the data crunching, and an answer emerges,
68
213040
2576
usitnili su sve podatke i pojavio se odgovor,
03:35
and the answer is,
69
215640
1216
a odgovor je:
03:36
"Amazon should do a sitcom about four Republican US Senators."
70
216880
5536
"Amazon bi trebalo da snimi sitkom o četiri američka republikanska senatora."
03:42
They did that show.
71
222440
1216
Snimili su tu seriju.
03:43
So does anyone know the name of the show?
72
223680
2160
Da li iko zna naziv te serije?
03:46
(Audience: "Alpha House.")
73
226720
1296
(Publika: "Alpha House.")
03:48
Yes, "Alpha House,"
74
228040
1456
Da, "Alpha House",
03:49
but it seems like not too many of you here remember that show, actually,
75
229520
4096
ali čini se da se nekolicina vas ovde zapravo seća te serije
03:53
because it didn't turn out that great.
76
233640
1856
jer nije ispala naročito dobro.
03:55
It's actually just an average show,
77
235520
1856
Zapravo se radi o prosečnoj seriji,
03:57
actually -- literally, in fact, because the average of this curve here is at 7.4,
78
237400
4576
zapravo - bukvalno, uistinu, jer prosečna vrednost na ovoj krivoj je 7,4,
04:02
and "Alpha House" lands at 7.5,
79
242000
2416
a "Alpha House" se nalazi na 7,5,
04:04
so a slightly above average show,
80
244440
2016
dakle, samo malo iznad prosečne serije,
04:06
but certainly not what Roy Price and his team were aiming for.
81
246480
2920
ali svakako to nije ono što su Roj i njegova ekipa želeli.
04:10
Meanwhile, however, at about the same time,
82
250320
2856
U međuvremenu, međutim, otprilike istovremeno,
04:13
at another company,
83
253200
1576
u drugoj firmi,
04:14
another executive did manage to land a top show using data analysis,
84
254800
4216
drugi producent je uspeo da isporuči vrhunsku seriju, obradom podataka,
04:19
and his name is Ted,
85
259040
1576
a on se zove Ted,
04:20
Ted Sarandos, who is the Chief Content Officer of Netflix,
86
260640
3416
Ted Sarantos, on je glavni referent sadržaja na Netfliksu,
04:24
and just like Roy, he's on a constant mission
87
264080
2136
i baš kao i Roj, on je stalno na misiji
04:26
to find that great TV show,
88
266240
1496
pronalaženja sjajne TV serije,
04:27
and he uses data as well to do that,
89
267760
2016
i on koristi podatke da bi to postigao,
04:29
except he does it a little bit differently.
90
269800
2015
samo što to on radi malčice drugačije.
04:31
So instead of holding a competition, what he did -- and his team of course --
91
271839
3737
Pa su umesto organizovanja takmičenja, on - i naravno njegova ekipa -
04:35
was they looked at all the data they already had about Netflix viewers,
92
275600
3536
pogledali sve podatke koje su već imali o gledaocima Netfliksa,
04:39
you know, the ratings they give their shows,
93
279160
2096
znate, ocene koje daju serijama,
04:41
the viewing histories, what shows people like, and so on.
94
281280
2696
istoriju gledanja, koje serije ljudi vole i tako dalje.
A onda su koristili te podatke da otkriju
04:44
And then they use that data to discover
95
284000
1896
04:45
all of these little bits and pieces about the audience:
96
285920
2616
sve te sitnice i pojedinosti o publici:
04:48
what kinds of shows they like,
97
288560
1456
koje serije vole,
04:50
what kind of producers, what kind of actors.
98
290040
2096
koje producente, koje glumce.
04:52
And once they had all of these pieces together,
99
292160
2576
I kada su sklopili sve te komadiće,
04:54
they took a leap of faith,
100
294760
1656
otisnuli su se u nepoznato
04:56
and they decided to license
101
296440
2096
i odlučili da odobre,
04:58
not a sitcom about four Senators
102
298560
2456
ne sitkom o četvorici senatora,
05:01
but a drama series about a single Senator.
103
301040
2880
već dramu o jednom senatoru.
05:04
You guys know the show?
104
304760
1656
Znate li, ljudi, tu seriju?
05:06
(Laughter)
105
306440
1296
(Smeh)
05:07
Yes, "House of Cards," and Netflix of course, nailed it with that show,
106
307760
3736
Da, "Kuća od karata" i Netfliks je naravno trijumfovao tom serijom,
05:11
at least for the first two seasons.
107
311520
2136
bar tokom prve dve sezone.
05:13
(Laughter) (Applause)
108
313680
3976
(Smeh) (Aplauz)
05:17
"House of Cards" gets a 9.1 rating on this curve,
109
317680
3176
"Kuća od karata" ima ocenu od 9,1 na ovoj krivoj,
05:20
so it's exactly where they wanted it to be.
110
320880
3176
dakle, tu su i želeli da stignu.
05:24
Now, the question of course is, what happened here?
111
324080
2416
E sad, pitanje je naravno, šta se ovde desilo?
05:26
So you have two very competitive, data-savvy companies.
112
326520
2656
Imate dve veoma konkurentne firme, spretne s podacima.
05:29
They connect all of these millions of data points,
113
329200
2856
One spajaju sve ove milione jedinica podataka,
05:32
and then it works beautifully for one of them,
114
332080
2376
a onda se za jednu sve završi lepo,
05:34
and it doesn't work for the other one.
115
334480
1856
a za drugu ne.
05:36
So why?
116
336360
1216
Zašto?
05:37
Because logic kind of tells you that this should be working all the time.
117
337600
3456
Jer, logika vam govori da bi ovo trebalo stalno da funkcioniše.
05:41
I mean, if you're collecting millions of data points
118
341080
2456
Mislim, ako sakupljate milione jedinica podataka
05:43
on a decision you're going to make,
119
343560
1736
za odluku koju donosite,
05:45
then you should be able to make a pretty good decision.
120
345320
2616
onda bi trebalo da ste u stanju da donesete valjanu odluku.
05:47
You have 200 years of statistics to rely on.
121
347960
2216
Imate da se oslonite na 200-godišnju statistiku.
05:50
You're amplifying it with very powerful computers.
122
350200
3016
Nju ste pojačali izuzetno moćnim kompjuterima.
05:53
The least you could expect is good TV, right?
123
353240
3280
Najmanje što biste očekivali je dobra televizija, zar ne?
05:57
And if data analysis does not work that way,
124
357880
2720
A, ako obrada podataka ne funkcioniše tako,
06:01
then it actually gets a little scary,
125
361520
2056
onda zapravo postaje malčice zastrašujuće
06:03
because we live in a time where we're turning to data more and more
126
363600
3816
jer živimo u vremenu u kom se sve više okrećemo podacima
06:07
to make very serious decisions that go far beyond TV.
127
367440
4480
da bismo doneli veoma ozbiljne odluke koje sežu mimo televizije.
06:12
Does anyone here know the company Multi-Health Systems?
128
372760
3240
Da li iko ovde zna za firmu Multi-Health Systems?
06:17
No one. OK, that's good actually.
129
377080
1656
Niko. U redu, to je zapravo dobro.
06:18
OK, so Multi-Health Systems is a software company,
130
378760
3216
U redu, Multi-Health Systems je softverska firma
06:22
and I hope that nobody here in this room
131
382000
2816
i nadam se da niko iz ove prostorije
06:24
ever comes into contact with that software,
132
384840
3176
nikada neće doći u dodir s tim softverom
jer ako dođete, to će značiti da ste u zatvoru.
06:28
because if you do, it means you're in prison.
133
388040
2096
06:30
(Laughter)
134
390160
1176
(Smeh)
06:31
If someone here in the US is in prison, and they apply for parole,
135
391360
3536
Ako je neko, ovde u SAD-u, u zatvoru i prijavi se za uslovnu,
06:34
then it's very likely that data analysis software from that company
136
394920
4296
onda će verovatno softver te firme za obradu podataka
06:39
will be used in determining whether to grant that parole.
137
399240
3616
da koriste kako bi utvrdili da li da vam odobre uslovnu.
06:42
So it's the same principle as Amazon and Netflix,
138
402880
2576
Dakle, isti je princip kao kod Amazona i Nefliksa,
06:45
but now instead of deciding whether a TV show is going to be good or bad,
139
405480
4616
ali sad umesto odlučivanja o tome da li će serija da bude dobra ili loša,
06:50
you're deciding whether a person is going to be good or bad.
140
410120
2896
odlučuje se da li će osoba da bude dobra ili loša.
06:53
And mediocre TV, 22 minutes, that can be pretty bad,
141
413040
5496
A prosečna televizijska 22 minuta mogu da budu vrlo loša,
06:58
but more years in prison, I guess, even worse.
142
418560
2640
ali dodatne godine u zatvoru su, valjda, još gore.
07:02
And unfortunately, there is actually some evidence that this data analysis,
143
422360
4136
I nažalost, zapravo imamo neke dokaze da ova obrada podataka,
07:06
despite having lots of data, does not always produce optimum results.
144
426520
4216
uprkos velikom broju podataka, ne daje uvek optimalne rezultate.
07:10
And that's not because a company like Multi-Health Systems
145
430760
2722
A to nije zato što firma, poput Multi-Health Systems
07:13
doesn't know what to do with data.
146
433506
1627
ne zna šta da radi s podacima.
07:15
Even the most data-savvy companies get it wrong.
147
435158
2298
Čak i firme koje su stručnjaci za podatke, greše.
07:17
Yes, even Google gets it wrong sometimes.
148
437480
2400
Da, čak i Gugl ponekad pogreši.
07:20
In 2009, Google announced that they were able, with data analysis,
149
440680
4496
Godine 2009, Gugl je najavio da su u stanju, koristeći obradu podataka,
07:25
to predict outbreaks of influenza, the nasty kind of flu,
150
445200
4136
da predvide epidemiju influence, gadnog oblika gripa,
07:29
by doing data analysis on their Google searches.
151
449360
3776
koristeći obradu podataka s Guglovih pretraga.
07:33
And it worked beautifully, and it made a big splash in the news,
152
453160
3856
I savršeno je funkcionisalo i dospeli su u glavne vesti,
07:37
including the pinnacle of scientific success:
153
457040
2136
uključujući i vrhunac naučnog uspeha:
07:39
a publication in the journal "Nature."
154
459200
2456
objavu u magazinu "Nejčer".
07:41
It worked beautifully for year after year after year,
155
461680
3616
Savršeno je funkcionisalo godinu za godinom,
07:45
until one year it failed.
156
465320
1656
sve dok jedne godine nije zatajilo.
07:47
And nobody could even tell exactly why.
157
467000
2256
A niko nije čak mogao da tačno kaže zašto.
07:49
It just didn't work that year,
158
469280
1696
Prosto nije funkcionisalo te godine
i, naravno, to je ponovo bila glavna vest,
07:51
and of course that again made big news,
159
471000
1936
07:52
including now a retraction
160
472960
1616
uključujući sada i povlačenje
07:54
of a publication from the journal "Nature."
161
474600
2840
članka iz časopisa "Nejčer".
07:58
So even the most data-savvy companies, Amazon and Google,
162
478480
3336
Dakle, čak i stručnjaci za podatke, Amazon i Gugl,
08:01
they sometimes get it wrong.
163
481840
2136
ponekad pogreše.
08:04
And despite all those failures,
164
484000
2936
I uprkos svim tim neuspesima,
08:06
data is moving rapidly into real-life decision-making --
165
486960
3856
podaci sve brže postaju deo odlučivanja u stvarnom životu -
08:10
into the workplace,
166
490840
1816
na poslu,
08:12
law enforcement,
167
492680
1816
u policiji,
08:14
medicine.
168
494520
1200
medicini.
08:16
So we should better make sure that data is helping.
169
496400
3336
Dakle, trebalo bi da se postaramo da nam podaci budu korisni.
08:19
Now, personally I've seen a lot of this struggle with data myself,
170
499760
3136
Sad, lično sam video mnogo ove borbe s podacima
08:22
because I work in computational genetics,
171
502920
1976
jer radim na polju računarske genetike,
08:24
which is also a field where lots of very smart people
172
504920
2496
što je takođe oblast gde mnogo veoma pametnih ljudi
08:27
are using unimaginable amounts of data to make pretty serious decisions
173
507440
3656
koristi nezamislivu količinu podataka da bi doneli veoma ozbiljne odluke,
08:31
like deciding on a cancer therapy or developing a drug.
174
511120
3560
poput odlučivanja o terapiji za rak ili o razvoju leka.
08:35
And over the years, I've noticed a sort of pattern
175
515520
2376
I vremenom sam primetio nešto nalik obrascu
08:37
or kind of rule, if you will, about the difference
176
517920
2456
ili nekakvom pravilu, ako hoćete, o razlici
08:40
between successful decision-making with data
177
520400
2696
između uspešnog odlučivanja pomoću podataka
08:43
and unsuccessful decision-making,
178
523120
1616
i neuspešnog odlučivanja
08:44
and I find this a pattern worth sharing, and it goes something like this.
179
524760
3880
i smatram da ovaj obrazac vredi deliti, a radi se o sledećem.
08:50
So whenever you're solving a complex problem,
180
530520
2135
Dakle, kad god rešavate složen problem,
08:52
you're doing essentially two things.
181
532679
1737
u suštini radite dve stvari.
08:54
The first one is, you take that problem apart into its bits and pieces
182
534440
3296
Prvo razlažete dati problem na sastavne komadiće i delove
08:57
so that you can deeply analyze those bits and pieces,
183
537760
2496
kako biste podrobno analizirali te komadiće i delove
09:00
and then of course you do the second part.
184
540280
2016
i potom, naravno, prelazite na drugi deo.
09:02
You put all of these bits and pieces back together again
185
542320
2656
Sastavljate ponovo sve ove komadiće i delove
09:05
to come to your conclusion.
186
545000
1336
da biste došli do zaključka.
09:06
And sometimes you have to do it over again,
187
546360
2336
A ponekad to morate da uradite više puta,
09:08
but it's always those two things:
188
548720
1656
ali uvek se radi o ove dve stvari:
09:10
taking apart and putting back together again.
189
550400
2320
rastavljanju i ponovnom sastavljanju.
09:14
And now the crucial thing is
190
554280
1616
E sad, ključno je
09:15
that data and data analysis
191
555920
2896
da su podaci i obrada podataka
09:18
is only good for the first part.
192
558840
2496
jedino korisni u prvom delu.
09:21
Data and data analysis, no matter how powerful,
193
561360
2216
Podaci i obrada podataka, ma koliko moćni bili,
09:23
can only help you taking a problem apart and understanding its pieces.
194
563600
4456
jedino vam mogu pomoći da razložite problem i da razumete njegove delove.
09:28
It's not suited to put those pieces back together again
195
568080
3496
Neodgovarajući su za ponovno sastavljanje tih delova
09:31
and then to come to a conclusion.
196
571600
1896
i za dolaženje do zaključka.
09:33
There's another tool that can do that, and we all have it,
197
573520
2736
Postoji drugo oruđe koje može to da uradi i svi ga imamo,
09:36
and that tool is the brain.
198
576280
1296
a to oruđe je mozak.
09:37
If there's one thing a brain is good at,
199
577600
1936
Ako je mozak u nečemu dobar,
09:39
it's taking bits and pieces back together again,
200
579560
2256
to je ponovno sastavljanje komadića i delova,
09:41
even when you have incomplete information,
201
581840
2016
čak i kad imate nepotpunu informaciju,
09:43
and coming to a good conclusion,
202
583880
1576
i dolaženje do dobrog zaljučka,
09:45
especially if it's the brain of an expert.
203
585480
2936
naročito ako se radi o mozgu stručnjaka.
09:48
And that's why I believe that Netflix was so successful,
204
588440
2656
I zato verujem da je Netfliks bio uspešan
09:51
because they used data and brains where they belong in the process.
205
591120
3576
jer su koristili podatke i mozak tamo gde im je i mesto u procesu.
09:54
They use data to first understand lots of pieces about their audience
206
594720
3536
Koristili su podatke kako bi prvobitno shvatili gomile stvari o svojoj publici
09:58
that they otherwise wouldn't have been able to understand at that depth,
207
598280
3416
koje u suprotnom ne bi bili u stanju da razumeju tako podrobno,
10:01
but then the decision to take all these bits and pieces
208
601720
2616
ali potom je odluka da uzmu sve te komadiće i delove
10:04
and put them back together again and make a show like "House of Cards,"
209
604360
3336
i da ih ponovo sastave i naprave seriju, poput "Kuće od karata",
10:07
that was nowhere in the data.
210
607720
1416
toga nije bilo u podacima.
10:09
Ted Sarandos and his team made that decision to license that show,
211
609160
3976
Ted Sarandos i njegova ekipa su odlučili da odobre tu seriju,
10:13
which also meant, by the way, that they were taking
212
613160
2381
što je takođe značilo, usput, da su preuzimali
10:15
a pretty big personal risk with that decision.
213
615565
2851
prilično veliki lični rizik tom odlukom.
10:18
And Amazon, on the other hand, they did it the wrong way around.
214
618440
3016
A Amazon, s druge strane, oni su pogrešili u postupku.
10:21
They used data all the way to drive their decision-making,
215
621480
2736
Vodili su se podacima sve vreme donošenja odluke,
10:24
first when they held their competition of TV ideas,
216
624240
2416
prvo kada su organizovali takmičenje u TV idejama,
10:26
then when they selected "Alpha House" to make as a show.
217
626680
3696
potom kada su odabrali da snimaju seriju "Alpha House".
10:30
Which of course was a very safe decision for them,
218
630400
2496
Što je naravno bila veoma bezbedna odluka za njih
10:32
because they could always point at the data, saying,
219
632920
2456
jer su uvek mogli da pokažu na podatke i kažu:
10:35
"This is what the data tells us."
220
635400
1696
"Tako su nam podaci rekli."
10:37
But it didn't lead to the exceptional results that they were hoping for.
221
637120
4240
Međutim to nije dovelo do izvanrednih rezultata kojima su se nadali.
10:42
So data is of course a massively useful tool to make better decisions,
222
642120
4976
Dakle, podaci su svakako izuzetno korisno oruđe da bolje odlučujete,
10:47
but I believe that things go wrong
223
647120
2376
ali verujem da stvari kreću po zlu
10:49
when data is starting to drive those decisions.
224
649520
2576
kada su podaci vodeći u odlučivanju.
10:52
No matter how powerful, data is just a tool,
225
652120
3776
Ma koliko moćni, podaci su samo oruđe,
10:55
and to keep that in mind, I find this device here quite useful.
226
655920
3336
a da biste imali to na umu, smatram da je ovo sredstvo ovde korisno.
10:59
Many of you will ...
227
659280
1216
Mnogi od vas će...
11:00
(Laughter)
228
660520
1216
(Smeh)
11:01
Before there was data,
229
661760
1216
Pre podataka,
11:03
this was the decision-making device to use.
230
663000
2856
ovo je bio uređaj koji ste koristili u odlučivanju.
11:05
(Laughter)
231
665880
1256
(Smeh)
11:07
Many of you will know this.
232
667160
1336
Mnogima je ovo poznato.
11:08
This toy here is called the Magic 8 Ball,
233
668520
1953
Ova igračka se zove magična osmica
11:10
and it's really amazing,
234
670497
1199
i zaista je izvanredna
11:11
because if you have a decision to make, a yes or no question,
235
671720
2896
jer ako treba da odlučite o nečemu, o pitanju sa da ili ne,
11:14
all you have to do is you shake the ball, and then you get an answer --
236
674640
3736
sve što je potrebno je da protresete kuglu i potom dobijate odgovor -
11:18
"Most Likely" -- right here in this window in real time.
237
678400
2816
"najverovatnije" - baš tu u ovom prorezu, u realnom vremenu.
11:21
I'll have it out later for tech demos.
238
681240
2096
Kasnije ću je podvrći tehničkim probama.
11:23
(Laughter)
239
683360
1216
(Smeh)
11:24
Now, the thing is, of course -- so I've made some decisions in my life
240
684600
3576
Sad, radi se, naravno - doneo sam neke odluke u svom životu
11:28
where, in hindsight, I should have just listened to the ball.
241
688200
2896
za koje se kasnije ispostavilo da je trebalo da poslušam kuglu.
11:31
But, you know, of course, if you have the data available,
242
691120
3336
Međutim, znate, naravno, ako su vam podaci dostupni,
11:34
you want to replace this with something much more sophisticated,
243
694480
3056
želećete da zamenite ovo nečim daleko prefinjenijim,
11:37
like data analysis to come to a better decision.
244
697560
3616
poput obrade podataka, da biste doneli bolju odluku.
11:41
But that does not change the basic setup.
245
701200
2616
Ali to ne menja osnovnu postavku.
11:43
So the ball may get smarter and smarter and smarter,
246
703840
3176
Dakle, kugla može da postaje sve pametnija i pametnija,
11:47
but I believe it's still on us to make the decisions
247
707040
2816
ali verujem da je odlučivanje i dalje na nama,
11:49
if we want to achieve something extraordinary,
248
709880
3016
ako želimo da postignemo nešto izuzetno
11:52
on the right end of the curve.
249
712920
1936
na desnom kraju ove krive.
11:54
And I find that a very encouraging message, in fact,
250
714880
4496
I za mene je to zapravo veoma ohrabrujuća poruka,
11:59
that even in the face of huge amounts of data,
251
719400
3976
da čak i kad ste suočeni s ogromnom količinom podataka,
12:03
it still pays off to make decisions,
252
723400
4096
i dalje se isplati odlučivati,
12:07
to be an expert in what you're doing
253
727520
2656
biti stručnjak u onome što radite
12:10
and take risks.
254
730200
2096
i preuzimati rizike.
12:12
Because in the end, it's not data,
255
732320
2776
Jer, naposletku, neće vas podaci
12:15
it's risks that will land you on the right end of the curve.
256
735120
3960
već rizici smestiti na desni kraj ove krive.
12:19
Thank you.
257
739840
1216
Hvala vam.
12:21
(Applause)
258
741080
3680
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7