How to use data to make a hit TV show | Sebastian Wernicke

135,127 views ・ 2016-01-27

TED


請雙擊下方英文字幕播放視頻。

譯者: 易帆 余 審譯者: Ernie Hsieh
00:12
Roy Price is a man that most of you have probably never heard about,
0
12820
4276
Roy Price這個人, 各位可能都未曾聽過,
00:17
even though he may have been responsible
1
17120
2496
即使他曾負責過 你生命中平凡無奇的22分鐘,
00:19
for 22 somewhat mediocre minutes of your life on April 19, 2013.
2
19640
6896
在2013年4月19日這一天。
00:26
He may have also been responsible for 22 very entertaining minutes,
3
26560
3176
他也許也曾負責帶給 各位非常歡樂的22分鐘,
00:29
but not very many of you.
4
29760
2256
但你們其中也許很多人並沒有。
00:32
And all of that goes back to a decision
5
32040
1896
而這一切全部要回到
00:33
that Roy had to make about three years ago.
6
33960
2000
Roy在三年前的一個決定。
00:35
So you see, Roy Price is a senior executive with Amazon Studios.
7
35984
4832
所以,你明白,Roy Price是 Amazon廣播公司的一位資深決策者。
00:40
That's the TV production company of Amazon.
8
40840
3016
這是Amazon旗下的一家 電視節目製作公司。
00:43
He's 47 years old, slim, spiky hair,
9
43880
3256
他47歲,身材不錯,尖頭髮,
00:47
describes himself on Twitter as "movies, TV, technology, tacos."
10
47160
4816
在Twitter上形容自己是 “電影、電視、科技、墨西哥捲餅 。”
00:52
And Roy Price has a very responsible job, because it's his responsibility
11
52000
5176
Roy Price有一個 責任非常重大的工作,
因為他要負責幫Amazon挑選 即將製作的原創內容節目。
00:57
to pick the shows, the original content that Amazon is going to make.
12
57200
4056
01:01
And of course that's a highly competitive space.
13
61280
2336
當然,這是高度競爭的領域。
01:03
I mean, there are so many TV shows already out there,
14
63640
2736
我的意思是, 外面已經有那麼多的電視節目,
01:06
that Roy can't just choose any show.
15
66400
2176
Roy不能隨便亂挑一個節目。
01:08
He has to find shows that are really, really great.
16
68600
4096
他必須找出真正、 真正很讚的節目。
01:12
So in other words, he has to find shows
17
72720
2816
換句話說,
他必須從這條曲線上的右邊挑選節目。
01:15
that are on the very right end of this curve here.
18
75560
2376
01:17
So this curve here is the rating distribution
19
77960
2656
這條曲線是 IMDB網路電影資料庫裡
01:20
of about 2,500 TV shows on the website IMDB,
20
80640
4376
2500個電視節目的 客戶評分分布圖,
01:25
and the rating goes from one to 10,
21
85040
2896
評分從 1到10,
01:27
and the height here shows you how many shows get that rating.
22
87960
2976
最高的地方代表 有多少節目達到這個評分。
01:30
So if your show gets a rating of nine points or higher, that's a winner.
23
90960
4696
所以如果你的節目達到 9分或更高, 你就是贏家。
01:35
Then you have a top two percent show.
24
95680
1816
你就是那百分之二的頂尖節目。
01:37
That's shows like "Breaking Bad," "Game of Thrones," "The Wire,"
25
97520
3896
例如像是" 絕命毒師 、 權力遊戲、火線重案組 "
01:41
so all of these shows that are addictive,
26
101440
2296
全部都是會讓你上癮的節目,
01:43
whereafter you've watched a season, your brain is basically like,
27
103760
3056
看完一季之後,你的大腦基本上像是 ...
01:46
"Where can I get more of these episodes?"
28
106840
2176
" 我要去哪裡找到更多這部片的影集? "
01:49
That kind of show.
29
109040
1200
等等這類的節目。
01:50
On the left side, just for clarity, here on that end,
30
110920
2496
左邊末端,很明顯地,
01:53
you have a show called "Toddlers and Tiaras" --
31
113440
3176
你們有個叫" 小小姐與后冠 "的節目
01:56
(Laughter)
32
116640
2656
(笑聲)
01:59
-- which should tell you enough
33
119320
1536
一個足夠讓你明白
02:00
about what's going on on that end of the curve.
34
120880
2191
為什麼它會在曲線末端的節目。
02:03
Now, Roy Price is not worried about getting on the left end of the curve,
35
123095
4161
現在,Roy Price不擔心 在曲線左邊末端的節目。
02:07
because I think you would have to have some serious brainpower
36
127280
2936
因為我認為你們都會想 有一些嚴肅的判斷力
02:10
to undercut "Toddlers and Tiaras."
37
130240
1696
來降低" 小小姐與后冠 "的評分 。
02:11
So what he's worried about is this middle bulge here,
38
131960
3936
所以,他擔心的是中間多數的這些節目,
02:15
the bulge of average TV,
39
135920
1816
多到爆的這些一般性電視節目,
02:17
you know, those shows that aren't really good or really bad,
40
137760
2856
你知道,這些節目 既不是很好也不是很壞,
02:20
they don't really get you excited.
41
140639
1656
它們不會真正地讓你興奮。
02:22
So he needs to make sure that he's really on the right end of this.
42
142320
4856
所以他要確保他真的 是在右邊的末端這裡,
02:27
So the pressure is on,
43
147200
1576
所以,壓力就來了,
02:28
and of course it's also the first time
44
148800
2176
所以當然,這也是第一次 Amazon
02:31
that Amazon is even doing something like this,
45
151000
2176
也想要做類似這樣的事情,
02:33
so Roy Price does not want to take any chances.
46
153200
3336
Roy Price不想冒風險,
02:36
He wants to engineer success.
47
156560
2456
他想要建造成功,
02:39
He needs a guaranteed success,
48
159040
1776
他要一個保證的成功,
02:40
and so what he does is, he holds a competition.
49
160840
2576
所以他就舉辦一個比賽。
02:43
So he takes a bunch of ideas for TV shows,
50
163440
3136
他為電視節目帶來了很多想法,
02:46
and from those ideas, through an evaluation,
51
166600
2296
並且透過一個評估,形塑這些想法,
02:48
they select eight candidates for TV shows,
52
168920
4096
他們為電視節目挑選了八個候選名單,
02:53
and then he just makes the first episode of each one of these shows
53
173040
3216
然後他製作每一個節目的第一集,
02:56
and puts them online for free for everyone to watch.
54
176280
3136
然後把他們放到網路上, 讓每個人免費觀看。
02:59
And so when Amazon is giving out free stuff,
55
179440
2256
所以當Amazon要給你免費的東西時,
03:01
you're going to take it, right?
56
181720
1536
你就會拿,對吧?
03:03
So millions of viewers are watching those episodes.
57
183280
5136
所以上百萬人在看這些影集,
03:08
What they don't realize is that, while they're watching their shows,
58
188440
3216
而這些人不明白的是, 當他們在觀看節目的時候,
03:11
actually, they are being watched.
59
191680
2296
實際上他們也正被觀查中。
03:14
They are being watched by Roy Price and his team,
60
194000
2336
他們被Roy Price及他的團隊觀查,
03:16
who record everything.
61
196360
1376
他們紀錄了每一件事。
03:17
They record when somebody presses play, when somebody presses pause,
62
197760
3376
他們紀錄了,那些人按了撥放, 那些人按了暫停,
03:21
what parts they skip, what parts they watch again.
63
201160
2536
那些部分他們跳過, 那些部分他們又重看一遍。
03:23
So they collect millions of data points,
64
203720
2256
所以他們收集了上百萬的數據資料,
03:26
because they want to have those data points
65
206000
2096
因為他們想要用這些數據資料來決定
03:28
to then decide which show they should make.
66
208120
2696
要做甚麼樣的節目。
03:30
And sure enough, so they collect all the data,
67
210840
2176
確定好後,他們收集所有的數據,
03:33
they do all the data crunching, and an answer emerges,
68
213040
2576
他們做完所有數據處理後, 得到一個答案,
03:35
and the answer is,
69
215640
1216
而答案就是,
03:36
"Amazon should do a sitcom about four Republican US Senators."
70
216880
5536
" Amazon需要製作一個有關 美國共和黨參議員的喜劇 "。
03:42
They did that show.
71
222440
1216
他們做了,
03:43
So does anyone know the name of the show?
72
223680
2160
有人知道這個節目嗎?
03:46
(Audience: "Alpha House.")
73
226720
1296
(觀眾:" 艾爾發屋 ")
03:48
Yes, "Alpha House,"
74
228040
1456
是的," 艾爾發屋 "
03:49
but it seems like not too many of you here remember that show, actually,
75
229520
4096
但實際上,你們大部人 應該不記得有這部片子,
03:53
because it didn't turn out that great.
76
233640
1856
因為這部片並不那麼賣座。
03:55
It's actually just an average show,
77
235520
1856
它實際上僅是一般的節目,
03:57
actually -- literally, in fact, because the average of this curve here is at 7.4,
78
237400
4576
實際上,一般的節目差不多 坐落在曲線上的 7.4分,
04:02
and "Alpha House" lands at 7.5,
79
242000
2416
而" 艾爾發房屋 "落在7.5分,
04:04
so a slightly above average show,
80
244440
2016
所以比一般的節目高一點點,
04:06
but certainly not what Roy Price and his team were aiming for.
81
246480
2920
但絕對不是Roy Price與 他的團隊所要達到的目標。
04:10
Meanwhile, however, at about the same time,
82
250320
2856
這時,然而,同一時間,
另一家公司的另一個決策者,
04:13
at another company,
83
253200
1576
04:14
another executive did manage to land a top show using data analysis,
84
254800
4216
用同樣的數據分析做了一個頂尖的節目,
04:19
and his name is Ted,
85
259040
1576
他的名字是 Ted,
04:20
Ted Sarandos, who is the Chief Content Officer of Netflix,
86
260640
3416
Ted Sarandos是Netflix的 首席節目內容決策者,
04:24
and just like Roy, he's on a constant mission
87
264080
2136
就跟 Roy一樣,他也要不停的找
04:26
to find that great TV show,
88
266240
1496
最棒的節目,
04:27
and he uses data as well to do that,
89
267760
2016
而他也使用數據來這樣做,
04:29
except he does it a little bit differently.
90
269800
2015
但他的做法,有點不太一樣。
04:31
So instead of holding a competition, what he did -- and his team of course --
91
271839
3737
不是舉辦比賽,當然,他和他的團隊
04:35
was they looked at all the data they already had about Netflix viewers,
92
275600
3536
也有觀察Netflix已經有的觀眾數據,
04:39
you know, the ratings they give their shows,
93
279160
2096
觀眾對節目的評分、觀看紀錄、
04:41
the viewing histories, what shows people like, and so on.
94
281280
2696
那些節目是人們喜歡的等等,
04:44
And then they use that data to discover
95
284000
1896
他們也使用數據去發掘
04:45
all of these little bits and pieces about the audience:
96
285920
2616
觀眾所有的小細節:
04:48
what kinds of shows they like,
97
288560
1456
他們喜歡甚麼類型的節目、
04:50
what kind of producers, what kind of actors.
98
290040
2096
甚麼類型的製作人、甚麼類型的演員,
04:52
And once they had all of these pieces together,
99
292160
2576
一旦他們收集全部的細節後,
04:54
they took a leap of faith,
100
294760
1656
他們很有信心地
04:56
and they decided to license
101
296440
2096
決定要製作一部,
04:58
not a sitcom about four Senators
102
298560
2456
不是四個參議員的喜劇,
05:01
but a drama series about a single Senator.
103
301040
2880
而是一系列有關一位 單身參議員的戲劇。
05:04
You guys know the show?
104
304760
1656
各位知道那個節目嗎?
05:06
(Laughter)
105
306440
1296
(笑聲)
05:07
Yes, "House of Cards," and Netflix of course, nailed it with that show,
106
307760
3736
是的," 纸牌屋 ",Netflix ,當然,
至少頭二季,用這節目盯住那個分數。
05:11
at least for the first two seasons.
107
311520
2136
05:13
(Laughter) (Applause)
108
313680
3976
(笑聲)(掌聲)
05:17
"House of Cards" gets a 9.1 rating on this curve,
109
317680
3176
" 纸牌屋 "在這曲線上拿到 9.1分,
05:20
so it's exactly where they wanted it to be.
110
320880
3176
這當然是他們想要的。
05:24
Now, the question of course is, what happened here?
111
324080
2416
現在,當然問題就是 這到底是怎麼一回事?
05:26
So you have two very competitive, data-savvy companies.
112
326520
2656
你有兩個非常有競爭力、 精通數據資料的公司。
05:29
They connect all of these millions of data points,
113
329200
2856
他們連結了所有的數據資料,
05:32
and then it works beautifully for one of them,
114
332080
2376
然後,其中一個做的很漂亮,
05:34
and it doesn't work for the other one.
115
334480
1856
而另一個卻沒有,
05:36
So why?
116
336360
1216
為什麼?
05:37
Because logic kind of tells you that this should be working all the time.
117
337600
3456
因為邏輯上告訴你, 這應該每次都有效啊,
05:41
I mean, if you're collecting millions of data points
118
341080
2456
我的意思是, 如果你收集了所有的數據資料
05:43
on a decision you're going to make,
119
343560
1736
來決定一個決策,
05:45
then you should be able to make a pretty good decision.
120
345320
2616
那你應該可以得到一個 相當不錯的決策。
05:47
You have 200 years of statistics to rely on.
121
347960
2216
你有 200年的統計數據做後盾,
05:50
You're amplifying it with very powerful computers.
122
350200
3016
你用很強大的電腦去增強它,
05:53
The least you could expect is good TV, right?
123
353240
3280
至少你可以期待到一個 好的電視節目,對吧?
05:57
And if data analysis does not work that way,
124
357880
2720
但如果數據分析 並沒有想像中的有效,
06:01
then it actually gets a little scary,
125
361520
2056
那,這真的有點恐怖,
06:03
because we live in a time where we're turning to data more and more
126
363600
3816
因為我們正轉向一個 數據越來越多的時代,
06:07
to make very serious decisions that go far beyond TV.
127
367440
4480
來做出遠比電視節目 還要嚴肅的決策。
06:12
Does anyone here know the company Multi-Health Systems?
128
372760
3240
你們當中有人知道" MHS "這家公司嗎?
沒人?好,這樣很好,
06:17
No one. OK, that's good actually.
129
377080
1656
06:18
OK, so Multi-Health Systems is a software company,
130
378760
3216
好的,MHS是一家軟體公司,
06:22
and I hope that nobody here in this room
131
382000
2816
而我希望在座的各位,
06:24
ever comes into contact with that software,
132
384840
3176
沒有人與這個軟體有牽連,
06:28
because if you do, it means you're in prison.
133
388040
2096
因為如果你有,代表你在監獄中
06:30
(Laughter)
134
390160
1176
(笑聲)
06:31
If someone here in the US is in prison, and they apply for parole,
135
391360
3536
在美國這裡如果有人被判入監, 然後要申請假釋,
06:34
then it's very likely that data analysis software from that company
136
394920
4296
很有可能那家公司的數據分析軟體
06:39
will be used in determining whether to grant that parole.
137
399240
3616
會被用來判定是否能獲得假釋。
06:42
So it's the same principle as Amazon and Netflix,
138
402880
2576
所以,它也是採用 Amazon 和 Netflix 公司相同的原則,
06:45
but now instead of deciding whether a TV show is going to be good or bad,
139
405480
4616
但不同的是, 他們是用來決定電視節目將來的好壞,
你是用來決定一個人將來的好壞,
06:50
you're deciding whether a person is going to be good or bad.
140
410120
2896
06:53
And mediocre TV, 22 minutes, that can be pretty bad,
141
413040
5496
表現普通22分鐘的電視節目,很糟糕,
06:58
but more years in prison, I guess, even worse.
142
418560
2640
但,我猜,要做更多年的牢,更糟糕。
07:02
And unfortunately, there is actually some evidence that this data analysis,
143
422360
4136
但不幸的是,實際上已經有證據顯示, 該數據分析除了擁有龐大的數據外,
07:06
despite having lots of data, does not always produce optimum results.
144
426520
4216
它並不總是跑出適當的結果。
07:10
And that's not because a company like Multi-Health Systems
145
430760
2722
但並不只有像是MHS這樣的軟體公司
07:13
doesn't know what to do with data.
146
433506
1627
不明白數據怎麼了,
07:15
Even the most data-savvy companies get it wrong.
147
435158
2298
甚至最頂尖的數據公司也會出錯,
07:17
Yes, even Google gets it wrong sometimes.
148
437480
2400
是的,甚至Google有時也會出錯。
07:20
In 2009, Google announced that they were able, with data analysis,
149
440680
4496
2009年,Google宣布他們可以用數據分析,
來預測流行性感冒,討人厭的流感,
07:25
to predict outbreaks of influenza, the nasty kind of flu,
150
445200
4136
經由他們的Google搜尋引擎來做數據分析。
07:29
by doing data analysis on their Google searches.
151
449360
3776
07:33
And it worked beautifully, and it made a big splash in the news,
152
453160
3856
而且它準確無比,當時造成一股新聞的轟動,
07:37
including the pinnacle of scientific success:
153
457040
2136
包含一個科學界成功的高峰:
07:39
a publication in the journal "Nature."
154
459200
2456
在 "自然期刊"上發表文章。
07:41
It worked beautifully for year after year after year,
155
461680
3616
之後的每一年,它都預測地很漂亮,
07:45
until one year it failed.
156
465320
1656
直到有一年它失敗了。
07:47
And nobody could even tell exactly why.
157
467000
2256
沒有人能正確地說明到底甚麼原因。
07:49
It just didn't work that year,
158
469280
1696
那一年它就是不準了,
07:51
and of course that again made big news,
159
471000
1936
當然,又造成了一次大新聞,
07:52
including now a retraction
160
472960
1616
包含現在
07:54
of a publication from the journal "Nature."
161
474600
2840
被" 自然期刊 "撤銷發表的文章
07:58
So even the most data-savvy companies, Amazon and Google,
162
478480
3336
所以,即使是最頂尖的數據分析公司, Amazon和Google,
08:01
they sometimes get it wrong.
163
481840
2136
他們有時也會出錯。
08:04
And despite all those failures,
164
484000
2936
但儘管有這些失敗,
08:06
data is moving rapidly into real-life decision-making --
165
486960
3856
數據正快速地進入我們 實際生活上的決策、
08:10
into the workplace,
166
490840
1816
進入工作職場、
08:12
law enforcement,
167
492680
1816
法律執行、
08:14
medicine.
168
494520
1200
醫藥界。
08:16
So we should better make sure that data is helping.
169
496400
3336
所以,我們應該確保數據是有幫助的。
08:19
Now, personally I've seen a lot of this struggle with data myself,
170
499760
3136
我個人已經經歷過很多 自己在數據上的掙扎,
08:22
because I work in computational genetics,
171
502920
1976
因為我在計算遺傳學界工作,
08:24
which is also a field where lots of very smart people
172
504920
2496
這個領域有很多非常聰明的人
08:27
are using unimaginable amounts of data to make pretty serious decisions
173
507440
3656
使用多到難以想像的數據 來制定相當嚴肅的決策,
08:31
like deciding on a cancer therapy or developing a drug.
174
511120
3560
像是癌症治療決策或藥物開發。
08:35
And over the years, I've noticed a sort of pattern
175
515520
2376
經過這幾年,我已經注意到一種模式
08:37
or kind of rule, if you will, about the difference
176
517920
2456
或者規則,如果你要這麼說也行,
08:40
between successful decision-making with data
177
520400
2696
就是有關於用數據做出
08:43
and unsuccessful decision-making,
178
523120
1616
成功決策和不成功決策,
08:44
and I find this a pattern worth sharing, and it goes something like this.
179
524760
3880
我發現這個模式值得分享, 它是這樣的......
當你要解決一個複雜問題時,
08:50
So whenever you're solving a complex problem,
180
530520
2135
08:52
you're doing essentially two things.
181
532679
1737
本質上你會做兩件事,
08:54
The first one is, you take that problem apart into its bits and pieces
182
534440
3296
第一件事是,你會把問題拆分得很仔細,
08:57
so that you can deeply analyze those bits and pieces,
183
537760
2496
所以你可以深度地分析這些細節,
09:00
and then of course you do the second part.
184
540280
2016
當然你的第二件事就是,
09:02
You put all of these bits and pieces back together again
185
542320
2656
你會再把這些細節拿回來整合一起,
09:05
to come to your conclusion.
186
545000
1336
來得出你要的結論。
09:06
And sometimes you have to do it over again,
187
546360
2336
有時候你必須一做再做,
09:08
but it's always those two things:
188
548720
1656
就這兩件事:
09:10
taking apart and putting back together again.
189
550400
2320
拆分、再合併一起。
但,關鍵是
09:14
And now the crucial thing is
190
554280
1616
09:15
that data and data analysis
191
555920
2896
數據與數據分析
09:18
is only good for the first part.
192
558840
2496
只適用於第一步驟,
09:21
Data and data analysis, no matter how powerful,
193
561360
2216
無論數據與數據分析多麼地強大,
09:23
can only help you taking a problem apart and understanding its pieces.
194
563600
4456
它只能幫助你拆分問題及了解細節,
09:28
It's not suited to put those pieces back together again
195
568080
3496
它不適用於把細節 拿回來放在一起再整合,
09:31
and then to come to a conclusion.
196
571600
1896
來得出一個結論。
09:33
There's another tool that can do that, and we all have it,
197
573520
2736
有一個工具可以這麼做, 而我們都擁有它,
09:36
and that tool is the brain.
198
576280
1296
那工具就是大腦。
09:37
If there's one thing a brain is good at,
199
577600
1936
如果要說大腦有一項能力很強,
09:39
it's taking bits and pieces back together again,
200
579560
2256
那就是,它很會把事情 拆分細節後再整合一起,
09:41
even when you have incomplete information,
201
581840
2016
即使當你有的只是不完整的資訊,
09:43
and coming to a good conclusion,
202
583880
1576
也能得到一個好的決策,
09:45
especially if it's the brain of an expert.
203
585480
2936
特別是專家的大腦。
09:48
And that's why I believe that Netflix was so successful,
204
588440
2656
而這也是為什麼我相信 Netflix會這麼成功的原因,
09:51
because they used data and brains where they belong in the process.
205
591120
3576
因為他們在過程中使用數據與大腦。
09:54
They use data to first understand lots of pieces about their audience
206
594720
3536
他們利用數據, 首先了解很多觀眾的細節,
09:58
that they otherwise wouldn't have been able to understand at that depth,
207
598280
3416
否則沒有這些數據, 他們沒有能力可以了解這麼深,
10:01
but then the decision to take all these bits and pieces
208
601720
2616
但做出拆分、整合
10:04
and put them back together again and make a show like "House of Cards,"
209
604360
3336
及製作" 紙牌屋 "的
這兩個決策,是數據中無法幫你決定的。
10:07
that was nowhere in the data.
210
607720
1416
10:09
Ted Sarandos and his team made that decision to license that show,
211
609160
3976
Ted Sarandos和他的團隊做出 許可該節目的這個決策,
10:13
which also meant, by the way, that they were taking
212
613160
2381
總之,意思就是,
他們在做出決策當下, 也正在承擔很大的個人風險。
10:15
a pretty big personal risk with that decision.
213
615565
2851
10:18
And Amazon, on the other hand, they did it the wrong way around.
214
618440
3016
而另一方面,Amazon他們把它搞砸了。
10:21
They used data all the way to drive their decision-making,
215
621480
2736
他們全程依賴數據來制定決策,
10:24
first when they held their competition of TV ideas,
216
624240
2416
首先,他們舉辦節目想法的競賽,
10:26
then when they selected "Alpha House" to make as a show.
217
626680
3696
然後當他們選擇" 艾爾發屋 "來作為節目,
10:30
Which of course was a very safe decision for them,
218
630400
2496
當然啦,對他們而言, 這是一個非常安全的決策,
10:32
because they could always point at the data, saying,
219
632920
2456
因為他們總是可以指著數據說,
10:35
"This is what the data tells us."
220
635400
1696
"這是數據告訴我們的"
10:37
But it didn't lead to the exceptional results that they were hoping for.
221
637120
4240
但這並沒有帶領他們到 他們所希望的傑出結果。
所以,數據當然是做決策時的 一個強大的工具,
10:42
So data is of course a massively useful tool to make better decisions,
222
642120
4976
10:47
but I believe that things go wrong
223
647120
2376
但我相信,當數據開始主導這些決策時,
10:49
when data is starting to drive those decisions.
224
649520
2576
事情也會開始出錯。
10:52
No matter how powerful, data is just a tool,
225
652120
3776
不管它有多麼的強大, 數據僅是一個工具,
10:55
and to keep that in mind, I find this device here quite useful.
226
655920
3336
並把這個記在腦裡, 我發現這個裝置相當有用。
10:59
Many of you will ...
227
659280
1216
你們很多人將會 ...
11:00
(Laughter)
228
660520
1216
(笑聲)
11:01
Before there was data,
229
661760
1216
在有數據之前,
11:03
this was the decision-making device to use.
230
663000
2856
這就是用來做決策的工具
11:05
(Laughter)
231
665880
1256
(笑聲)
11:07
Many of you will know this.
232
667160
1336
你們很多人應該知道這個玩意。
11:08
This toy here is called the Magic 8 Ball,
233
668520
1953
這個玩具在這裡稱做"魔術 8號球",
11:10
and it's really amazing,
234
670497
1199
它真的很奇妙,
11:11
because if you have a decision to make, a yes or no question,
235
671720
2896
因為如果你要做一個 "是或不是"的決策時,
11:14
all you have to do is you shake the ball, and then you get an answer --
236
674640
3736
你只要搖一搖這顆球, 然後你就可以得到答案了--
11:18
"Most Likely" -- right here in this window in real time.
237
678400
2816
"很有可能是"-- 就在這視窗裡及時顯現給你看,
11:21
I'll have it out later for tech demos.
238
681240
2096
我會帶它去做技術示範。
11:23
(Laughter)
239
683360
1216
(笑聲)
11:24
Now, the thing is, of course -- so I've made some decisions in my life
240
684600
3576
事情是,當然啦 -- 我已經在我人生中做出一些決定,
11:28
where, in hindsight, I should have just listened to the ball.
241
688200
2896
但早知道,我就應該聽這顆球的話。
11:31
But, you know, of course, if you have the data available,
242
691120
3336
但,當然,如果你有有效的數據,
11:34
you want to replace this with something much more sophisticated,
243
694480
3056
你想要用超複雜的方式來取代這顆球,
11:37
like data analysis to come to a better decision.
244
697560
3616
例如,用數據分析來得到更好的決策。
11:41
But that does not change the basic setup.
245
701200
2616
但這無法改變基本的設定,
11:43
So the ball may get smarter and smarter and smarter,
246
703840
3176
所以這球會越來越聰明,
11:47
but I believe it's still on us to make the decisions
247
707040
2816
但我相信,如果我們想達成某些 曲線右邊末端的非凡成就,
11:49
if we want to achieve something extraordinary,
248
709880
3016
最後我們自己還是得做出決定,
11:52
on the right end of the curve.
249
712920
1936
11:54
And I find that a very encouraging message, in fact,
250
714880
4496
事實上,我發現 一個非常激勵人心的訊息,
11:59
that even in the face of huge amounts of data,
251
719400
3976
即使面對龐大的數據, 你仍會有很大的收穫,
12:03
it still pays off to make decisions,
252
723400
4096
在你做出決策、 變成一位該領域的專家
12:07
to be an expert in what you're doing
253
727520
2656
並承擔風險時。
12:10
and take risks.
254
730200
2096
因為,最後,不是數據,
12:12
Because in the end, it's not data,
255
732320
2776
12:15
it's risks that will land you on the right end of the curve.
256
735120
3960
是風險會帶你來到曲線的右邊末端。
12:19
Thank you.
257
739840
1216
謝謝各位。
12:21
(Applause)
258
741080
3680
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog