How to Think Computationally About AI, the Universe and Everything | Stephen Wolfram | TED

414,662 views ・ 2023-10-31

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung 校对人员: suya f.
00:04
Human language, mathematics, logic.
0
4209
3503
人类语言、数学、逻辑。
00:08
These are all ways to formalize the world.
1
8171
2252
这些都是让世界形式化的方式。
00:10
And in our century,
2
10465
1710
在我们这个世纪,
00:12
there's a new and yet more powerful one: computation.
3
12217
3337
有一个新兴却更强大的方式:计算。
00:16
For nearly 50 years,
4
16263
1167
近 50 年来,
00:17
I've had the great privilege
5
17472
1668
我有幸建造了一座
00:19
of building up an ever-taller tower of science and technology
6
19182
3545
以计算为基础的科技高塔。
00:22
that's based on that idea of computation.
7
22769
2169
00:25
And so today, I want to tell you a little bit about what that's led to.
8
25480
3921
今天,我想简单介绍一下 它带来了什么结果。
00:29
There's a lot to talk about, so I'm going to go quickly.
9
29859
2670
我有很多话要说, 所以我就说快点。
00:32
And sometimes I'm going to summarize in a sentence
10
32529
2419
有时我会用一句话 总结我写了一整本书的内容。
00:34
what I've written a whole book about.
11
34948
1793
00:37
But you know,
12
37158
1710
但我上一次来到 TED 演讲 是在 13 年前,
00:38
I last gave a TED talk 13 years ago,
13
38910
2795
00:41
in February 2010,
14
41705
1501
2010 年 2 月,
00:43
soon after WolframAlpha launched,
15
43248
2085
也就是 WolframAlpha 发布后不久,
00:45
and I ended that talk with a question.
16
45375
2461
我以一个问题结束了那场演讲。
00:47
Question was,
17
47877
1168
问题是:
00:49
is computation ultimately what's underneath everything
18
49045
3170
计算真的是我们宇宙万物的本质吗?
00:52
in our universe?
19
52215
1585
00:53
I gave myself a decade to find out.
20
53842
2586
我给了自己十年的时间来找出答案。
00:56
And actually, it could have needed a century.
21
56428
2502
其实这可能需要一个世纪。
00:58
But in April 2020, just after the decade mark,
22
58972
3754
但是在 2020 年 4 月, 就在十年之后,
01:02
we were thrilled to be able to announce
23
62726
1877
我们很高兴宣布
01:04
what seems to be the ultimate machine code of the universe.
24
64644
3796
宇宙的终极机器代码。
01:08
And yes, it's computational.
25
68481
2378
没错,它是计算性的。
01:11
So computation isn't just a possible formalization,
26
71276
3253
计算不仅是一种可能的形式化,
01:14
it's the ultimate one for our universe.
27
74529
2711
更是我们宇宙的终极形式。
01:18
It all starts from the idea that space, like matter, is made of discrete elements,
28
78074
6006
这一切都源于这个理念:空间, 和物质一样,是由离散元素组成的,
01:24
and from that structure of space and everything in it,
29
84080
4713
空间的结构和空间中的所有事物,
01:28
it's defined just by a network of relations
30
88793
3128
仅仅是由这些元素之间的 关系网络来定义的,
01:31
between these elements that we might call atoms of space.
31
91963
3337
我们称之为空间原子。
01:35
So it's all very elegant, but deeply abstract.
32
95717
3295
一切都非常精妙,但非常抽象。
01:39
But here's kind of a humanized representation,
33
99721
2628
但还有一种较为人性化的表现形式,
01:42
a version of the very beginning of the universe.
34
102390
2544
宇宙起源的另一个版本。
01:44
And what we're seeing here is the emergence of space
35
104934
2753
我们将要看到的是 宇宙和万物的起源,
01:47
and everything in it
36
107729
1293
01:49
by the successive application of very simple computational rules.
37
109022
3086
源于不断应用 非常简单的计算规则。
01:52
And remember, these dots are not atoms in any existing space.
38
112150
4004
请记住,这些点 在任何现有空间中都不是原子。
01:56
They're atoms of space that get put together to make space.
39
116196
4504
它们是空间原子, 聚集在一起形成了空间。
02:01
And yes, if we kept going long enough,
40
121326
2002
是的,如果我们继续保持 足够长的时间,
02:03
we could build our whole universe this way.
41
123370
2252
我们就可以以这种方式 创造整个宇宙。
02:06
So eons later,
42
126122
2211
很久以后,
02:08
here's a chunk of space with two little black holes
43
128333
3420
出现了一大块空间, 上面有两个小黑洞,
02:11
that, if we wait a little while, will eventually merge,
44
131753
4963
如果我们稍等片刻, 它们最终会合并,
02:16
generating little ripples of gravitational radiation.
45
136758
3086
产生很小的引力辐射波。
02:20
And remember, all of this is built from pure computation.
46
140512
3587
请记住,一切都是 通过纯计算构建的。
02:24
But like fluid mechanics emerging from molecules,
47
144432
3170
但是,就像分子中涌现的 流体力学一样,
02:27
what emerges here is space-time and Einstein's equations for gravity,
48
147644
4463
这里出现的是时空 和爱因斯坦的重力方程,
02:32
though there are deviations that we just might be able to detect,
49
152148
3337
虽然有些我们可能能够检测到的偏差,
02:35
like that the dimensionality of space won't always be precisely three.
50
155527
4254
就像空间的维度 并不总是精确的三个。
02:40
And there's something else.
51
160573
1460
还有别的。
02:42
Our computational rules can inevitably be applied in many ways,
52
162075
4588
我们的计算规则 一定可以有多种用途,
02:46
each defining a different kind of thread of time,
53
166705
2502
每种方式都定义了不同的时间线,
02:49
a different path of history that can branch and merge.
54
169207
3545
每一条都是可以分叉、 合并的不同历史走向。
02:53
But as observers embedded in this universe,
55
173128
2877
但作为身处这个宇宙中的观察者,
02:56
we're branching and merging, too.
56
176005
1919
我们也在分叉、合并。
02:57
And it turns out that quantum mechanics emerges as the story
57
177966
3503
量子力学就源自
03:01
of how branching minds perceive a branching universe.
58
181469
3879
分支思想理解分支宇宙的故事。
03:05
So the little pink lines you might be able to see here
59
185390
2544
你看这里的粉色细线,
03:07
show the structure of what we call branchial space,
60
187976
2586
代表的就是我们称之为 “鳃空间”的结构,
03:10
the space of quantum branches.
61
190562
1960
即量子分支的空间。
03:12
And one of the stunningly beautiful things,
62
192564
2085
美妙的一点就是,
03:14
at least for physicists like me,
63
194691
1668
至少对于像我这样的物理学家来说,
03:16
is that the same phenomenon that in physical space gives us gravity,
64
196359
4630
物理空间赋予我们引力,
03:20
in branchial space gives us quantum mechanics.
65
200989
2669
而分支空间赋予我们量子力学。
03:24
So in the history of science so far,
66
204701
2252
在迄今为止的科学史上, 我认为我们可以确定四个宽泛的范例,
03:26
I think we can identify sort of four broad paradigms
67
206953
3629
03:30
for making models of the world that can be distinguished
68
210582
2627
制作世界模型, 以它们处理时间的方式区分。
03:33
kind of by how they deal with time.
69
213251
2336
03:35
So in antiquity and in plenty of areas of science, even today,
70
215587
3879
在古代和许多科学领域, 即使在今天,
03:39
it's all about kind of, what are things made of.
71
219507
2419
都在说事物是由什么构成的。
03:41
And time doesn't really enter.
72
221926
1627
但从来没有考虑过时间。
03:43
But in the 1600s came the idea of modeling things
73
223887
3128
但是在 1600 年代,人们产生了
03:47
with mathematical formulas in which time enters,
74
227015
3170
使用数学公式对事物进行建模的想法, 这些公式考虑到了时间,
03:50
but basically just as a coordinate value.
75
230226
2253
但基本上只是作为坐标值。
03:53
Then in the 1980s, and this is something in which I was deeply involved,
76
233062
4004
20 世纪 80 年代, 我深入参与了一个想法——
03:57
came the idea of making models
77
237108
2252
从简单的计算规则开始, 然后让它自己运行,
03:59
by starting with simple computational rules
78
239402
2461
04:01
and just letting them run.
79
241863
1835
由此建模。
04:03
So can one predict what will happen?
80
243698
2419
人们能预测会发生什么吗?
04:06
No.
81
246659
1210
不能。
04:07
There's what I call computational irreducibility,
82
247911
2294
这就是我所说的计算不可还原性,
04:10
in which, in effect, the passage of time corresponds to an irreducible computation
83
250246
4880
时间的流逝对应着 一种不可还原的计算,
04:15
that we have to run in order to work out how it will turn out.
84
255126
3462
我们必须运行这种计算 才能得出结果。
04:18
But now there's kind of something,
85
258588
1835
但现在出现了另一种情况,
04:20
something even more -- in our physics project,
86
260423
3170
甚至更…… 在我们的物理项目中,
04:23
there’s things that have become multi-computational,
87
263593
2461
出现了“多重计算”的东西,
04:26
with many threads of time
88
266054
1710
多条时间线只能由观察者编织在一起。
04:27
that can only be knitted together by an observer.
89
267764
3503
04:31
So it's kind of a new paradigm that actually seems to unlock things
90
271309
3545
这是一种新的范式, 不仅可以解密基础物理学里的东西,
04:34
not only in fundamental physics,
91
274854
1835
04:36
but also in the foundations of mathematics and computer science,
92
276731
3170
还能解密数学和计算机科学的基础,
04:39
and possibly in areas like biology and economics as well.
93
279901
3295
可能还有生物学和 经济学等领域里的东西。
04:44
So I talked about building up the universe
94
284364
2169
我谈到了通过反复应用 计算规则来建立宇宙。
04:46
by repeatedly applying a computational rule.
95
286574
2586
04:49
But how is that rule picked?
96
289202
2252
但是这条规则是如何选择的呢?
04:51
Well, actually it isn't,
97
291496
1793
其实并没有选择,
04:53
because all possible rules are used,
98
293289
2461
因为所有有可能的规则都被用过了,
04:55
and we're building up what I call the ruliad,
99
295792
2210
我们正在构建我所谓的 鲁利亚德(Ruliad),
04:58
the kind of deeply abstract but unique object
100
298002
2920
非常抽象但独特的物体,
05:00
that is the entangled limit of all possible computational processes.
101
300964
4045
所有可能的计算过程的纠缠极限。
05:05
Here's a tiny fragment of it shown in terms of Turing machines.
102
305635
4087
以下是用图灵机显示的一小部分。
05:09
So this ruliad is everything.
103
309764
3545
鲁利亚德就是一切。
05:13
And we as observers are necessarily part of it.
104
313309
3420
作为观察者, 我们必然是其中的一部分。
05:17
In the ruliad as a whole,
105
317063
1585
鲁利亚德作为一切的世界里,
05:18
in a sense, everything computationally possible can happen.
106
318690
3503
任何从计算上有可能的事 都可以发生。
05:22
But observers like us just sample specific slices of the ruliad.
107
322235
4671
但我们这样的观察者 只是鲁利亚德的特定样本。
05:26
And there are two crucial facts about us.
108
326906
2836
关于我们,有两个关键事实。
05:29
First, we're computationally bounded, our minds are limited,
109
329784
3879
首先,我们受计算限制,思维有限,
05:33
and second, we believe we're persistent in time,
110
333663
2753
其次,我们相信 我们在时间中是连贯的,
05:36
even though we're made of different atoms of space at every moment.
111
336457
3337
尽管我们每时每刻都由 不同的空间原子组成。
05:39
So then, here's the big result.
112
339836
2044
于是得出了这个最重要的结果。
05:41
What observers with those characteristics perceive in the ruliad
113
341880
3753
具备这些特征的观察者 在鲁利亚德中所感知的事物
05:45
necessarily follows certain laws.
114
345675
2377
必然遵循某些定律。
05:48
And those laws turn out to be precisely
115
348052
2419
而这些定律正是
05:50
the three key theories of 20th century physics:
116
350513
2795
20 世纪物理学的三个关键理论:
05:53
general relativity, quantum mechanics,
117
353308
2335
广义相对论、量子力学
05:55
and statistical mechanics in the second law.
118
355685
2586
和量子力学中的统计力学。
05:58
So it's because we're observers like us
119
358313
3169
正是因为我们是这样的观察者,
06:01
that we perceive the laws of physics we do.
120
361524
2836
我们才能如此理解物理定律。
06:04
We can think of sort of different minds
121
364360
2336
我们可以将不同的思想
06:06
as being at different places in rulial space.
122
366738
2794
视为鲁利亚德空间中的各个位置。
06:09
Human minds who think alike are nearby,
123
369574
2252
思维相近的人类思维就在附近,
06:11
animals further away,
124
371868
1460
动物在远处,
06:13
and further out, we get to kind of alien minds
125
373369
2253
更远的就是外星人思维, 无法转译。
06:15
where it's hard to make a translation.
126
375663
1961
06:18
So how can we get intuition for all of this?
127
378041
2794
我们该如何理解这一切呢?
06:20
Well, one thing we can do is use generative AI
128
380835
2544
我们可以做的一件事 就是使用生成式 AI
06:23
to take what amounts to an incredibly tiny slice of the ruliad
129
383379
3254
将极小的一个鲁利亚德切片
06:26
aligned with images we humans have produced.
130
386674
3337
与我们人类生成的图像对齐。
06:30
We can think of this as sort of a place in the ruliad
131
390011
2794
我们可以把它看作是 鲁利亚德里的一个空间
06:32
described by using the concept of a cat in a party hat.
132
392847
4004
由“戴着派对帽的猫咪” 这个说法描述。
06:37
So zooming out, we saw there
133
397435
3086
向外延伸, 我们可以看到
06:40
what we might call Cat Island.
134
400521
2002
我们称之为“猫岛”的地方。
06:42
Pretty soon we’re in a kind of an inter-concept space.
135
402523
3045
很快我们就进入了 一个跨概念的空间。
06:45
Occasionally things will look familiar,
136
405568
1877
有些东西可能看起来很眼熟,
06:47
but mostly, what we'll see is things we humans don't have words for.
137
407487
4421
但多数的情况是 我们会看到无法用语言描述的东西。
06:52
In physical space, we explore the universe
138
412283
2461
在物理空间中,我们 通过发射宇宙飞船探索宇宙。
06:54
by sending out spacecraft.
139
414744
1960
06:56
In rulial space, we explore more
140
416704
2336
在鲁利亚德空间中,
06:59
by expanding our concepts and our paradigms.
141
419082
2836
我们通过扩展概念 和范式来进一步探索。
07:02
We can kind of get a sense of what's out there
142
422335
2169
我们可以通过 对可能的规则进行抽样,
07:04
by sampling possible rules,
143
424504
1751
07:06
doing what I call ruliology.
144
426255
2128
我称之为“鲁利亚德学”来理解。
07:08
So even with incredibly simple rules,
145
428424
2211
即使是非常简单的规则,
07:10
there's incredible richness.
146
430677
1793
也有令人难以置信的丰富性。
07:12
But the issue is that most of it doesn't yet connect
147
432470
2794
但问题在于,其中大部分尚未
07:15
with things we humans understand or care about.
148
435306
3170
与我们人类理解 或关心的事物发生关联。
07:18
It's like when we look at the natural world
149
438476
2085
就像当我们看着自然世界时,
07:20
and only gradually realize that we can use features of it for technology.
150
440561
3712
才逐渐意识到我们可以 将自然世界的特征用于技术。
07:24
So even after everything our civilization has achieved,
151
444649
3003
即使我们的文明取得了所有成就,
07:27
we're just at the very, very beginning of exploring rulial space.
152
447694
3878
我们也只是在 鲁利亚德空间的冰山一角。
07:31
What about AIs?
153
451614
1502
AI 呢?
07:33
Well, just like we can do ruliology,
154
453157
2211
就像我们可以进行“鲁利亚德”学,
07:35
AIs can in principle go out and explore rulial space.
155
455410
3420
AI 理论上也可以去 探索鲁利亚德空间。
07:38
Left to their own devices, though,
156
458871
1836
虽然只凭它们自己的设备,
07:40
they'll mostly just be doing things
157
460707
1710
它们大多只会做
07:42
we humans don't connect with or care about.
158
462417
2794
我们人类不在意或关心的事情。
07:45
So the big achievements of AI in recent times
159
465545
2377
近来 AI 的重大成就
07:47
have been about making systems that are closely aligned with us humans.
160
467964
3420
在于创造出了 与我们人类水平相当的系统。
07:51
We train LLMs on billions of web pages so they can produce texts
161
471426
3420
我们用上亿网页训练了 大语言模型,让它们生成
07:54
that's typical of what we humans write.
162
474887
2211
我们人类通常会写的文本。
07:57
And yes, the fact that this works
163
477140
1835
没错,它确实有效的事实
07:59
is undoubtedly telling us some deep scientific things
164
479017
2919
无疑告诉了我们一些 关于语言语义语法的深刻科学知识,
08:01
about the semantic grammar of language
165
481978
2252
08:04
and generalizations of things like logic
166
484230
2127
还有一些逻辑之类事物的泛化,
08:06
that perhaps we should have known centuries ago.
167
486357
2294
这也许是几百年前我们就该知晓的东西。
08:08
You know, for much of human history,
168
488693
1877
在人类的大部分历史中,
08:10
we were kind of like the LLMs,
169
490611
2211
我们就和大语言模型差不多,
08:12
figuring things out by kind of matching patterns in our minds.
170
492822
3587
通过匹配脑海中的模式想明白事情。
08:16
But then came more systematic formalization and eventually computation.
171
496409
4129
但随后出现了更系统性的形式化, 最终出现了计算。
08:20
And with that, we got a whole other level of power to truly create new things
172
500580
4296
有了计算,我们就拥有了 更高维度的力量去创造新的事物,
08:24
and to, in effect, go wherever we want in the ruliad.
173
504917
3379
去向鲁利亚德里 我们想去的任何地方。
08:28
But the challenge is to do that in a way that connects with what we humans,
174
508337
3838
但面临的挑战是 如何以一种我们人类
08:32
and our AIs, understand.
175
512216
2711
和我们的 AI 可以理解的方式达成。
08:34
In fact, I've devoted a large part of my life
176
514969
2211
我其实把人生中的一大段时间
08:37
to kind of trying to build that bridge.
177
517221
2294
花在了打造那个联结上。
08:39
It's all been about creating a language for expressing ourselves computationally,
178
519515
4213
这一切都是为了创造一种 用计算方式表达我们自己的语言,
08:43
a language for computational thinking.
179
523770
2002
一种用于计算思维的语言。
08:46
The goal is to formalize what we know about the world in computational terms,
180
526355
4755
目标是用计算术语 形式化我们对世界的了解,
08:51
to have computational ways to represent cities and chemicals and movies
181
531110
3629
以计算的方式表示 城市、化学物质、电影、
08:54
and humor and formulas and our knowledge about them.
182
534739
3253
幽默和公式 以及我们对它们的认知。
08:58
It’s been a vast undertaking that spanned more than four decades of my life,
183
538951
4255
这是一项艰巨的任务, 跨越了我生命中的四十多年,
09:03
but it's something very unique and different.
184
543206
2502
但它非常独特、与众不同。
09:05
But I'm happy to report that in what has been Mathematica
185
545708
3170
但我很高兴与大家分享 , 在曾经的 Mathematica,
09:08
and is now the Wolfram Language,
186
548878
1585
如今的 Wolfram 语言中,
09:10
I think we firmly succeeded in creating
187
550463
3003
我认为我们成功地创建了
09:13
a truly full-scale computational language.
188
553466
2753
一种真正的全方位计算语言。
09:16
In effect,
189
556677
1168
其实这里的每一个函数 都可以看作是用计算术语
09:17
every one of these functions here can be thought of as formalizing
190
557845
3295
09:21
and encapsulating, in computational terms,
191
561182
2586
形式化并概括我们文明的 智慧成就的某些方面。
09:23
some facet of the intellectual achievements of our civilization.
192
563768
3378
09:27
It's sort of the most concentrated form of intellectual expression that I know,
193
567480
3754
这是我所知道的 智力表达形式的最浓缩形态,
09:31
sort of finding the essence of everything and coherently expressing it
194
571275
3587
某种程度上就是找到了万物的本质 并在我们的计算语言的设计中
09:34
in the design of our computational language.
195
574904
2127
连贯地表达出来。
09:37
For me personally,
196
577365
1168
就我个人而言,
09:38
it's been an amazing journey, kind of, year after year,
197
578533
2586
这是一段奇妙的旅程,年复一年地
09:41
building the sort of tower of ideas and technology that's needed.
198
581160
3087
建造所需的思想和技术之塔。
09:44
And nowadays sharing that process with the world
199
584247
2419
如今 ,通过直播等方式 与世界分享这一过程。
09:46
in things like open live streams and so on.
200
586707
2211
09:49
A few centuries ago,
201
589460
1460
几个世纪前,
09:50
the development of mathematical notation,
202
590962
2210
数学符号的发展,
09:53
and what amounts to the language of mathematics,
203
593214
2669
相当于数学语言的发展,
09:55
gave a systematic way to express math and made possible algebra and calculus,
204
595925
5214
为数学的表达提供了一种系统的方法, 使代数和微积分成为可能,
10:01
and eventually all of modern mathematical science.
205
601180
3504
最终使所有现代数学科学成为可能。
10:04
And computational language now provides a similar path,
206
604684
3253
计算语言现在提供了类似的路径,
10:07
letting us ultimately create a computational X
207
607979
3170
让我们为所有可以想到的 X 领域 创造出可进行计算的 X。
10:11
for all imaginable fields X.
208
611149
2502
10:14
I mean, we've seen the growth of computer science, CS,
209
614026
3337
我们已经看到了 计算机科学(CS)的发展,
10:17
but computational language opens up something ultimately much bigger
210
617405
3378
但计算语言最终会开辟出更大、
10:20
and broader, CX.
211
620825
2419
更广阔的东西,那就是 CX。
10:23
I mean, for 70 years we've had programming languages
212
623244
2461
70 年来,我们的编程语言
10:25
which are about telling computers in their terms what to do.
213
625746
3796
就是用计算机的术语 告诉计算机该怎么做。
10:29
But computational language
214
629584
1251
但是计算语言涉及的东西
10:30
is about something intellectually much bigger.
215
630877
2168
在智力上要广阔得多。
10:33
It's about taking everything we can think about
216
633045
2419
它是将所有我们能想到的东西,
10:35
and operationalizing it in computational terms.
217
635506
3087
用计算语言运行起来。
10:38
You know, I built the Wolfram Language
218
638968
1877
我创建 Wolfram 语言
10:40
first and foremost because I wanted to use it myself.
219
640887
2502
最首要的原因是我自己想使用它。
10:43
And now when I use it,
220
643431
1334
现在,当我使用它时,
10:44
I feel like it's kind of giving me some kind of superpower.
221
644807
2795
我感觉它给了我某种超能力。
10:47
I just have to imagine something in computational terms.
222
647602
3587
我只需要用计算术语想象一些东西。
10:51
And then the language sort of almost magically lets me bring it into reality,
223
651189
3795
然后,这种语言 就能神奇地让我实现它、
10:55
see its consequences, and build on them.
224
655026
2294
看到它的结果 并在此基础上添砖加瓦。
10:57
And yes, that's the sort of superpower
225
657361
1836
是的,正是这种超能力
10:59
that's let me do things like our physics project.
226
659197
2335
让我能够做到一些事情, 比如我们的物理项目。
11:01
And over the past 35 years,
227
661532
1669
在过去的 35 年中,
11:03
it's been my great privilege to share this superpower with many other people,
228
663242
4380
我很荣幸能与许多人分享这项超能力,
11:07
and by doing so,
229
667622
1209
借此在多个领域取得了大量的进步。
11:08
to have enabled an incredible number of advances across many fields.
230
668831
4004
11:13
It's sort of a wonderful thing to see people, researchers, CEOs, kids,
231
673252
4213
看到人们、研究人员、 CEO、孩子们,
11:17
using our language to fluently think in computational terms,
232
677465
3462
用我们的语言 流畅地用计算术语思考,
11:20
kind of crispening up their own thinking,
233
680968
2419
提高自己的思维能力,
11:23
and then in effect, automatically calling in computational superpowers.
234
683387
3712
然后自动用上了计算超能力, 真是一件很棒的事情。
11:27
And now it's not just people who can do that.
235
687600
2294
能够做到这一点的不仅仅是人。
11:29
AIs can use our computational language as a tool, too.
236
689936
3336
AI 也可以使用我们的 计算语言作为工具。
11:33
Yes, to get their facts straight,
237
693272
2252
是的,是为了校正它们的事实,
11:35
but even more importantly, to compute new facts.
238
695566
3003
但更重要的是,要计算出新的事实。
11:38
There are already some integrations of our technology into LLMs.
239
698861
3170
我们的技术已经 集成到了大语言模型中。
11:42
There's a lot more you'll be seeing soon.
240
702073
2043
你很快就会看到更多。
11:44
And, you know, when it comes to building new things
241
704116
2419
在非常强大的新兴工作 流中构建新事物时,
11:46
in a very powerful emerging workflow,
242
706577
2127
11:48
it's basically to start by telling the LLM roughly what you want,
243
708704
4380
第一步基本上就是大致 告诉大语言模型你想要什么,
11:53
then to have it try to express that in precise Wolfram Language,
244
713084
3336
然后让它尝试用精准的 Wolfram 语言来表达,
11:56
then, and this is a critical feature of our computational language,
245
716420
3170
这就是我们计算语言的关键特色,
11:59
compared to, for example, programming language,
246
719590
2211
举个例子,与编程语言相比,
12:01
you as a human can read the code,
247
721842
2169
你作为人类可以阅读代码,
12:04
and if it does what you want,
248
724011
1418
如果它能达成你想要的目的,
12:05
you can use it as kind of a dependable component to build on.
249
725471
3045
你可以将它用作一个 可以继续构建的依赖组件。
12:08
OK, but let's say we use more and more AI,
250
728891
2419
假设我们用了越来越多的 AI,
12:11
more and more computation.
251
731352
1668
越来越多的计算。
12:13
What's the world going to be like?
252
733020
1794
世界会是什么样子?
12:14
From the industrial revolution on,
253
734814
2085
从工业革命开始,
12:16
we’ve been used to doing engineering where we can in effect,
254
736899
2878
我们就习惯于 在可能的地方进行工程设计,
12:19
see how the gears mesh to understand how things work.
255
739777
3754
看看齿轮如何相互作用, 从而了解事物是如何运作的。
12:23
But computational irreducibility
256
743572
1836
但是计算的不可还原性
12:25
now shows us that that won't always be possible.
257
745449
2628
向我们表明,这并不总是可能的。
12:28
We won't always be able to make a kind of simple human or, say,
258
748119
3211
我们不可能总是能够让一个普通人
12:31
mathematical narrative
259
751372
1668
或数学叙事
12:33
to explain or predict what a system will do.
260
753082
2502
解释或预测系统会做什么。
12:35
And yes, this is science, in effect, eating itself from the inside.
261
755960
4129
是的,这就是科学从内部吞噬自己。
12:40
From all the successes of mathematical science,
262
760548
2294
从数学科学取得的所有成功中,
12:42
we've come to believe that somehow, if we only could find them,
263
762883
3671
我们开始相信,只要找得到,
12:46
there'd be formulas to kind of predict everything.
264
766595
3170
就一定可以用公式预测一切。
12:50
But now computational irreducibility shows us that that isn't true.
265
770141
3795
但计算的不可还原性 向我们表明,事实并非如此。
12:54
And that in effect, to find out what a system will do,
266
774312
2669
要搞清楚系统会做什么,
12:56
we have to go through the same irreducible computational steps
267
776981
3628
我们必须经历与系统相同的 不可还原的计算步骤。
13:00
as the system itself.
268
780651
1585
13:02
Yes, it's a weakness of science,
269
782820
1627
是的,这是科学的弱点,
13:04
but it's also why the passage of time is significant and meaningful
270
784447
4004
但这也是为什么时间的流逝 是重要又有意义的,
13:08
and why we can't just sort of jump ahead to get the answer.
271
788492
3838
也是为什么我们不能直接 穿越时空获取答案的原因。
13:12
We have to live the steps.
272
792330
1876
我们必须经历这些步骤。
13:14
It's actually going to be, I think, a great societal dilemma of the future.
273
794749
3878
我认为,这将是未来 一个巨大的社会困境。
13:18
If we let our AIs achieve their kind of full computational potential,
274
798627
3838
如果我们想让我们的 AI 充分发挥其计算潜力,
13:22
they'll have lots of computational irreducibility
275
802465
2335
它们就会有很高的不可还原性,
13:24
and we won't be able to predict what they'll do.
276
804800
2294
我们也无法预测它们会做什么。
13:27
But if we put constraints on them to make them more predictable,
277
807136
3295
但是,如果我们对它们加以限制。 使其更具可预测性,
13:30
we'll limit what they can do for us.
278
810473
2002
我们也将限制 它们能为我们做的事情。
13:32
So what will it feel like if our world is full of computational irreducibility?
279
812808
5005
如果我们的世界充满计算的不可还原性,
那会是什么感觉呢?
13:38
Well, it's really nothing new
280
818189
2169
这并不是什么新鲜事,
13:40
because that's the story with much of nature.
281
820399
2419
因为那是一个 类似于大自然的故事。
13:42
And what's happened there
282
822818
1210
在那里发生的就是
13:44
is that we've found ways to operate within nature,
283
824070
2585
我们找到了在大自然中运作的方式,
13:46
even though nature can sometimes still surprise us.
284
826697
2753
尽管大自然有时 仍然会让我们猝不及防。
13:49
And so it will be with the AIs.
285
829784
2002
AI 也是如此。
13:51
We might give them a constitution, but there will always be consequences
286
831827
3462
我们可以给他们一部宪法,但总会有
13:55
we can't predict.
287
835331
1209
我们无法预测的后果。
13:56
Of course, even figuring out societally what we want from the AIs is hard.
288
836540
4839
当然,即使从社会层面弄清楚我们 想要从 AI 那里得到什么也很难。
14:01
Maybe we need you know, a promptocracy
289
841379
2043
也许你得知道,这是一种“提示制度”,
14:03
where people write prompts instead of just voting.
290
843422
2795
人们得写提示词,而不仅仅是投票。
14:06
But basically, every control the outcome scheme
291
846801
3336
但每一次操纵最终得出的计划
14:10
seems full of both political philosophy
292
850179
2127
似乎都充满了政治哲学
14:12
and computational irreducibility gotchas.
293
852348
2669
和计算不可还原性的陷阱。
14:15
You know, if we look at the whole arc of human history,
294
855559
2920
如果我们纵观人类历史的整个轨迹,
14:18
the one thing that's systematically changed
295
858479
2210
发生系统性改变的一件事是
14:20
is that more and more gets automated.
296
860689
2086
越来越多的东西被自动化。
14:22
And LLMs just gave us a dramatic and unexpected example of that.
297
862775
3503
大语言模型给了我们一个 激进又出乎意料的例子。
14:26
So what does that mean?
298
866821
1167
那是什么意思呢?
14:27
Does that mean that in the end, us humans will have nothing to do?
299
867988
3170
是否意味着我们人类终将无事可做?
14:31
Well, if we look at history,
300
871700
1752
如果我们回顾历史,
14:33
what seems to happen is that when one thing gets automated away,
301
873494
3337
当一件事被自动化处理时,
14:36
it opens up lots of new things to do.
302
876872
2503
它会开辟出很多新的事情。
14:39
And as economies develop,
303
879417
1626
随着经济的发展,
14:41
the pie chart of occupations seems to get more and more fragmented.
304
881085
4379
职业饼状图似乎变得越来越分散。
14:45
And now we're back to the ruliad.
305
885881
1710
我们再说回鲁利亚德。
14:47
Because at a foundational level,
306
887591
1544
因为在基础层面上,
14:49
what's happening is that automation is opening up more directions
307
889176
3170
自动化开辟了更多 鲁利亚德中的发展方向。
14:52
to go in the ruliad.
308
892388
1460
14:53
But there's no abstract way to choose between these.
309
893848
3003
但是选择哪条路 并没有简单的方法。
14:56
It's a question of what we humans want,
310
896892
2127
这是我们人类想要什么的问题,
14:59
and it requires kind of humans doing work to define that.
311
899061
3754
需要人类努力定义它。
15:02
So a society of AI as sort of untethered by human input,
312
902815
4796
不受人类输入束缚的 AI 社会
15:07
would effectively go off and explore the whole ruliad.
313
907653
2753
可以开始探索整个鲁利亚德。
15:10
But most of what they do would seem to us random and pointless,
314
910406
4129
但是在我们眼里,它们的大部分 所作所为是随机又无意义的,
15:14
much like most of nature doesn't seem to us right now,
315
914577
3712
就像我们现在觉得大自然并非如此,
15:18
like it's achieving a purpose.
316
918289
1751
它像是在追寻着某个目标。
15:20
I mean, one used to imagine that to build things that are useful to us,
317
920541
4421
曾经有人认为, 要打造对我们有用的东西,
15:25
we'd have to do it kind of step by step.
318
925004
2294
必须循序渐进。
15:27
But AI and the whole phenomenon of computation
319
927673
2711
但是 AI 和整个计算的现状
15:30
tell us that really what we need
320
930426
1960
告诉我们,我们真正需要的
15:32
is more just to define what we want.
321
932428
2377
只是定义我们想要的东西。
15:35
Then computation, AI, automation can make it happen.
322
935306
4421
然后,计算、AI、 自动化可以实现这一目标。
15:39
And yes, I think the key to defining in a clear way what we want
323
939768
3754
是的,我认为清晰地 定义我们想要什么的关键
15:43
is computational language.
324
943564
1793
是计算语言。
15:45
And, you know, even after 35 years,
325
945357
2169
即使在 35 年之后,
15:47
for many people,
326
947526
1210
对于许多人来说,
15:48
Wolfram Language is still sort of an artifact from the future.
327
948736
2961
Wolfram 语言仍然 是未来的产物。
15:51
If your job is to program, it seems like a cheat.
328
951697
2836
如果你的工作是编程, 它就像是一种外挂。
15:54
How come you can do in an hour what would usually take you a week?
329
954575
3545
为什么你能在一小时内 完成通常需要一周的时间?
15:58
But it can also be kind of daunting because having dashed off that one thing,
330
958120
4129
但这也可能有点令人望而生畏, 因为在突破了这一件事之后,
16:02
you now have to conceptualize the next thing.
331
962249
2544
你就得着手实现下一件事了。
16:04
Of course, it's great for CEOs and CTOs
332
964835
2461
当然,这对于已经准备好 在下一件事上比拼的 CEO、
16:07
and intellectual leaders who are ready to race on to the next thing.
333
967338
3795
CTO 以及有识领袖来说是个好消息。
16:11
And indeed, it's an impressively popular thing in that set.
334
971175
4629
在这种环境中确实屡见不鲜。
16:16
In a sense, what's happening is that Wolfram Language shifts
335
976096
2837
Wolfram 语言将对机械学的关注 转变成了对概念化的关注,
16:18
from concentrating on mechanics to concentrating on conceptualization,
336
978974
3796
16:22
and the key to that conceptualization is broad computational thinking.
337
982770
4463
而这种概念化的关键 就是广泛的计算思维。
16:27
So how can one learn to do that?
338
987233
1918
如何才能学会这样做呢?
16:29
It's not really a story of CS,
339
989193
1960
这不是个 CS 故事, 而是 CX 的故事。
16:31
it's really a story of CX.
340
991195
2210
16:33
And as a kind of education,
341
993405
1752
作为一种教育,
16:35
it's more like liberal arts than STEM.
342
995199
2586
它更像文科而不是 STEM。
16:37
It's part of a trend that when you automate technical execution,
343
997826
3587
趋势就是当你自动化技术操作时,
16:41
what becomes important is not figuring out how to do things,
344
1001413
4255
重要的不是弄清楚如何做事,
16:45
but what to do.
345
1005668
1418
而是要做什么。
16:47
And that's more a story of broad knowledge and general thinking
346
1007127
3045
这是广泛知识和通用思维的故事,
16:50
than any kind of narrow specialization.
347
1010172
2503
而不是细分的专业领域。
16:53
You know, there's sort of an unexpected human centeredness to all of this.
348
1013509
3503
一切都意外是以人类为中心的。
16:57
We might have thought that with the advance of science and technology,
349
1017054
3378
我们可能以为, 随着科学技术的进步,
17:00
the particulars of us humans would become ever less relevant.
350
1020432
3712
我们作为人类的特质 将变得越来越不重要。
17:04
But we've discovered that that's not true, and that, in fact, everything,
351
1024144
3462
但是我们发现事实 并非如此,其实一切,
17:07
even our physics,
352
1027648
1209
甚至是我们的物理学,
17:08
depends on how we humans happen to have sampled the ruliad.
353
1028899
3837
都取决于我们人类 是如何裁剪鲁利亚德的片段的。
17:13
Before our physics project,
354
1033696
2043
在我们的物理项目之前,
17:15
we didn't know if our universe really was computational,
355
1035781
3378
我们都不知道我们的宇宙 是不是真的是计算性的,
17:19
but now it's pretty clear that it is.
356
1039201
2002
但现在很明显确实如此。
17:21
And from that, we're sort of inexorably led to the ruliad,
357
1041245
2753
由此,我们被直接引向了鲁利亚德,
17:23
with all its kind of vastness
358
1043998
1960
它的广阔程度
17:26
so hugely greater than the physical space in our universe.
359
1046000
3378
比我们宇宙中的物理空间要大得多。
17:29
So where will we go in the ruliad?
360
1049962
2336
我们要去向鲁利亚德里的哪里呢?
17:32
Computational language is what lets us chart our path.
361
1052339
3212
计算语言使我们能够规划自己的道路。
17:35
It lets us humans define our goals and our journeys.
362
1055551
3336
它使我们人类能够定义 我们的目标和旅程。
17:38
And what's amazing is that all the power and depth
363
1058887
2628
妙就妙在每个人都可以使用 鲁利亚德中的所有力量和深度。
17:41
of what's out there in the ruliad is accessible to everyone.
364
1061557
3086
17:45
One just has to learn to harness those computational superpowers,
365
1065019
4129
人们只需要学会利用 这些计算超能力,
17:49
which kind of starts here,
366
1069189
1544
由此开始,这里就是 我们通往鲁里亚德的大门。
17:50
you know, our portal to the ruliad.
367
1070774
3254
17:54
Thank you.
368
1074528
1335
谢谢。
17:55
(Applause)
369
1075904
3587
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7