A Virus-Resistant Organism -- and What It Could Mean for the Future | Jason W. Chin | TED

43,661 views ใƒป 2022-11-13

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Naama Lieberman ืขืจื™ื›ื”: zeeva livshitz
00:03
So we built a virus-resistant organism.
0
3708
3504
ืื– ื‘ื ื™ื ื• ืื•ืจื’ื ื™ื–ื ืขืžื™ื“ ื‘ืคื ื™ ื•ื™ืจื•ืกื™ื.
00:07
Why?
1
7254
1251
ืœืžื”?
00:08
It's not about disease, or not directly.
2
8547
3420
ื–ื” ืœื ืงืฉื•ืจ ืœืžื—ืœื”, ืœื ื™ืฉื™ืจื•ืช.
00:12
It's about building the clean factories of the future.
3
12008
3170
ื”ืขื ื™ื™ืŸ ื”ื•ื ืœื‘ื ื•ืช ืืช ื”ืžืคืขืœื™ื ื”ื ืงื™ื™ื ืฉืœ ื”ืขืชื™ื“.
00:16
Let me explain by taking a big step back.
4
16429
2711
ืชื ื• ืœื™ ืœื”ืกื‘ื™ืจ ืขืœ ื™ื“ ืฆืขื“ ื’ื“ื•ืœ ืื—ื•ืจื”.
00:20
All life runs on DNA.
5
20433
2002
ื›ืœ ื”ื—ื™ื™ื ืคื•ืขืœื™ื ืขืœ DNA.
00:23
DNA codes for proteins, and proteins run life.
6
23311
4338
DNA ืžืงื•ื“ื“ ื—ืœื‘ื•ื ื™ื, ื•ื—ืœื‘ื•ื ื™ื ืžืคืขื™ืœื™ื ืืช ื”ื—ื™ื™ื.
00:29
DNA is composed of four bases:
7
29067
3504
DNA ืžื•ืจื›ื‘ ืžืืจื‘ืขื” ื‘ืกื™ืกื™ื:
00:32
A, T, G and C.
8
32571
1876
A, T, G, C
00:35
And triplets of these bases, known as codons,
9
35407
3837
ื•ืฉืœื™ืฉื™ื•ืช ืฉืœ ื‘ืกื™ืกื™ื ืืœื”, ื”ื ืงืจืื™ื ืงื•ื“ื•ืŸ,
00:39
encode each of the amino acid building blocks in proteins.
10
39244
3962
ืžืงื•ื“ื“ื™ื ื›ืœ ืื—ืช ืžื—ื•ืžืฆื•ืช ื”ืืžื™ื ื• ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ื—ืœื‘ื•ื ื™ื.
00:43
The genetic code is a rulebook
11
43915
2544
ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื”ื•ื ืกืคืจ ื—ื•ืงื™ื
00:46
that defines which codon encodes which amino acid.
12
46501
4630
ืฉืžื’ื“ื™ืจ ืื™ื–ื” ืงื•ื“ื•ืŸ ืžืงื•ื“ื“ ืื™ื–ื• ื—ื•ืžืฆืช ืืžื™ื ื•.
00:51
So, for example,
13
51172
2545
ืื–, ืœื“ื•ื’ืžื”,
00:53
the triplet codon TCG encodes the amino acid serine.
14
53758
5089
ื”ืงื•ื“ื•ืŸ ื”ืžืฉื•ืœืฉ TCG ืžืงื•ื“ื“ ืืช ื—ื•ืžืฆืช ื”ืืžื™ื ื• ืกืจื™ืŸ.
01:00
And the order of triplet codons in DNA
15
60181
3337
ื•ืกื“ืจ ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื ื‘-DNA
01:03
encodes the order of amino acid building blocks in a protein.
16
63560
4379
ืžืงื•ื“ื“ ืืช ื”ืกื“ืจ ืฉืœ ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื• ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ื—ืœื‘ื•ืŸ.
01:07
There are 64 triplet codons in DNA
17
67939
3671
ื™ืฉ 64 ืงื•ื“ื•ื ื™ื ื‘-DNA
01:11
and just 20 common amino acids.
18
71610
3503
ื•ืจืง 20 ื—ื•ืžืฆื•ืช ืืžื™ื ื• ื ืคื•ืฆื•ืช.
01:15
And this means that most amino acids
19
75113
2169
ื›ืœื•ืžืจ, ืจื•ื‘ ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื•
01:17
are encoded by more than one triplet codon.
20
77282
3503
ืžืงื•ื“ื“ื•ืช ืขืœ ื™ื“ื™ ื™ื•ืชืจ ืžืงื•ื“ื•ืŸ ืžืฉื•ืœืฉ ืื—ื“.
01:20
So, for example, the amino acid serine
21
80785
3003
ืื–, ืœื“ื•ื’ืžื”, ื—ื•ืžืฆืช ื”ืืžื™ื ื• ืกืจื™ืŸ
01:23
is encoded by six different triplet codons.
22
83788
3879
ืžืงื•ื“ื“ืช ืขืœ ื™ื“ื™ ืฉื™ืฉื” ืงื•ื“ื•ื ื™ื ืžืฉื•ืœืฉื™ื ืฉื•ื ื™ื.
01:27
And triplet codons that encode the same amino acid
23
87709
2336
ื•ืงื•ื“ื•ื ื™ื ืžืฉื•ืœืฉื™ื ืฉืžืงื•ื“ื“ื™ื ืืช ืื•ืชื” ื—ื•ืžืฆืช ืืžื™ื ื•
01:30
are defined as synonymous codons.
24
90086
2670
ืžื•ื’ื“ืจื™ื ื›ืงื•ื“ื•ื ื™ื โ€œื ืจื“ืคื™ืโ€œ.
01:33
The DNA code used for life is near universal.
25
93632
3336
ืงื•ื“ ื”-DNA ืฉื™ื•ืฆืจ ื—ื™ื™ื ื”ื•ื ื›ืžืขื˜ ืื•ื ื™ื‘ืจืกืœื™.
01:38
All forms of life and viruses use essentially the same genetic code.
26
98178
5422
ื›ืœ ืฆื•ืจื•ืช ื”ื—ื™ื™ื ื•ื”ื•ื•ื™ืจื•ืกื™ื ืžืฉืชืžืฉื™ื ื›ืžืขื˜ ื‘ืื•ืชื• ืงื•ื“ ื’ื ื˜ื™.
01:44
And that's a trait that we can exploit.
27
104684
2378
ื•ื–ื• ืชื›ื•ื ื” ืฉื ื™ืชืŸ ืœื ืฆืœ.
01:48
Here's what we did.
28
108396
1252
ื”ื ื” ืžื” ืฉืขืฉื™ื ื•.
01:50
We asked whether life needs multiple synonymous codons
29
110482
3753
ืฉืืœื ื• ืื ืœื—ื™ื™ื ื ื—ื•ืฆื™ื ืงื•ื“ื•ื ื™ื ืžืจื•ื‘ื™ื ื•ื ืจื“ืคื™ื
01:54
to encode a single amino acid.
30
114235
2461
ื›ื“ื™ ืœืงื•ื“ื“ ื—ื•ืžืฆืช ืืžื™ื ื• ื™ื—ื™ื“ื”.
01:56
For example, does life need six different codons,
31
116696
3379
ืœื“ื•ื’ืžื”, ื”ืื ื—ื™ื™ื ื“ื•ืจืฉื™ื ืฉื™ืฉื” ืงื•ื“ื•ื ื™ื ืฉื•ื ื™ื,
02:00
which all code for the amino acid serine?
32
120075
3253
ืฉื›ื•ืœื ืžืงื•ื“ื“ื™ื ืืช ื—ื•ืžืฆืช ื”ืืžื™ื ื• ืกืจื™ืŸ?
02:04
We took the four-million-character DNA of E. coli, its genome,
33
124871
5464
ืœืงื—ื ื• ืืช ืืจื‘ืข ืžื™ืœื™ื•ืŸ ื”ืื•ืชื™ื•ืช ื‘-DNA ืฉืœ E. coli, ื”ื’ื ื•ื ืฉืœื•,
02:10
and completely rewrote the code of this microbe
34
130377
2794
ื•ืฉื›ืชื‘ื ื• ืœื’ืžืจื™ ืืช ื”ืงื•ื“ ืฉืœ ื”ื—ื™ื™ื“ืง ื”ื–ื”
02:13
in a very specific way
35
133213
2294
ื‘ื“ืจืš ืžืื“ ืžืกื•ื™ืžืช
02:15
by replacing targeted codons in its genome
36
135548
3420
ืขืœ ื™ื“ื™ ื”ื—ืœืคืช ืงื•ื“ื•ื ื™ื ืžืกื•ื™ืžื™ื ื‘ื’ื ื•ื ืฉืœื•
02:19
with synonymous codons that encode the same amino acid.
37
139010
3671
ื‘ืงื•ื“ื•ื ื™ื ื ืจื“ืคื™ื ืฉืžืงื•ื“ื“ื™ื ืื•ืชื” ื—ื•ืžืฆืช ืืžื™ื ื•.
02:23
So for example,
38
143515
2460
ืื– ืœื“ื•ื’ืžื”,
02:26
we replaced the TCG and TCA codons,
39
146017
3420
ื”ื—ืœืคื ื• ืืช ื”ืงื•ื“ื•ื ื™ื TCG, TCA
02:29
which encode the amino acid serine,
40
149437
2628
ืฉืžืงื•ื“ื“ื™ื ืืช ื—ื•ืžืฆืช ื”ืืžื™ื ื• ืกืจื™ืŸ,
02:32
with AGT and AGC codons,
41
152065
2794
ื‘ืงื•ื“ื•ื ื™ื AGT ื•-AGC,
02:34
which also encode the amino acid serine.
42
154859
3087
ืฉื’ื ื”ื ืžืงื•ื“ื“ื™ื ื—ื•ืžืฆืช ืืžื™ื ื• ืกืจื™ืŸ.
02:38
By doing this across the whole four-million-base genome,
43
158571
3796
ื›ืฉืขืฉื™ื ื• ื–ืืช ืœืื•ืจืš ืืจื‘ืขื” ืžื™ืœื™ื•ืŸ ื‘ืกื™ืกื™ื ื‘ื’ื ื•ื ื›ื•ืœื•,
02:42
we completely removed the targeted codons from the genetic code of E. coli.
44
162367
4588
ื”ืกืจื ื• ืœื—ืœื•ื˜ื™ืŸ ืืช ื”ืงื•ื“ื•ื ื™ื ื”ื ื‘ื—ืจื™ื ืžื”ืงื•ื“ ื”ื’ื ื˜ื™ ืฉืœ E. coli.
02:48
Overall, we compressed the genetic code from using 64 codons to using 61 codons.
45
168206
6882
ืกืš ื”ื›ื•ืœ, ื“ื—ืกื ื• ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ืžืฉื™ืžื•ืฉ ื‘-64 ืงื•ื“ื•ื ื™ื ืœ-61 ืงื•ื“ื•ื ื™ื.
02:56
How did we do it?
46
176631
2044
ืื™ืš ืขืฉื™ื ื• ืืช ื–ื”?
02:58
We first took the four-million-character code in a computer
47
178717
4045
ื‘ื”ืชื—ืœื” ืœืงื—ื ื• ืืช ื”ืงื•ื“ ื‘ืŸ ืืจื‘ืขื” ืžื™ืœื™ื•ืŸ ื”ื‘ืกื™ืกื™ื ื‘ืžื—ืฉื‘
03:02
and used a find-and-replace operation
48
182804
2377
ื•ืขืฉื™ื ื• ืคืขื•ืœืช ื—ืคืฉ-ื•ื”ื—ืœืฃ
03:05
to replace targeted codons with their synonyms.
49
185223
3003
ื›ื“ื™ ืœื”ื—ืœื™ืฃ ืงื•ื“ื•ื ื™ื ื ื‘ื—ืจื™ื ื‘ืงื•ื“ื•ื ื™ื ื”ื ืจื“ืคื™ื ืฉืœื”ื.
03:08
This created our new genome design,
50
188935
2920
ื›ืš ื ื•ืฆืจื” ืชื‘ื ื™ืช ื’ื ื•ืžื™ืช ื—ื“ืฉื”,
03:11
which contained more than 18,000 changes with respect to the original genome.
51
191855
5213
ืฉืžื›ื™ืœื” ื™ื•ืชืจ ืž-18,000 ืฉื™ื ื•ื™ื™ื ื‘ื”ืฉื•ื•ืื” ืœื’ื ื•ื ื”ืžืงื•ืจื™.
03:18
We then asked whether we could build an organism
52
198236
2836
ื•ืื– ืฉืืœื ื• ืื ื ื•ื›ืœ ืœื‘ื ื•ืช ืื•ืจื’ื ื™ื–ื
03:21
that runs on our synthetic genome design.
53
201072
2503
ืฉืคื•ืขืœ ืœืคื™ ื”ืชื‘ื ื™ืช ื”ื’ื ื•ืžื™ืช ื”ืกื™ื ืชื˜ื™ืช ืฉื™ืฆืจื ื•.
03:24
We built the synthetic genome starting from short pieces of DNA.
54
204492
3837
ื”ืชื—ืœื ื• ืœื‘ื ื•ืช ืืช ื”ื’ื ื•ื ื”ืกื™ื ืชื˜ื™ ื‘ืขื–ืจืช ืคื™ืกื•ืช ืงืฆืจื•ืช ืฉืœ DNA.
03:29
These were made by chemistry in a test tube,
55
209205
2586
ืืœื” ื ื•ืฆืจื• ื‘ืขื–ืจืช ื›ื™ืžื™ื” ื‘ืžื‘ื—ื ื”,
03:31
something that would have been prohibitively expensive to do
56
211833
2836
ืžืฉื”ื• ืฉื”ื™ื” ื™ืงืจ ื™ื•ืชืจ ืžื“ื™ ืœืขืฉื•ืช
03:34
on this scale just a decade or two ago.
57
214711
2544
ื‘ืกื“ืจ ื”ื’ื•ื“ืœ ื”ื–ื” ืจืง ืœืคื ื™ ืขืฉื•ืจ ืื• ืฉื ื™ื™ื.
03:38
We then assembled these short pieces of DNA
58
218506
2253
ืื—ืจ ื›ืš ื”ืจื›ื‘ื ื• ืืช ื—ืœืงื™ ื”-DNA ื”ืงืฆืจื™ื
03:40
into longer stretches of DNA,
59
220800
2378
ืœืžืงื˜ืขื™ื ืืจื•ื›ื™ื ื™ื•ืชืจ ืฉืœ DNA,
03:43
which we then used to step-by-step replace
60
223219
3254
ื•ืื– ื”ืฉืชืžืฉื ื• ื‘ื”ื ืœื”ื—ืœื™ืฃ ืฆืขื“ ืื—ืจ ืฆืขื“
03:46
all four million bases of the E. coli genome.
61
226514
3879
ืืช ื›ืœ ืืจื‘ืขื” ืžื™ืœื™ื•ืŸ ื”ื‘ืกื™ืกื™ื ืฉืœ ื”ื’ื ื•ื ืฉืœ E. coli.
03:51
This created the largest synthetic genome ever made.
62
231227
3546
ื›ืš ื ื•ืฆืจ ื”ื’ื ื•ื ื”ืกื™ื ืชื˜ื™ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืื™ ืคืขื.
03:55
And the resulting cell was alive.
63
235774
2711
ื•ื”ืชื ืฉื ื•ืฆืจ ื”ื™ื” ื—ื™.
03:59
Think about that.
64
239819
1293
ืชื—ืฉื‘ื• ืขืœ ื–ื”.
04:01
We streamlined the genetic code, and yet the cell lived.
65
241112
4380
ื›ื™ื•ื•ืฆื ื• ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™, ื•ืขื“ื™ื™ืŸ ื”ืชื ื—ื™.
04:05
We can create life with a compressed genetic code.
66
245492
3837
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื™ืฆื•ืจ ื—ื™ื™ื ื‘ืขืœื™ ืงื•ื“ ื’ื ื˜ื™ ื“ื—ื•ืก.
04:10
Now because our organism with a compressed genetic code
67
250246
3629
ืžืฉื•ื ืฉื”ืื•ืจื’ื ื™ื–ื ืฉืœื ื• ื‘ืขืœ ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื”ืžื›ื•ื•ืฅ
04:13
doesn't use all 64 triplet codons to make proteins,
68
253917
4379
ืœื ืžืฉืชืžืฉ ื‘ื›ืœ 64 ื”ืงื•ื“ื•ื ื™ื ืœื™ืฆื™ืจืช ื—ืœื‘ื•ื ื™ื,
04:18
we could remove some of the machinery from the cell
69
258338
3086
ื™ื›ื•ืœื ื• ืœื”ืกื™ืจ ื—ืœืง ืžื”ืžื ื’ื ื•ื ื™ื ื‘ืชื
04:21
that normally reads the near-universal genetic code.
70
261466
3754
ืฉื‘ืื•ืคืŸ ื ื•ืจืžืœื™ ืงื•ืจืื™ื ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื”ื›ืžืขื˜-ืื•ื ื™ื‘ืจืกืœื™.
04:26
Specifically, we could remove components of the translational machinery,
71
266763
4296
ืกืคืฆื™ืคื™ืช, ื™ื›ื•ืœื ื• ืœื”ืกื™ืจ ืžืจื›ื™ื‘ื™ื ืฉืœ ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื,
04:31
specific tRNAs,
72
271100
1752
tRNA ืžืกื•ื™ืžื™ื,
04:32
that normally read the codons that we've removed from the genome.
73
272894
3295
ืฉื‘ืื•ืคืŸ ืจื’ื™ืœ ืงื•ืจืื™ื ืืช ื”ืงื•ื“ื•ื ื™ื ืฉื”ืกืจื ื• ืžื”ื’ื ื•ื.
04:37
Now, the key point here is that we've created a cell
74
277732
3712
ืขื›ืฉื™ื•, ื ืงื•ื“ืช ื”ืžืคืชื— ื›ืืŸ ื”ื™ื ืฉื™ืฆืจื ื• ืชื
04:41
that no longer reads all the codons in the near-universal genetic code.
75
281444
5381
ืฉื›ื‘ืจ ืœื ื™ื•ื“ืข ืœืงืจื•ื ืืช ื›ืœ ื”ืงื•ื“ื•ื ื™ื ื‘ืงื•ื“ ื”ื’ื ื˜ื™ ื”ื›ืžืขื˜-ืื•ื ื™ื‘ืจืกืœื™.
04:47
Now viruses infect cells.
76
287909
2294
ืขื›ืฉื™ื• ื•ื™ืจื•ืกื™ื ืžื“ื‘ื™ืงื™ื ืชืื™ื.
04:51
These might be the cells of our bodies
77
291079
2085
ืืœื” ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืชืื™ ื”ื’ื•ืฃ ืฉืœื ื•
04:53
or single-celled microbes like E.coli.
78
293206
2377
ืื• ืžื™ืงืจื•ื‘ื™ื ื—ื“-ืชืื™ื™ื ื›ืžื• E. coli.
04:56
They commonly have their own DNA,
79
296668
2586
ืœืจื•ื‘ ื™ืฉ ืœื”ื DNA ืžืฉืœื”ื,
04:59
which uses the near-universal genetic code
80
299295
3003
ืฉืžืฉืชืžืฉ ื‘ืงื•ื“ ื”ื’ื ื˜ื™ ื‘ื›ืžืขื˜-ืื•ื ื™ื‘ืจืกืœื™
05:02
to encode the proteins necessary to make copies of the virus.
81
302340
4630
ืœืงื•ื“ื“ ืืช ื”ื—ืœื‘ื•ื ื™ื ื”ื“ืจื•ืฉื™ื ืœื™ืฆื™ืจืช ืขื•ืชืงื™ื ืฉืœ ื”ื•ื•ื™ืจื•ืก.
05:07
But viruses don't have the machinery to read the genetic code in their DNA,
82
307011
4672
ืื‘ืœ ืœื•ื•ื™ืจื•ืกื™ื ืื™ืŸ ืืช ื”ืžื ื’ื ื•ื ื™ื ืฉืงื•ืจืื™ื ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื‘-DNA ืฉืœื”ื,
05:11
and instead they rely on the host cell, the machinery of the host cell,
83
311724
5714
ื‘ืžืงื•ื ื–ื” ื”ื ืชืœื•ื™ื™ื ื‘ืชื ื”ืžืืจื—, ื‘ืžื ื’ื ื•ื ื™ื ืฉืœ ื”ืชื ื”ืžืืจื—,
05:17
to read the genetic code in their DNA
84
317438
2294
ื›ื“ื™ ืœืงืจื•ื ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ื‘-DNA ืฉืœื”ื
05:19
and make copies of the virus.
85
319732
1794
ื•ืœื™ืฆื•ืจ ืขื•ืชืงื™ื ืฉืœ ื”ื•ื•ื™ืจื•ืก.
05:22
It's these copies of the virus that go on to infect other cells.
86
322443
3712
ืขื•ืชืงื™ื ืืœื” ืฉืœ ื”ื•ื•ื™ืจื•ืก ืžื“ื‘ื™ืงื™ื ืื—ืจ ื›ืš ืชืื™ื ืื—ืจื™ื.
05:26
And this is how viruses spread.
87
326155
2086
ื•ื›ื›ื” ื•ื™ืจื•ืกื™ื ืžืชืคืฉื˜ื™ื.
05:29
But viruses are unable to make copies of themselves in our new organism
88
329284
3962
ืื‘ืœ ื•ื™ืจื•ืกื™ื ืœื ืžืกื•ื’ืœื™ื ืœื™ืฆื•ืจ ืขื•ืชืงื™ื ืฉืœ ืขืฆืžื ื‘ืื•ืจื’ื ื™ื–ื ื”ื—ื“ืฉ ืฉืœื ื•
05:33
because our new organism doesn't have the machinery
89
333246
3045
ื›ื™ ื‘ืื•ืจื’ื ื™ื–ื ื”ื—ื“ืฉ ืื™ืŸ ืืช ื”ืžื ื’ื ื•ื ื™ื
05:36
to read all the codons in the DNA of the virus.
90
336332
3796
ืฉื™ื›ื•ืœื™ื ืœืงืจื•ื ืืช ื”ืงื•ื“ื•ื ื™ื ื‘-DNA ืฉืœ ื”ื•ื•ื™ืจื•ืก.
05:40
The code in the DNA used in the virus
91
340169
2586
ืงื•ื“ ื”-DNA ืฉืœ ื”ื•ื•ื™ืจื•ืก
05:42
and the host cell's machinery to read that code are incompatible.
92
342797
4129
ื•ื”ืžื ื’ื ื•ื ื™ื ืฉืœ ื”ืชื ื”ืžืืจื— ืฉืงื•ืจืื™ื ืืช ื”ืงื•ื“ ืื™ื ื ืžืชืื™ืžื™ื.
05:47
Therefore, the virus doesnโ€™t spread in the new organism,
93
347802
3670
ืœื›ืŸ, ื”ื•ื•ื™ืจื•ืก ืœื ืžืชืคืฉื˜ ื‘ืื•ืจื’ื ื™ื–ื ื”ื—ื“ืฉ,
05:51
and the new organism is resistant to viruses.
94
351514
3629
ื•ื”ืื•ืจื’ื ื™ื–ื ื”ื—ื“ืฉ ืขืžื™ื“ ื‘ืคื ื™ ื•ื™ืจื•ืกื™ื.
05:55
In fact, we showed that our new organism was resistant to a wide range of viruses,
95
355184
5423
ืœืžืขืฉื”, ื”ืจืื™ื ื• ืฉื”ืื•ืจื’ื ื™ื–ื ื”ื—ื“ืฉ ืฉืœื ื• ืขืžื™ื“ ื‘ืคื ื™ ืฉื•ืจื” ืจื—ื‘ื” ืฉืœ ื•ื™ืจื•ืกื™ื,
06:00
suggesting that rewriting the genetic code
96
360607
2961
ืžื” ืฉืžืจืื” ืื•ืœื™ ืฉืฉื™ื›ืชื•ื‘ ื”ืงื•ื“ ื”ื’ื ื˜ื™
06:03
provides a route to creating broadly virus-resistant life.
97
363568
4338
ืžืกืคืง ื“ืจืš ืœื™ืฆื™ืจืช ื—ื™ื™ื ืขืžื™ื“ื™ื ื‘ืคื ื™ ื•ื™ืจื•ืกื™ื.
06:08
By extending the approaches we've developed to other organisms,
98
368781
3295
ืขืœ ื™ื“ื™ ื”ืจื—ื‘ืช ื”ื’ื™ืฉื•ืช ืฉืคื™ืชื—ื ื• ืœืื•ืจื’ื ื™ื–ืžื™ื ืื—ืจื™ื,
06:12
it may be possible to create virus-resistant crops and animals
99
372076
4380
ื™ื™ืชื›ืŸ ืฉื™ื”ื™ื” ืืคืฉืจ ืœื™ืฆื•ืจ ืฆืžื—ื™ื ื•ื‘ืขืœื™ ื—ื™ื™ื ืขืžื™ื“ื™ื ืœื•ื•ื™ืจื•ืกื™ื
06:16
with important applications in agriculture and beyond.
100
376497
3129
ืขื ื™ื™ืฉื•ืžื™ื ื—ืฉื•ื‘ื™ื ื‘ื—ืงืœืื•ืช ื•ืžืขื‘ืจ.
06:20
But our advances also provide a foundation
101
380543
2336
ืื‘ืœ ื”ืคื™ืชื•ื— ืฉืœื ื• ื’ื ืžืกืคืง ื‘ืกื™ืก
06:22
for turning cells into the clean factories of the future.
102
382921
4004
ืœื”ืคื™ื›ืช ืชืื™ื ืœืžืคืขืœื™ื ื”ื ืงื™ื™ื ืฉืœ ื”ืขืชื™ื“.
06:27
How?
103
387967
1251
ืื™ืš?
06:29
So to explain, let me take another step back
104
389928
2419
ืื– ื›ื“ื™ ืœื”ืกื‘ื™ืจ, ื‘ื•ืื• ื ืœืš ืขื•ื“ ืฆืขื“ ืื—ื•ืจื”
06:32
to how organisms read their genetic code to make proteins.
105
392388
3504
ืœืื•ืคืŸ ืฉื‘ื• ืื•ืจื’ื ื™ื–ืžื™ื ืงื•ืจืื™ื ืืช ื”ืงื•ื“ ื”ื’ื ื˜ื™ ืฉืœื”ื ืœื™ืฆื™ืจืช ื—ืœื‘ื•ื ื™ื.
06:36
Recall that the order of triplet codons in DNA
106
396935
3128
ื–ื›ืจื• ืฉืกื“ืจ ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื ื‘-DNA
06:40
encodes the order of amino acid building blocks in a protein.
107
400063
3420
ืžืงื•ื“ื“ ืืช ืกื“ืจ ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื• ืฉื”ืŸ ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ื—ืœื‘ื•ืŸ.
06:44
And it's the translational machinery of cells
108
404609
2753
ื•ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื ืฉืœ ื”ืชื
06:47
that reads the triplet codons
109
407362
2002
ื”ื ืืœื” ืฉืงื•ืจืื™ื ืืช ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื
06:49
and builds the corresponding sequence of amino acids.
110
409364
3378
ื•ื‘ื•ื ื™ื ืืช ื”ืจืฆืฃ ื”ืžืชืื™ื ืฉืœ ื—ื•ืžืฆื•ืช ืืžื™ื ื•.
06:54
The translational machinery of natural cells --
111
414077
2377
ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื ืฉืœ ืชืื™ื ื˜ื‘ืขื™ื™ื --
06:56
including ribosomes,
112
416454
1627
ื›ื•ืœืœ ืจื™ื‘ื•ื–ื•ืžื™ื,
06:58
aminoacyl-tRNA synthetase enzymes and tRNAs --
113
418122
3504
ืื ื–ื™ืžื™ ืืžื™ื ื•ืืฆื™ืœ-tRNA ืกื™ื ืชื˜ืื– ื•ื’ื tRNA --
07:01
is a unique and special system for making proteins
114
421668
3795
ื”ื ืžืขืจื›ืช ื™ื™ื—ื•ื“ื™ืช ื•ืžื™ื•ื—ื“ืช ืœื™ืฆื™ืจืช ื—ืœื‘ื•ื ื™ื
07:05
in which the 20 common amino acids are strung together in a chain.
115
425505
4212
ืฉื‘ื” 20 ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื• ื”ื ืคื•ืฆื•ืช ื ืงืฉืจื•ืช ื™ื—ื“ ื‘ืฉืจืฉืจืช.
07:10
Now, proteins are amazing,
116
430718
2378
ืขื›ืฉื™ื•, ื—ืœื‘ื•ื ื™ื ื”ื ืžื“ื”ื™ืžื™ื,
07:13
but they're just one example
117
433137
2086
ืื‘ืœ ื”ื ืจืง ื“ื•ื’ืžื” ืื—ืช
07:15
from a vast class of molecules known as polymers,
118
435264
4088
ืœืงื˜ื’ื•ืจื™ื” ืขืฆื•ืžื” ืฉืœ ืžื•ืœืงื•ืœื•ืช ืฉื™ื“ื•ืขื•ืช ื‘ืฉื ืคื•ืœื™ืžืจื™ื,
07:19
which includes plastics, materials and drugs.
119
439394
3169
ื›ื•ืœืœ ืคืœืกื˜ื™ืง, ื—ื•ืžืจื™ื ื•ืชืจื•ืคื•ืช.
07:23
And the polymer or linear polymer is really any molecule
120
443731
3003
ื•ื”ืคื•ืœื™ืžืจ ืื• ืคื•ืœื™ืžืจ ืœื™ื ืืจื™ ื”ื•ื ื‘ืขืฆื ื›ืœ ืžื•ืœืงื•ืœื”
07:26
in which simpler chemical building blocks are strung together in a chain.
121
446734
3462
ืฉื‘ื” ืื‘ื ื™ ื‘ื ื™ื™ืŸ ื›ื™ืžื™ื•ืช ื ืงืฉืจื•ืช ื™ื—ื“ ื‘ืฉืจืฉืจืช.
07:31
We wanted to unlock the potential of the translational machinery
122
451948
3295
ืจืฆื™ื ื• ืœืฉื—ืจืจ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืฉืœ ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื
07:35
for making plastics, materials and drugs
123
455243
3336
ืœื™ืฆื•ืจ ืคืœืกื˜ื™ืงื”, ื—ื•ืžืจื™ื ื•ืชืจื•ืคื•ืช
07:38
that simply can't be made in any other way,
124
458579
3295
ืฉืคืฉื•ื˜ ืื™ ืืคืฉืจ ืœื™ื™ืฆืจ ื‘ื“ืจืš ืื—ืจืช,
07:41
or that could be made more cleanly and efficiently
125
461916
3295
ืื• ืฉืืคืฉืจ ืœื™ื™ืฆืจ ื‘ืฆื•ืจื” ื ืงื™ื™ื” ื•ื™ืขื™ืœื” ื™ื•ืชืจ
07:45
using engineered versions of the cell's translational machinery.
126
465253
3879
ื‘ืขื–ืจืช ื’ืจืกืื•ืช ืžื”ื•ื ื“ืกื•ืช ืฉืœ ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื ืฉืœ ื”ืชื.
07:49
The building blocks for these polymers
127
469841
1835
ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ืฉืœ ื”ืคื•ืœื™ืžืจื™ื ื”ืืœื”
07:51
go well beyond the 20 common amino acids used to make proteins.
128
471718
4170
ื”ื ื”ืจื‘ื” ื™ื•ืชืจ ืž-20 ื—ื•ืžืฆื•ืช ื”ืืžื™ื ื• ื”ื ืคื•ืฆื•ืช ืฉืžืฉืžืฉื•ืช ืœื™ืฆื™ืจืช ื—ืœื‘ื•ื ื™ื.
07:57
It's been impossible to unlock the potential
129
477432
2085
ื–ื” ื”ื™ื” ื‘ืœืชื™ ืืคืฉืจื™ ืœืคืฆื— ืืช ื”ืคื•ื˜ื ืฆื™ืืœ
07:59
of the translational machinery for making plastics, materials and drugs
130
479559
3462
ืฉืœ ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื ืœื™ืฆื™ืจืช ืคืœืกื˜ื™ืง, ื—ื•ืžืจื™ื ื•ืชืจื•ืคื•ืช
08:03
for two reasons.
131
483062
1377
ืžืฉืชื™ ืกื™ื‘ื•ืช.
08:05
First, all 64 triplet codons in natural cells
132
485189
4380
ืจืืฉื™ืช, ื›ืœ 64 ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื ื‘ืชืื™ื ื˜ื‘ืขื™ื™ื
08:09
are used for making natural proteins,
133
489569
2919
ืžืฉืžืฉื™ื ืœื™ืฆื™ืจืช ื—ืœื‘ื•ื ื™ื ื˜ื‘ืขื™ื™ื,
08:12
and there are simply no codons available to encode the synthesis of new polymers.
134
492488
4296
ื•ืคืฉื•ื˜ ืื™ืŸ ืงื•ื“ื•ื ื™ื ืฉืžืงื•ื“ื“ื™ื ืืช ื”ืกื™ื ืชื–ื” ืฉืœ ืคื•ืœื™ืžืจื™ื ื—ื“ืฉื™ื.
08:17
Second, the natural translational machinery
135
497952
3504
ืฉื ื™ืช, ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื ื”ื˜ื‘ืขื™ื™ื
08:21
specifically uses natural amino acids
136
501497
2836
ืžืฉืชืžืฉื™ื ืกืคืฆื™ืคื™ืช ื‘ื—ื•ืžืฆื•ืช ืืžื™ื ื• ื˜ื‘ืขื™ื•ืช
08:24
and simply can't use the chemical building blocks
137
504375
2419
ื•ืคืฉื•ื˜ ืœื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืื‘ื ื™ ื‘ื ื™ื™ืŸ ื›ื™ืžื™ื•ืช
08:26
required to make new polymers.
138
506836
2044
ื”ื“ืจื•ืฉื•ืช ืœื™ืฆื™ืจืช ืคื•ืœื™ืžืจื™ื ื—ื“ืฉื™ื.
08:30
However, a virus-resistant organism
139
510298
4212
ืื‘ืœ, ืื•ืจื’ื ื™ื–ื ืขืžื™ื“ ื‘ืคื ื™ ื•ื™ืจื•ืกื™ื
08:34
doesn't use all 64 triplet codons to make proteins
140
514552
3795
ืœื ืžืฉืชืžืฉ ื‘ื›ืœ 64 ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื ืœื™ืฆื™ืจืช ื—ืœื‘ื•ื ื™ื
08:38
and doesn't contain the machinery to read the codons
141
518389
3170
ื•ืœื ืžื›ื™ืœ ืืช ื”ืžื ื’ื ื•ืŸ ืฉืงื•ืจื ืืช ื”ืงื•ื“ื•ื ื™ื
08:41
that have been deleted from its genome.
142
521601
2335
ืฉื ืžื—ืงื• ืžื”ื’ื ื•ื ืฉืœื•.
08:43
And this cell provides the starting point for genetically-encoded polymer synthesis.
143
523978
5130
ื•ื”ืชื ื”ื–ื” ืžืกืคืง ื ืงื•ื“ืช ื”ืชื—ืœื” ืœืกื™ื ืชื–ืช ืคื•ืœื™ืžืจื™ื ืžืงื•ื“ื“ืช ื’ื ื˜ื™ืช.
08:50
To realize genetically-encoded polymer synthesis
144
530943
2670
ื›ื“ื™ ืœื”ื’ืฉื™ื ืกื™ื ืชื–ืช ืคื•ืœื™ืžืจื™ื ืžืงื•ื“ื“ืช ื’ื ื˜ื™ืช
08:53
in our virus-resistant organism,
145
533613
2294
ื‘ืื•ืจื’ื ื™ื–ื ื”ืขืžื™ื“ ื‘ืคื ื™ ื•ื™ืจื•ืกื™ื,
08:55
we added synthetic DNA containing the triplet codons
146
535907
3545
ื”ื•ืกืคื ื• DNA ืกื™ื ืชื˜ื™ ืฉืžื›ื™ืœ ืืช ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื
08:59
we'd removed from the genome of the cell
147
539452
3086
ืฉื”ืกืจื ื• ืžื”ื’ื ื•ื ืฉืœ ื”ืชื
09:02
and engineered translational machinery to read these codons
148
542538
3212
ื•ื”ื™ื ื“ืกื ื• ืžื ื’ื ื•ื ื™ ืชืจื’ื•ื ืฉื™ืงืจืื• ืืช ื”ืงื•ื“ื•ื ื™ื ื”ืืœื”
09:05
and reassign them to new chemical building blocks for new polymers.
149
545792
4129
ื•ื™ืชืื™ืžื• ืื•ืชื ืœืื‘ื ื™ ื‘ื ื™ื™ืŸ ื›ื™ืžื™ื•ืช ื—ื“ืฉื•ืช ืœืคื•ืœื™ืžืจื™ื ื—ื“ืฉื™ื.
09:11
This system can be programmed to make diverse synthetic polymers.
150
551172
4212
ื ื™ืชืŸ ืœืชื›ื ืช ืืช ื”ืžืขืจื›ืช ื”ื–ื• ืœื™ืฆื•ืจ ืคื•ืœื™ืžืจื™ื ืกื™ื ืชื˜ื™ื™ื ืžื’ื•ื•ื ื™ื.
09:15
By changing the order of the triplet codons
151
555426
2294
ืขืœ ื™ื“ื™ ืฉื™ื ื•ื™ ื”ืกื“ืจ ืฉืœ ื”ืงื•ื“ื•ื ื™ื ื”ืžืฉื•ืœืฉื™ื
09:17
in the synthetic DNA,
152
557762
1585
ื‘-DNA ื”ืกื™ื ืชื˜ื™,
09:19
we can change the order of the chemical building blocks
153
559388
2628
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉื ื•ืช ืืช ื”ืกื“ืจ ืฉืœ ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ื”ื›ื™ืžื™ื•ืช
09:22
that we program into the resulting polymer.
154
562058
2127
ืฉืื ื—ื ื• ืžืชื›ื ืชื™ื ืœืคื•ืœื™ืžืจ ืฉื ื•ืฆืจ.
09:25
And by changing the identity of the engineered translational machinery
155
565186
3795
ื•ืขืœ ื™ื“ื™ ืฉื™ื ื•ื™ ื”ื–ื”ื•ืช ืฉืœ ืžื ื’ื ื•ื ื™ ื”ืชืจื’ื•ื ื”ืžื”ื•ื ื“ืกื™ื
09:28
that we add to the cell,
156
568981
1544
ืฉืื ื—ื ื• ืžื•ืกื™ืคื™ื ืœืชื,
09:30
we can change the identity of the chemical building blocks
157
570525
2752
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืฉื ื•ืช ืืช ื”ื–ื”ื•ืช ืฉืœ ืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ื”ื›ื™ืžื™ื•ืช
09:33
from which we compose the polymer.
158
573277
1752
ืฉืžื”ืŸ ืื ื• ืžืจื›ื™ื‘ื™ื ืืช ื”ืคื•ืœื™ืžืจ.
09:36
Overall, we've created a cellular factory
159
576155
3045
ื‘ืฉื•ืจื” ื”ืชื—ืชื•ื ื”, ื™ืฆืจื ื• ืžืคืขืœ ื™ื™ืฆื•ืจ ืชืื™
09:39
that we can reliably and predictably program
160
579200
2836
ืฉืืคืฉืจ ืœืชื›ื ืช ื‘ืฆื•ืจื” ืžื”ื™ืžื ื” ื•ืฆืคื•ื™ื”
09:42
to make synthetic polymers.
161
582036
2503
ืœื™ืฆื™ืจืช ืคื•ืœื™ืžืจื™ื ืกื™ื ืชื˜ื™ื™ื.
09:44
Using our approach, we've already been able to program cells
162
584580
2836
ื‘ืขื–ืจืช ื”ื’ื™ืฉื” ืฉืœื ื•, ื”ืฆืœื—ื ื• ื›ื‘ืจ ืœืชื›ื ืช ืชืื™ื
09:47
to make new molecules,
163
587458
1794
ืœื™ืฆื•ืจ ืžื•ืœืงื•ืœื•ืช ื—ื“ืฉื•ืช,
09:49
including molecules from an important class of drugs
164
589293
2920
ื›ื•ืœืœ ืžื•ืœืงื•ืœื•ืช ืžืžื—ืœืงื” ื—ืฉื•ื‘ื” ืฉืœ ืชืจื•ืคื•ืช
09:52
known as depsipeptide macrocycles.
165
592255
2085
ืฉื ืงืจืืช ื“ืคืกื™ืคืคื˜ื™ื“ ืžืงืจื•ืฆื™ืงืœื™.
09:55
Molecules in this class include antibiotics,
166
595133
2794
ืžื•ืœืงื•ืœื•ืช ืžืกื•ื’ ื–ื” ื›ื•ืœืœื•ืช ืื ื˜ื™ื‘ื™ื•ื˜ื™ืงื”,
09:57
immunosuppressives and anti-tumor compounds.
167
597969
2919
ืžื“ื›ืื™ื ืฉืœ ืžืขืจื›ืช ื”ื—ื™ืกื•ืŸ ื•ืจื›ื™ื‘ื™ื ืื ื˜ื™-ืกืจื˜ื ื™ื™ื.
10:01
We've also been able to program cells to make completely synthetic polymers
168
601848
4379
ื”ืฆืœื—ื ื• ื’ื ืœืชื›ื ืช ืชืื™ื ืœื™ืฆื•ืจ ืคื•ืœื™ืžืจื™ื ืกื™ื ืชื˜ื™ื™ื ืœื—ืœื•ื˜ื™ืŸ
10:06
containing the chemical linkages found
169
606269
1835
ืฉืžื›ื™ืœื™ื ืืช ื”ืงืฉืจ ื”ื›ื™ืžื™ ืฉื ืžืฆื
10:08
in several classes of biodegradable plastics.
170
608146
2752
ื‘ืžืกืคืจ ืกื•ื’ื™ื ืฉืœ ืคืœืกื˜ื™ืง ืžืชื›ืœื”.
10:12
As we build new polymer molecules using our cellular factories,
171
612400
4212
ื›ืฉืื ื—ื ื• ื‘ื•ื ื™ื ืคื•ืœื™ืžืจื™ื ื—ื“ืฉื™ื ื‘ืขื–ืจืช ื”ืžืคืขืœ ื”ืชืื™ ืฉืœื ื•,
10:16
we have the opportunity to consider from the beginning
172
616612
3337
ื™ืฉ ืœื ื• ื”ื”ื–ื“ืžื ื•ืช ืœื—ืฉื•ื‘ ืžื”ื”ืชื—ืœื”
10:19
how we might also use engineered biological cells
173
619949
3712
ืื™ืš ืขื•ื“ ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืชืื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื ืžื”ื•ื ื“ืกื™ื
10:23
to break these polymers down
174
623661
1502
ืœืคืจืง ืืช ื”ืคื•ืœื™ืžืจื™ื ื”ืืœื”
10:25
into their constituent chemical building blocks
175
625163
2794
ืœืื‘ื ื™ ื”ื‘ื ื™ื™ืŸ ื”ื›ื™ืžื™ื•ืช ืฉืœื”ื
10:27
that could be recycled and used for new encoded polymers.
176
627999
4045
ืฉืื•ืชื ื™ื”ื™ื” ื ื™ืชืŸ ืœืžื—ื–ืจ ื•ืœื™ืฆื•ืจ ืžื”ื ืคื•ืœื™ืžืจื™ื ืžืงื•ื“ื“ื™ื ื—ื“ืฉื™ื.
10:33
We envision a circular bioeconomy
177
633129
2294
ื”ื—ื–ื•ืŸ ืฉืœื ื• ื”ื•ื ื‘ื™ื•-ื›ืœื›ืœื” ืžืขื’ืœื™ืช
10:35
in which our new genetically-encoded plastics and materials
178
635464
4004
ืฉื‘ื” ืคืœืกื˜ื™ืง ื•ื—ื•ืžืจื™ื ื—ื“ืฉื™ื ืžืงื•ื“ื“ื™ื ื’ื ื˜ื™ืช
10:39
are manufactured and ultimately broken down
179
639510
3587
ืžื™ื•ืฆืจื™ื ื•ื‘ืกื•ืฃ ื’ื ืžืคื•ืจืงื™ื
10:43
using low-energy cellular processes,
180
643139
2794
ื‘ืขื–ืจืช ืชื”ืœื™ื›ื™ื ืชืื™ื™ื ืฉืฆื•ืจื›ื™ื ืžืขื˜ ืื ืจื’ื™ื”,
10:45
taking advantage of existing bioreactors and fermenters.
181
645975
3462
ื•ืžื ืฆืœื™ื ื‘ื™ื•ืจื™ืืงื˜ื•ืจื™ื ื•ืคืจืžื ื˜ื•ืจื™ื ืงื™ื™ืžื™ื.
10:50
By taking inspiration from nature and reimagining what life can become,
182
650855
6131
ืขืœ ื™ื“ื™ ื”ืฉืจืื” ืžื”ื˜ื‘ืข ื•ื“ืžื™ื•ืŸ ืžื—ื“ืฉ ืžื” ื”ื—ื™ื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช,
10:56
we have the opportunity to build the sustainable industries of the future.
183
656986
5214
ื™ืฉ ืœื ื• ื”ื–ื“ืžื ื•ืช ืœื‘ื ื•ืช ืืช ื”ืชืขืฉื™ื•ืช ื‘ื ื•ืช ื”ืงื™ื™ืžื ืฉืœ ื”ืขืชื™ื“.
11:03
Thank you.
184
663451
1293
ืชื•ื“ื”.
11:04
(Applause)
185
664744
1251
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7