How to use data to make a hit TV show | Sebastian Wernicke

135,127 views ・ 2016-01-27

TED


请双击下面的英文字幕来播放视频。

翻译人员: Chia Shimin 校对人员: Yolanda Zhang
00:12
Roy Price is a man that most of you have probably never heard about,
0
12820
4276
Roy Price这个人, 在座的绝大多数可能都没听说过,
即使他曾经在2013年4月19日这一天
00:17
even though he may have been responsible
1
17120
2496
00:19
for 22 somewhat mediocre minutes of your life on April 19, 2013.
2
19640
6896
占用了你们生命中普通的22分钟。
00:26
He may have also been responsible for 22 very entertaining minutes,
3
26560
3176
他也许曾经带给了 各位非常欢乐的22分钟,
00:29
but not very many of you.
4
29760
2256
但对你们当中很多人来说 可能并不是这样。
而这一切全部要追溯到
00:32
And all of that goes back to a decision
5
32040
1896
00:33
that Roy had to make about three years ago.
6
33960
2000
Roy在三年前的一个决定。
00:35
So you see, Roy Price is a senior executive with Amazon Studios.
7
35984
4832
实际上,Roy Price是 亚马逊广播公司的一位资深决策者。
00:40
That's the TV production company of Amazon.
8
40840
3016
这是亚马逊旗下的一家 电视节目制作公司。
00:43
He's 47 years old, slim, spiky hair,
9
43880
3256
他47岁,身材不错, 短发梳得很有型,
00:47
describes himself on Twitter as "movies, TV, technology, tacos."
10
47160
4816
他在Twitter上形容自己是 "电影、电视、科技、墨西哥卷饼(爱好者)"。
Roy Price有一个 责任非常重大的工作,
00:52
And Roy Price has a very responsible job, because it's his responsibility
11
52000
5176
00:57
to pick the shows, the original content that Amazon is going to make.
12
57200
4056
因为他要负责帮亚马逊挑选 即将制作的原创节目。
01:01
And of course that's a highly competitive space.
13
61280
2336
当然,这个领域的竞争非常激烈。
01:03
I mean, there are so many TV shows already out there,
14
63640
2736
我是说,其他公司已经有 那么多的电视节目,
01:06
that Roy can't just choose any show.
15
66400
2176
Roy不能只是随便乱挑一个节目。
01:08
He has to find shows that are really, really great.
16
68600
4096
他必须找出真正会走紅的节目。
01:12
So in other words, he has to find shows
17
72720
2816
换句话说,他挑选的节目
必须落在这条曲线的右侧。
01:15
that are on the very right end of this curve here.
18
75560
2376
01:17
So this curve here is the rating distribution
19
77960
2656
这条曲线是IMDB (译注:网络电影资料库)里
01:20
of about 2,500 TV shows on the website IMDB,
20
80640
4376
2500个电视节目的 客户评分曲线图,
01:25
and the rating goes from one to 10,
21
85040
2896
评分从1到10,
01:27
and the height here shows you how many shows get that rating.
22
87960
2976
纵轴表明有多少节目达到这个评分。
01:30
So if your show gets a rating of nine points or higher, that's a winner.
23
90960
4696
所以如果你的节目达到9分或更高, 你就是赢家,
01:35
Then you have a top two percent show.
24
95680
1816
你就拥有那2%的顶尖节目。
01:37
That's shows like "Breaking Bad," "Game of Thrones," "The Wire,"
25
97520
3896
例如像是“绝命毒师”、 “权力的游戏”、“火线重案组”,
01:41
so all of these shows that are addictive,
26
101440
2296
全部都是会让人上瘾的节目,
01:43
whereafter you've watched a season, your brain is basically like,
27
103760
3056
看完一季之后, 你基本马上就会想,
01:46
"Where can I get more of these episodes?"
28
106840
2176
“我要去哪里找到剩下的剧集?”
01:49
That kind of show.
29
109040
1200
基本就是这类的节目。
01:50
On the left side, just for clarity, here on that end,
30
110920
2496
曲线左边,不妨选个最靠边, 比较明显的点,
01:53
you have a show called "Toddlers and Tiaras" --
31
113440
3176
这儿有个叫“选美小天后" (译注:儿童选秀类)的节目——
01:56
(Laughter)
32
116640
2656
(笑声)
01:59
-- which should tell you enough
33
119320
1536
——足够让你明白
02:00
about what's going on on that end of the curve.
34
120880
2191
曲线最左端代表了什么。
02:03
Now, Roy Price is not worried about getting on the left end of the curve,
35
123095
4161
现在,Roy Price并不担心 会选个落在曲线最左边的节目,
02:07
because I think you would have to have some serious brainpower
36
127280
2936
因为我认为你们都具备 严肃的判断力
02:10
to undercut "Toddlers and Tiaras."
37
130240
1696
来给 "选美小天后" 打个低分 。
02:11
So what he's worried about is this middle bulge here,
38
131960
3936
他担心的是 中间多数的这些节目,
02:15
the bulge of average TV,
39
135920
1816
多到爆的这些一般的电视节目,
02:17
you know, those shows that aren't really good or really bad,
40
137760
2856
这些节目不算好,但也不是很烂,
02:20
they don't really get you excited.
41
140639
1656
它们不会真正地让你感兴趣。
02:22
So he needs to make sure that he's really on the right end of this.
42
142320
4856
所以他要确保他看好的节目 是落在最右端这里。
02:27
So the pressure is on,
43
147200
1576
那么压力就来了,
02:28
and of course it's also the first time
44
148800
2176
当然,这也是亚马逊第一次
想要做这类事情,
02:31
that Amazon is even doing something like this,
45
151000
2176
02:33
so Roy Price does not want to take any chances.
46
153200
3336
所以Roy Price不想只是碰运气。
02:36
He wants to engineer success.
47
156560
2456
他想要打造成功。
02:39
He needs a guaranteed success,
48
159040
1776
他要一个万无一失的成功,
02:40
and so what he does is, he holds a competition.
49
160840
2576
于是,他举办了一个竞赛。
02:43
So he takes a bunch of ideas for TV shows,
50
163440
3136
他带来了很多关于电视节目的想法,
02:46
and from those ideas, through an evaluation,
51
166600
2296
通过一个评估,
02:48
they select eight candidates for TV shows,
52
168920
4096
他们挑了八个候选的电视节目,
02:53
and then he just makes the first episode of each one of these shows
53
173040
3216
然后他为每一个节目制作了第一集,
02:56
and puts them online for free for everyone to watch.
54
176280
3136
再把它们放到网上, 让每个人免费观看。
02:59
And so when Amazon is giving out free stuff,
55
179440
2256
当亚马逊要给你免费的东西时,
03:01
you're going to take it, right?
56
181720
1536
你就会拿,对吧?
03:03
So millions of viewers are watching those episodes.
57
183280
5136
所以几百万人在看这些剧集,
03:08
What they don't realize is that, while they're watching their shows,
58
188440
3216
而这些人不知道的是, 当他们在观看节目的时候,
03:11
actually, they are being watched.
59
191680
2296
实际上他们也正被观察着。
他们被Roy Price及他的团队观察,
03:14
They are being watched by Roy Price and his team,
60
194000
2336
03:16
who record everything.
61
196360
1376
他们纪录了所有的一切。
03:17
They record when somebody presses play, when somebody presses pause,
62
197760
3376
他们纪录了哪些人按了拨放, 哪些人按了暂停,
03:21
what parts they skip, what parts they watch again.
63
201160
2536
哪些部分他们跳过了, 哪些部分他们又重看了一遍。
03:23
So they collect millions of data points,
64
203720
2256
他们收集了几百万个数据,
因为他们想要用这些数据来决定
03:26
because they want to have those data points
65
206000
2096
03:28
to then decide which show they should make.
66
208120
2696
要做什么样的节目。
03:30
And sure enough, so they collect all the data,
67
210840
2176
理所当然,他们收集了所有的数据,
处理过后得到了一个答案,
03:33
they do all the data crunching, and an answer emerges,
68
213040
2576
03:35
and the answer is,
69
215640
1216
而答案就是,
03:36
"Amazon should do a sitcom about four Republican US Senators."
70
216880
5536
“亚马逊需要制作一个有关 四个美国共和党参议员的喜剧”。
03:42
They did that show.
71
222440
1216
他们真的做了。
03:43
So does anyone know the name of the show?
72
223680
2160
有人知道这个节目吗?
03:46
(Audience: "Alpha House.")
73
226720
1296
(观众:" 阿尔法屋。")
是的,就是"阿尔法屋"。
03:48
Yes, "Alpha House,"
74
228040
1456
03:49
but it seems like not too many of you here remember that show, actually,
75
229520
4096
但看起来你们大部人都 不记得有这部片子,
03:53
because it didn't turn out that great.
76
233640
1856
因为这部片子收视率并不太好。
03:55
It's actually just an average show,
77
235520
1856
它其实只是个一般的节目,
03:57
actually -- literally, in fact, because the average of this curve here is at 7.4,
78
237400
4576
实际上,一般的节目差不多 对应曲线上大概7.4分的位置,
而 “阿尔法屋” 落在7.5分,
04:02
and "Alpha House" lands at 7.5,
79
242000
2416
04:04
so a slightly above average show,
80
244440
2016
所以比一般的节目高一点点,
04:06
but certainly not what Roy Price and his team were aiming for.
81
246480
2920
但绝对不是Roy Price和 他的团队想要达到的目标。
04:10
Meanwhile, however, at about the same time,
82
250320
2856
但在差不多同一时间,
04:13
at another company,
83
253200
1576
另一家公司的另一个决策者,
04:14
another executive did manage to land a top show using data analysis,
84
254800
4216
同样用数据分析 却做出了一个顶尖的节目,
他的名字是 Ted,
04:19
and his name is Ted,
85
259040
1576
04:20
Ted Sarandos, who is the Chief Content Officer of Netflix,
86
260640
3416
Ted Sarandos是Netflix的 首席内容官,
04:24
and just like Roy, he's on a constant mission
87
264080
2136
就跟 Roy一样,他也要不停地寻找
04:26
to find that great TV show,
88
266240
1496
最棒的节目,
04:27
and he uses data as well to do that,
89
267760
2016
而他也使用了数据分析,
04:29
except he does it a little bit differently.
90
269800
2015
但他的做法有点不太一样。
04:31
So instead of holding a competition, what he did -- and his team of course --
91
271839
3737
不是举办竞赛,他和他的团队
04:35
was they looked at all the data they already had about Netflix viewers,
92
275600
3536
观察了Netflix已有的所有观众数据,
04:39
you know, the ratings they give their shows,
93
279160
2096
比如观众对节目的评分、
观看纪录、 哪些节目最受欢迎等等。
04:41
the viewing histories, what shows people like, and so on.
94
281280
2696
他们用这些数据去挖掘
04:44
And then they use that data to discover
95
284000
1896
04:45
all of these little bits and pieces about the audience:
96
285920
2616
观众的所有小细节:
04:48
what kinds of shows they like,
97
288560
1456
他们喜欢什么类型的节目、
什么类型的制作人、 什么类型的演员。
04:50
what kind of producers, what kind of actors.
98
290040
2096
04:52
And once they had all of these pieces together,
99
292160
2576
就在他们收集到全部的细节后,
04:54
they took a leap of faith,
100
294760
1656
他们信心满满地
04:56
and they decided to license
101
296440
2096
决定要制作一部,
04:58
not a sitcom about four Senators
102
298560
2456
不是四个参议员的喜剧,
05:01
but a drama series about a single Senator.
103
301040
2880
而是一系列有关一位 单身参议员的电视剧。
05:04
You guys know the show?
104
304760
1656
各位知道那个节目吗?
05:06
(Laughter)
105
306440
1296
(笑声)
05:07
Yes, "House of Cards," and Netflix of course, nailed it with that show,
106
307760
3736
是的,“纸牌屋”, 当然,Netflix至少在头两季
05:11
at least for the first two seasons.
107
311520
2136
在这个节目上赚到了极高的收视率。
05:13
(Laughter) (Applause)
108
313680
3976
(笑声)(掌声)
05:17
"House of Cards" gets a 9.1 rating on this curve,
109
317680
3176
“纸牌屋” 在这个曲线上拿到了 9.1分,
05:20
so it's exactly where they wanted it to be.
110
320880
3176
他们绝对实现了最初的目标。
05:24
Now, the question of course is, what happened here?
111
324080
2416
很显然,问题来了, 这到底是怎么回事?
05:26
So you have two very competitive, data-savvy companies.
112
326520
2656
有两个非常有竞争力、 精通数据分析的公司。
05:29
They connect all of these millions of data points,
113
329200
2856
他们整合了所有的数据,
05:32
and then it works beautifully for one of them,
114
332080
2376
然后,其中一个干的很漂亮,
05:34
and it doesn't work for the other one.
115
334480
1856
而另一个却没有,
05:36
So why?
116
336360
1216
这是为什么呢?
05:37
Because logic kind of tells you that this should be working all the time.
117
337600
3456
毕竟逻辑分析会告诉你, 这种方法应该每次都有效啊,
05:41
I mean, if you're collecting millions of data points
118
341080
2456
我是说, 如果你收集了所有的数据
05:43
on a decision you're going to make,
119
343560
1736
来制定一个决策,
05:45
then you should be able to make a pretty good decision.
120
345320
2616
那你应该可以得到一个 相当不错的决策。
05:47
You have 200 years of statistics to rely on.
121
347960
2216
你有200年的统计方法做后盾。
05:50
You're amplifying it with very powerful computers.
122
350200
3016
你用高性能的计算机 去增强它的效果。
05:53
The least you could expect is good TV, right?
123
353240
3280
至少你可以期待得到一个 还不错的电视节目,对吧?
05:57
And if data analysis does not work that way,
124
357880
2720
但如果数据分析 并没有想像中的有效,
06:01
then it actually gets a little scary,
125
361520
2056
这就有点吓人了,
06:03
because we live in a time where we're turning to data more and more
126
363600
3816
因为我们生活在一个 越来越依赖数据的时代,
06:07
to make very serious decisions that go far beyond TV.
127
367440
4480
我们要用数据做出远比电视节目 还要严肃重要的决策。
06:12
Does anyone here know the company Multi-Health Systems?
128
372760
3240
你们当中有人知道 "MHS" 这家公司吗?
没人?好,这就好。
06:17
No one. OK, that's good actually.
129
377080
1656
06:18
OK, so Multi-Health Systems is a software company,
130
378760
3216
好的,MHS是一家软件公司,
而我希望在座的各位
06:22
and I hope that nobody here in this room
131
382000
2816
06:24
ever comes into contact with that software,
132
384840
3176
没人与他们的软件有任何关系,
因为如果你有, 就表示你犯了罪被判刑了。
06:28
because if you do, it means you're in prison.
133
388040
2096
06:30
(Laughter)
134
390160
1176
(笑声)
06:31
If someone here in the US is in prison, and they apply for parole,
135
391360
3536
如果有人在美国被判入狱, 要申请假释,
06:34
then it's very likely that data analysis software from that company
136
394920
4296
很有可能那家公司的数据分析软件
06:39
will be used in determining whether to grant that parole.
137
399240
3616
就会被用来判定你是否能获得假释。
06:42
So it's the same principle as Amazon and Netflix,
138
402880
2576
它也是采用跟 亚马逊和Netflix公司相同的原则,
06:45
but now instead of deciding whether a TV show is going to be good or bad,
139
405480
4616
但并不是要决定 某个电视节目收视率的好坏,
06:50
you're deciding whether a person is going to be good or bad.
140
410120
2896
而是用来决定 一个人将来的行为是好是坏。
06:53
And mediocre TV, 22 minutes, that can be pretty bad,
141
413040
5496
一个22分钟的普通电视节目 可以很糟糕,
06:58
but more years in prison, I guess, even worse.
142
418560
2640
但我觉得要坐很多年的牢,更糟糕。
07:02
And unfortunately, there is actually some evidence that this data analysis,
143
422360
4136
但不幸的是,实际上已经有证据显示, 这项数据分析尽管可以依靠
07:06
despite having lots of data, does not always produce optimum results.
144
426520
4216
庞大的数据资料, 它并不总能得出最优的结果。
07:10
And that's not because a company like Multi-Health Systems
145
430760
2722
但并不只有像MHS这样的软件公司
07:13
doesn't know what to do with data.
146
433506
1627
不确定到底怎么分析数据,
就连最顶尖的数据公司也会出错。
07:15
Even the most data-savvy companies get it wrong.
147
435158
2298
07:17
Yes, even Google gets it wrong sometimes.
148
437480
2400
是的,甚至谷歌有时也会出错。
07:20
In 2009, Google announced that they were able, with data analysis,
149
440680
4496
2009年,谷歌宣布 他们可以用数据分析来
07:25
to predict outbreaks of influenza, the nasty kind of flu,
150
445200
4136
预测流行性感冒何时爆发, 就是那种讨人厌的流感,
07:29
by doing data analysis on their Google searches.
151
449360
3776
他们用自己的搜寻引擎 来做数据分析。
07:33
And it worked beautifully, and it made a big splash in the news,
152
453160
3856
结果证明它准确无比, 引得各路新闻报道铺天盖地,
甚至还达到了一个科学界的顶峰:
07:37
including the pinnacle of scientific success:
153
457040
2136
07:39
a publication in the journal "Nature."
154
459200
2456
在 “自然” 期刊上发表了文章。
07:41
It worked beautifully for year after year after year,
155
461680
3616
之后的每一年,它都预测得准确无误,
07:45
until one year it failed.
156
465320
1656
直到有一年,它失败了。
没有人知道到底是什么原因。
07:47
And nobody could even tell exactly why.
157
467000
2256
07:49
It just didn't work that year,
158
469280
1696
那一年它就是不准了,
当然,这又成了一个大新闻,
07:51
and of course that again made big news,
159
471000
1936
07:52
including now a retraction
160
472960
1616
包括现在
07:54
of a publication from the journal "Nature."
161
474600
2840
被 "自然” 期刊撤稿。
07:58
So even the most data-savvy companies, Amazon and Google,
162
478480
3336
所以,即使是最顶尖的数据分析公司, 亚马逊和谷歌,
08:01
they sometimes get it wrong.
163
481840
2136
他们有时也会出错。
但尽管出现了这些失败,
08:04
And despite all those failures,
164
484000
2936
08:06
data is moving rapidly into real-life decision-making --
165
486960
3856
数据仍然在马不停蹄地渗透进我们 实际生活中的决策——
08:10
into the workplace,
166
490840
1816
进入工作场所、
08:12
law enforcement,
167
492680
1816
执法过程、
08:14
medicine.
168
494520
1200
医药领域。
08:16
So we should better make sure that data is helping.
169
496400
3336
所以,我们应该确保数据是 能够帮助我们解决问题的。
08:19
Now, personally I've seen a lot of this struggle with data myself,
170
499760
3136
我个人也曾经多次 被数据分析搞的焦头烂额,
08:22
because I work in computational genetics,
171
502920
1976
因为我在计算遗传学领域工作,
08:24
which is also a field where lots of very smart people
172
504920
2496
这个领域有很多非常聪明的人
08:27
are using unimaginable amounts of data to make pretty serious decisions
173
507440
3656
在用多到难以想像的数据 来制定相当严肃的决策,
08:31
like deciding on a cancer therapy or developing a drug.
174
511120
3560
比如癌症治疗,或者药物开发。
08:35
And over the years, I've noticed a sort of pattern
175
515520
2376
经过这几年,我已经注意到一种模式
08:37
or kind of rule, if you will, about the difference
176
517920
2456
或者规则,你们也可以这么理解,
08:40
between successful decision-making with data
177
520400
2696
就是有关于用数据做出
08:43
and unsuccessful decision-making,
178
523120
1616
成功决策和不成功决策,
08:44
and I find this a pattern worth sharing, and it goes something like this.
179
524760
3880
我觉得这个模式值得分享, 大概是这样的。
08:50
So whenever you're solving a complex problem,
180
530520
2135
当你要解决一个复杂问题时,
08:52
you're doing essentially two things.
181
532679
1737
你通常必然会做两件事。
08:54
The first one is, you take that problem apart into its bits and pieces
182
534440
3296
首先,你会把问题拆分得非常细,
08:57
so that you can deeply analyze those bits and pieces,
183
537760
2496
这样你就可以深度地分析这些细节,
09:00
and then of course you do the second part.
184
540280
2016
当然你要做的第二件事就是,
再把这些细节重新整合在一起,
09:02
You put all of these bits and pieces back together again
185
542320
2656
来得出你要的结论。
09:05
to come to your conclusion.
186
545000
1336
09:06
And sometimes you have to do it over again,
187
546360
2336
有时候你必须重复几次,
09:08
but it's always those two things:
188
548720
1656
但基本都是围绕这两件事:
09:10
taking apart and putting back together again.
189
550400
2320
拆分、再整合。
09:14
And now the crucial thing is
190
554280
1616
那么关键的问题在于,
09:15
that data and data analysis
191
555920
2896
数据和数据分析
09:18
is only good for the first part.
192
558840
2496
只适用于第一步,
09:21
Data and data analysis, no matter how powerful,
193
561360
2216
无论数据和数据分析多么强大,
09:23
can only help you taking a problem apart and understanding its pieces.
194
563600
4456
它都只能帮助你拆分问题和了解细节,
09:28
It's not suited to put those pieces back together again
195
568080
3496
它不适用于把细节重新整合在一起
09:31
and then to come to a conclusion.
196
571600
1896
来得出一个结论。
09:33
There's another tool that can do that, and we all have it,
197
573520
2736
有一个工具可以实现第二步, 我们每个人都有,
那就是大脑。
09:36
and that tool is the brain.
198
576280
1296
09:37
If there's one thing a brain is good at,
199
577600
1936
如果要说大脑很擅长某一件事,
09:39
it's taking bits and pieces back together again,
200
579560
2256
那就是,它很会把琐碎的细节 重新整合在一起,
09:41
even when you have incomplete information,
201
581840
2016
即使你拥有的信息并不完整,
09:43
and coming to a good conclusion,
202
583880
1576
也能得到一个好的结论,
09:45
especially if it's the brain of an expert.
203
585480
2936
特别是专家的大脑。
09:48
And that's why I believe that Netflix was so successful,
204
588440
2656
而这也是我相信 Netflix会这么成功的原因,
09:51
because they used data and brains where they belong in the process.
205
591120
3576
因为他们在分析过程中同时 使用了数据和大脑。
09:54
They use data to first understand lots of pieces about their audience
206
594720
3536
他们利用数据, 首先去了解观众的若干细节,
09:58
that they otherwise wouldn't have been able to understand at that depth,
207
598280
3416
没有这些数据, 他们不可能进行这么透彻的分析,
10:01
but then the decision to take all these bits and pieces
208
601720
2616
但在之后,要做出重新整合,
制作像"纸牌屋"这样的节目的决策,
10:04
and put them back together again and make a show like "House of Cards,"
209
604360
3336
10:07
that was nowhere in the data.
210
607720
1416
就无法依赖数据了。
是Ted Sarandos和他的团队(通过思考) 做出了批准该节目的这个决策,
10:09
Ted Sarandos and his team made that decision to license that show,
211
609160
3976
10:13
which also meant, by the way, that they were taking
212
613160
2381
这也就意味着,
10:15
a pretty big personal risk with that decision.
213
615565
2851
他们在做出决策的当下, 也正在承担很大的个人风险。
10:18
And Amazon, on the other hand, they did it the wrong way around.
214
618440
3016
而另一方面,亚马逊把事情搞砸了。
他们全程依赖数据来制定决策,
10:21
They used data all the way to drive their decision-making,
215
621480
2736
首先,举办了关于节目创意的竞赛,
10:24
first when they held their competition of TV ideas,
216
624240
2416
10:26
then when they selected "Alpha House" to make as a show.
217
626680
3696
然后他们决定选择制作 "阿尔法屋"。
10:30
Which of course was a very safe decision for them,
218
630400
2496
当然,对他们而言, 这是一个非常安全的决策,
10:32
because they could always point at the data, saying,
219
632920
2456
因为他们总是可以指着数据说,
10:35
"This is what the data tells us."
220
635400
1696
“这是数据告诉我们的。”
但数据并没有带给他们 满意的结果。
10:37
But it didn't lead to the exceptional results that they were hoping for.
221
637120
4240
当然,数据依然是做决策时的 一个强大的工具,
10:42
So data is of course a massively useful tool to make better decisions,
222
642120
4976
但我相信,当数据开始 主导这些决策时,
10:47
but I believe that things go wrong
223
647120
2376
10:49
when data is starting to drive those decisions.
224
649520
2576
并不能保证万无一失。
10:52
No matter how powerful, data is just a tool,
225
652120
3776
不管它有多么的强大, 数据都仅仅是一个工具,
10:55
and to keep that in mind, I find this device here quite useful.
226
655920
3336
记住这句话之后, 我发现这个装置相当有用。
10:59
Many of you will ...
227
659280
1216
你们很多人就会......
11:00
(Laughter)
228
660520
1216
(笑声)
11:01
Before there was data,
229
661760
1216
在有数据之前,
这就是用来做决策的工具。
11:03
this was the decision-making device to use.
230
663000
2856
11:05
(Laughter)
231
665880
1256
(笑声)
11:07
Many of you will know this.
232
667160
1336
你们很多人应该知道这个玩意儿。
11:08
This toy here is called the Magic 8 Ball,
233
668520
1953
这个玩具称做“魔术8号球”,
11:10
and it's really amazing,
234
670497
1199
它真的很奇妙,
11:11
because if you have a decision to make, a yes or no question,
235
671720
2896
因为如果你要做一个 “是” 或 “不是” 的决策时,
你只要摇一摇这颗球, 就可以得到答案了——
11:14
all you have to do is you shake the ball, and then you get an answer --
236
674640
3736
11:18
"Most Likely" -- right here in this window in real time.
237
678400
2816
“很有可能是”—— 在这个视窗里,马上就可以看到。
11:21
I'll have it out later for tech demos.
238
681240
2096
我回头会带它去做技术示范。
11:23
(Laughter)
239
683360
1216
(笑声)
11:24
Now, the thing is, of course -- so I've made some decisions in my life
240
684600
3576
事实上,当然—— 我已经在我人生中做出了一些决定,
11:28
where, in hindsight, I should have just listened to the ball.
241
688200
2896
虽然事后证明, 我当初应该直接用这颗球。
11:31
But, you know, of course, if you have the data available,
242
691120
3336
但,当然,如果你手里有数据,
11:34
you want to replace this with something much more sophisticated,
243
694480
3056
你就会想用更尖端的方式 来取代这颗球,
11:37
like data analysis to come to a better decision.
244
697560
3616
比方说,用数据分析来得到更好的决策。
11:41
But that does not change the basic setup.
245
701200
2616
但这无法改变基本的设定。
11:43
So the ball may get smarter and smarter and smarter,
246
703840
3176
这球可能会变得越来越智能,
11:47
but I believe it's still on us to make the decisions
247
707040
2816
但我相信,如果我们想达成某些 像曲线最右端那样
11:49
if we want to achieve something extraordinary,
248
709880
3016
出色的成就,最后的决定权
11:52
on the right end of the curve.
249
712920
1936
还是应该落在我们身上。
11:54
And I find that a very encouraging message, in fact,
250
714880
4496
事实上,我还发现了 一件非常鼓舞人心的事,
11:59
that even in the face of huge amounts of data,
251
719400
3976
即使面对庞大的数据,
12:03
it still pays off to make decisions,
252
723400
4096
当你要做出决定,
想要变成一位该领域的专家 并承担风险时,
12:07
to be an expert in what you're doing
253
727520
2656
12:10
and take risks.
254
730200
2096
你仍然会有很大的收获。
12:12
Because in the end, it's not data,
255
732320
2776
因为到最后,不是数据,
而是风险,会把你引到曲线的最右端。
12:15
it's risks that will land you on the right end of the curve.
256
735120
3960
12:19
Thank you.
257
739840
1216
谢谢各位。
12:21
(Applause)
258
741080
3680
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog