How AI Will Step Off the Screen and into the Real World | Daniela Rus | TED

284,301 views ・ 2024-04-19

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung
00:04
When I was a student studying robotics,
0
4334
2377
当我还是个研究机器人的学生时,
00:06
a group of us decided to make a present for our professor's birthday.
1
6711
4046
我们一群人决定为我们的教授 做一份生日礼物。
00:11
We wanted to program our robot to cut a slice of cake for him.
2
11508
4212
我们想给机器人写个程序, 让它为他切一片蛋糕。
00:16
We pulled an all-nighter writing the software,
3
16638
3170
我们通宵写了这个软件,
00:19
and the next day, disaster.
4
19849
2253
第二天就翻车了。
00:22
We programmed this robot to cut a soft, round sponge cake,
5
22769
4546
我们为这个机器人写了程序, 让它切一个柔软的圆形海绵蛋糕,
00:27
but we didn't coordinate well.
6
27357
1710
但我们没协调好。
00:29
And instead, we received a square hard ice cream cake.
7
29109
4588
我们拿到了一个 方形的坚硬冰淇淋蛋糕。
00:34
The robot flailed wildly and nearly destroyed the cake.
8
34239
3879
机器人张牙舞爪, 差点毁了这个蛋糕。
00:38
(Laughter)
9
38159
1377
(笑声)
00:39
Our professor was delighted, anyway.
10
39578
2335
不管怎样,我们的教授很高兴。
00:41
He calmly pushed the stop button
11
41955
3045
他冷静地按下了停止按钮,
00:45
and declared the erratic behavior of the robot
12
45041
3128
宣布机器人的异常行为
00:48
a control singularity.
13
48169
1836
是一个“控制异变”。
00:50
A robotics technical term.
14
50046
1710
机器人技术术语。
00:52
I was disappointed, but I learned a very important lesson.
15
52882
3879
我很失望, 但我吸取了非常重要的教训。
00:56
The physical world,
16
56761
1794
物理世界
00:58
with its physics laws and imprecisions,
17
58555
2502
有其物理定律和不准确度,
01:01
is a far more demanding space than the digital world.
18
61057
3462
是一个比数字世界要求更严格的空间。
01:05
Today, I lead MIT's Computer Science and AI lab,
19
65478
3838
如今,我领导着麻省理工学院的 计算机科学和人工智能实验室,
01:09
the largest research unit at MIT.
20
69357
2419
这是 MIT 最大的研究单位。
01:11
This is our buildingm where I work with brilliant and brave researchers
21
71776
5214
这是我们的大楼,我在这里 与优秀勇敢的研究人员合作,
01:16
to invent the future of computing and intelligent machines.
22
76990
3545
共同发明计算机 和智能机器的未来。
01:21
Today in computing,
23
81286
1168
如今,在计算领域,
01:22
artificial intelligence and robotics are largely separate fields.
24
82454
4087
人工智能和机器人技术 是泾渭分明的两个领域。
01:27
AI has amazed you with its decision-making and learning,
25
87375
4129
AI 用决策和学习惊艳了你,
01:31
but it remains confined inside computers.
26
91546
2878
但它仍然被困在计算机里。
01:34
Robots have a physical presence and can execute pre-programmed tasks,
27
94883
4796
机器人有物理的实体, 可以执行预先编程的任务,
01:39
but they're not intelligent.
28
99679
1794
但它们并不智能。
01:42
Well, this separation is starting to change.
29
102140
2669
这种隔阂要开始改变了。
01:45
AI is about to break free from the 2D computer screen interactions
30
105268
4713
AI 即将摆脱二维计算机屏幕的交互,
01:50
and enter a vibrant, physical 3D world.
31
110023
3462
进入一个充满活力的物理三维世界。
01:54
In my lab, we're fusing the digital intelligence of AI
32
114361
3837
在我的实验室里, 我们正在将 AI 的数字智能
01:58
with the mechanical prowess of robots.
33
118198
2377
与机器人的机械能力融为一体。
02:01
Moving AI from the digital world into the physical world
34
121034
2836
将 AI 从数字世界转移到物理世界
02:03
is making machines intelligent
35
123912
2127
正在让机器变得智能,
02:06
and leading to the next great breakthrough,
36
126081
2419
带来下一个重大突破,
02:08
what I call physical intelligence.
37
128541
2253
我称之为“物理智能”。
02:11
Physical intelligence is when AI's power to understand text,
38
131586
4505
“物理智能”是指利用 AI 理解文本、
02:16
images and other online information
39
136132
2419
图像和其他在线信息的能力,
02:18
is used to make real-world machines smarter.
40
138593
3128
使现实世界中的机器变得更智能。
02:21
This means AI can help pre-programmed robots do their tasks better
41
141721
5381
这意味着 AI 可以从数据中获取知识,
帮助预编程的机器人更好地完成任务。
02:27
by using knowledge from data.
42
147143
1877
02:31
With physical intelligence,
43
151022
1460
借助物理智能,
02:32
AI doesn't just reside in our computers,
44
152482
4713
AI 不仅存在于我们的计算机中,
02:37
but walks, rolls, flies
45
157237
2502
还能行走、滚动、飞翔、 以惊人的方式与我们互动。
02:39
and interacts with us in surprising ways.
46
159781
2961
02:42
Imagine being surrounded by helpful robots at the supermarket.
47
162784
4630
想象一下,在超市里 周围都是能干的机器人。
02:47
The one on the left can help you carry a heavy box.
48
167414
3044
左边的那个可以帮你 搬一个沉重的箱子。
02:51
To make it happen, we need to do a few things.
49
171251
3378
为了实现这一目标, 我们得做几件事。
02:54
We need to rethink how machines think.
50
174671
2377
我们得重新思考 机器人是如何思考的。
02:57
We need to reorganize how they are designed and how they learn.
51
177382
4796
我们需要重构 它们的设计方式和学习方式。
03:03
So for physical intelligence,
52
183596
1585
对于物理智能来说,
03:05
AI has to run on computers that fit on the body of the robot.
53
185223
4129
AI 必须运行于可以适配 机器人机身的计算机上。
03:09
For example, our soft robot fish.
54
189853
2502
例如,我们的软体机器鱼。
03:13
Today's AI uses server farms that do not fit.
55
193189
3128
现在 AI 使用的服务器群 就放不进去。
03:17
Today's AI also makes mistakes.
56
197318
3212
如今的 AI 也会犯错误。
03:20
This AI system on a robot car does not detect pedestrians.
57
200572
4171
机器人汽车上的这个 AI 系统 无法检测到行人。
03:25
For physical intelligence,
58
205660
1418
对于物理智能,
03:27
we need small brains that do not make mistakes.
59
207120
2961
我们需要不会犯错误的小大脑。
03:31
We're tackling these challenges using inspiration
60
211958
2836
我们受到了一种名为 “秀丽隐杆线虫”的启发,
03:34
from a worm called C. elegans
61
214794
2169
应对这样的挑战。
03:37
In sharp contrast to the billions of neurons in the human brain,
62
217839
4630
与人脑中数十亿个神经元 形成鲜明对比的是,
03:42
C. elegans has a happy life on only 302 neurons,
63
222469
4546
秀丽隐杆线虫仅靠 302 个神经元过着快乐的生活,
03:47
and biologists understand the math of what each of these neurons do.
64
227015
4171
生物学家了解 每个神经元功能的奥秘。
03:53
So here's the idea.
65
233354
1168
于是有了这样的想法。
03:54
Can we build AI using inspiration from the math of these neurons?
66
234564
5547
我们可以通过这些神经元的奥秘 启发我们创造 AI 吗?
04:01
We have developed, together with my collaborators and students,
67
241529
4255
我与我的合作者和学生们 一起开发了
04:05
a new approach to AI we call “liquid networks.”
68
245784
3670
一种新的 AI 方法, 我们称之为“液态网络”。
04:10
And liquid networks results in much more compact
69
250121
3754
液态网络可以拿出 比当今传统的 AI 解决方案
04:13
and explainable solutions than today's traditional AI solutions.
70
253917
3962
更紧凑、更可解释的方案。
04:17
Let me show you.
71
257921
1251
我来给你看看。
04:19
This is our self-driving car.
72
259464
1918
这是我们的自动驾驶汽车。
04:21
It's trained using a traditional AI solution,
73
261800
2669
它是通过传统的 AI 解决方案训练的,
04:24
the kind you find in many applications today.
74
264511
2836
如同现在很多应用采取的方式。
04:28
This is the dashboard of the car.
75
268097
2086
这是汽车的仪表板。
04:30
In the lower right corner, you'll see the map.
76
270225
2294
右下角可以看到地图。
04:32
In the upper left corner, the camera input stream.
77
272560
3254
左上角是摄像机输入信号。
04:35
And the big box in the middle with the blinking lights
78
275814
2836
中间那个闪烁着亮光的大盒子
04:38
is the decision-making engine.
79
278691
2169
是决策引擎。
04:40
It consists of tens of thousands of artificial neurons,
80
280902
4004
它由成千上万个人造神经元组成,
04:44
and it decides how the car should steer.
81
284948
2502
决定了汽车应该如何转向。
04:48
It is impossible to correlate the activity of these neurons
82
288076
3336
不可能将这些神经元的活动
04:51
with the behavior of the car.
83
291454
2211
与汽车的行为相关联。
04:53
Moreover, if you look at the lower left side,
84
293706
3379
此外,请看左下角,
04:57
you see where in the image this decision-making engine looks
85
297085
4045
你会看到这个决策引擎 会根据图像上的什么位置,
05:01
to tell the car what to do.
86
301172
2086
告诉汽车该怎么做。
05:03
And you see how noisy it is.
87
303299
1418
可以看到噪声有多大。
05:04
And this car drives by looking at the bushes and the trees
88
304759
4254
这辆车是通过观察 路边的灌木和树木来行驶的。
05:09
on the side of the road.
89
309013
1460
05:10
That's not how we drive.
90
310473
1418
我们不是这样开车的。
05:11
People look at the road.
91
311933
1335
人们会看着路。
05:13
Now contrast this with our liquid network solution,
92
313643
3253
我们来将其与我们的 液态网络解决方案对比,
05:16
which consists of only 19 neurons rather than tens of thousands.
93
316938
4922
我们的方案只有 19 个神经元, 而不是成千上万个。
05:21
And look at its attention map.
94
321860
1543
来看一下它的注意力图。
05:23
It's so clean and focused on the road horizon
95
323403
2752
非常干净, 关注水平路面和路边。
05:26
and the side of the road.
96
326197
1669
05:28
Because these models are so much smaller,
97
328491
2294
由于这些模型要小得多,
05:30
we actually understand how they make decisions.
98
330827
2669
我们其实是了解它们的决策方式的。
05:34
So how did we get this performance?
99
334831
2586
我们是如何得到这样的表现的呢?
05:38
Well, in a traditional AI system,
100
338418
2752
在传统的 AI 系统中,
05:41
the computational neuron is the artificial neuron,
101
341170
3003
计算神经元是人工神经元,
05:44
and the artificial neuron is essentially an on/off computational unit.
102
344215
4213
而人工神经元本质上 是一个开/关的计算单元。
05:48
It takes in some numbers, adds them up,
103
348469
2211
输入一些数字,加起来,
05:50
applies some basic math
104
350680
1293
应用一些基本的数学运算,
05:52
and passes along the result.
105
352015
2002
传递结果。
05:54
And this is complex
106
354058
1335
这很复杂,
05:55
because it happens across thousands of computational units.
107
355435
3712
因为它发生在 数千个计算单元上。
05:59
In liquid networks,
108
359439
1585
在液态网络中,
06:01
we have fewer neurons,
109
361065
1377
我们的神经元较少,
06:02
but each one does more complex math.
110
362483
2711
但每个神经元都进行更复杂的数学运算。
06:05
Here's what happens inside our liquid neuron.
111
365194
2628
以下是我们的液体神经元 内部发生的事情。
06:08
We use differential equations to model the neural computation
112
368239
3921
我们使用微分方程对神经计算 和人工突触进行建模。
06:12
and the artificial synapse.
113
372201
1669
06:14
And these differential equations
114
374412
2085
而这些微分方程
06:16
are what biologists have mapped for the neural structure of the worms.
115
376539
5089
就是生物学家 为蠕虫的神经结构建立的方程。
06:22
We also wire the neurons differently to increase the information flow.
116
382337
4963
我们还为增大信息流 重新联结了神经元。
06:27
Well, these changes yield phenomenal results.
117
387675
3045
这些改变产生了惊人的结果。
06:31
Traditional AI systems are frozen after training.
118
391054
3420
传统的 AI 系统 在训练后会被冻结。
06:34
That means they cannot continue to improve
119
394515
2294
也就是说当我们把它们 部署在物理世界的自然环境中时,
06:36
when we deploy them in a physical world in the wild.
120
396809
3379
它们是无法被持续改进的。
06:40
We just wait for the next release.
121
400229
2253
我们只能等待下一个版本。
06:43
Because of what's happening inside the liquid neuron,
122
403316
3378
由于液态神经元的内部运作,
06:46
liquid networks continue to adapt after training
123
406736
2920
液态网络会在训练之后
06:49
based on the inputs that they see.
124
409697
1752
根据看到的输入持续调整。
06:51
Let me show you.
125
411449
1293
我来给你看。
06:53
We trained traditional AI and liquid networks
126
413493
3086
我们训练了传统的 AI 和液态网络,
06:56
using summertime videos like these ones,
127
416621
3253
基于这种夏季的视频,
06:59
and the task was to find things in the woods.
128
419916
3045
任务是在森林里找东西。
07:02
All the models learned how to do the task in the summer.
129
422961
3044
所有的模型都在夏天 学会了如何完成任务。
07:06
Then we tried to use the models on drones in the fall.
130
426589
3754
然后到了秋天, 我们尝试在无人机上使用这些模型。
07:10
The traditional AI solution gets confused by the background.
131
430343
3837
传统的 AI 解决方案 被背景搞糊涂了。
07:14
Look at the attention map, cannot do the task.
132
434222
2836
看看注意力图, 无法完成任务。
07:17
Liquid networks do not get confused by the background
133
437350
3170
液态网络不会被背景搞糊涂,
07:20
and very successfully execute the task.
134
440520
4004
可以非常成功地执行任务。
07:24
So this is it.
135
444899
1168
就是这样。
07:26
This is the step forward:
136
446109
1334
这就是向前迈出的一步:
07:27
AI that adapts after training.
137
447443
2670
训练后还会适应的 AI。
07:31
Liquid networks are important
138
451072
2044
液态网络之所以重要,
07:33
because they give us a new way of getting machines to think
139
453116
5088
是因为它们为我们提供了 一种让机器思考的新方式,
07:38
that is rooted into physics models,
140
458246
2669
这种方式植根于物理模型,
07:40
a new technology for AI.
141
460957
2044
一种新的 AI 技术。
07:43
We can run them on smartphones, on robots,
142
463418
3003
我们可以将它们 运行在智能手机、机器人、
07:46
on enterprise computers,
143
466462
2169
企业计算机上,
07:48
and even on new types of machines
144
468631
2252
甚至是在那些我们现在可以 开始想象和设计的新型机器上。
07:50
that we can now begin to imagine and design.
145
470925
2669
07:53
The second aspect of physical intelligence.
146
473594
2753
物理智能的第二个方面。
07:56
So by now you've probably generated images using text-to-image systems.
147
476848
5589
到目前为止,你可能已经 用文本生成图像系统生成了图片。
08:02
We can also do text-to-robot,
148
482437
1918
我们也能做到“文本生成机器人”,
08:04
but not using today's AI solutions because they work on statistics
149
484397
3962
但没有利用现在的 AI 解决方案, 因为它们基于统计数字,
08:08
and do not understand physics.
150
488359
1960
不懂物理学。
08:11
In my lab,
151
491154
1167
在我的实验室,
08:12
we developed an approach that guides the design process
152
492363
4004
我们开发了一种方法 引导设计过程,
08:16
by checking and simulating the physical constraints for the machine.
153
496409
4838
方法是检查和模拟机器的物理限制。
08:21
We start with a language prompt,
154
501706
1877
我们从语言提示开始,
08:23
"Make me a robot that can walk forward,"
155
503583
2502
“让我成为一个能向前行走的机器人”,
08:26
and our system generates the designs including shape, materials, actuators,
156
506085
6090
然后我们的系统生成的设计 包括形状、材料、驱动器、
08:32
sensors, the program to control it
157
512175
3003
传感器、控制它的程序
08:35
and the fabrication files to make it.
158
515178
2294
和用于制造它的制造文件。
08:37
And then the designs get refined in simulation
159
517805
3254
然后,在仿真中对设计进行完善,
08:41
until they meet the specifications.
160
521100
2753
直到它们符合规格。
08:44
So in a few hours we can go from idea
161
524312
3670
在几个小时内,我们可以将想法
08:48
to controllable physical machine.
162
528024
2294
变成可控的物理机器。
08:51
We can also do image-to-robot.
163
531486
1960
我们也可以做到“图像生成机器人”。
08:53
This photo can be transformed into a cuddly robotic bunny.
164
533488
4629
这张照片可以 变成可爱的机器人兔子。
08:58
To do so, our algorithm computes a 3D representation of the photo
165
538618
5297
为此,我们的算法计算出 照片的三维表现形式,
09:03
that gets sliced and folded, printed.
166
543915
4254
然后进行切片、折叠、打印。
09:08
Then we fold the printed layers, we string some motors and sensors.
167
548169
4338
然后我们折叠打印层, 安装一些马达和传感器。
09:12
We write some code, and we get the bunny you see in this video.
168
552548
3504
我们写一些代码,然后我们得到了 你在这段视频中看到的那只兔子。
09:16
We can use this approach to make anything almost,
169
556844
3379
我们可以使用这种方法 制作几乎任何东西,
09:20
from an image, from a photo.
170
560264
2169
从图像、从照片中制作任何东西。
09:23
So the ability to transform text into images
171
563309
4922
因此,将文本转换为图像
09:28
and to transform images into robots is important,
172
568231
3253
以及将图像转换为 机器人的能力非常重要,
09:31
because we are drastically reducing the amount of time
173
571484
3920
因为我们正在大大减少原型设计
09:35
and the resources needed to prototype and test new products,
174
575404
3796
和测试新产品所需的时间和资源,
09:39
and this is allowing for a much faster innovation cycle.
175
579200
5255
这使得创新周期大大提速。
09:45
And now we are ready to even make the leap
176
585164
3587
我们现在甚至准备迈出一大步,
09:48
to get these machines to learn.
177
588751
1752
让这些机器学习。
09:50
The third aspect of physical intelligence.
178
590545
3044
物理智能的第三个方面。
09:54
These machines can learn from humans how to do tasks.
179
594507
2753
这些机器可以 向人类学习如何完成任务。
09:57
You can think of it as human-to-robot.
180
597260
2377
你可以把它看作是“人到机器人”。
09:59
In my lab, we created a kitchen environment
181
599929
2753
在我的实验室里, 我们打造了一个厨房环境,
10:02
where we instrument people with sensors,
182
602723
2294
给人装上传感器,
10:05
and we collect a lot of data about how people do kitchen tasks.
183
605017
4213
收集了大量人们完成厨房任务的数据。
10:09
We need physical data
184
609689
2043
我们需要物理数据,
10:11
because videos do not capture the dynamics of the task.
185
611774
4004
因为视频无法捕捉任务的动态。
10:15
So we collect muscle, pose, even gaze information
186
615820
3170
于是我们收集了人们完成任务时的
10:18
about how people do tasks.
187
618990
2043
肌肉、姿势,甚至凝视信息。
10:21
And then we train AI using this data
188
621075
3462
然后我们使用这些数据训练 AI,
10:24
to teach robots how to do the same tasks.
189
624579
2711
教机器人如何完成同样的任务。
10:28
And the end result is machines that move with grace and agility,
190
628541
5589
最终结果是机器既能优雅灵活地移动,
10:34
as well as adapt and learn.
191
634172
2335
又能适应和学习。
10:36
Physical intelligence.
192
636549
1668
物理智能。
10:39
We can use this approach to teach robots
193
639177
3044
我们可以使用这种方法教机器人
10:42
how to do a wide range of tasks:
194
642263
2294
如何完成各种各样的任务:
10:44
food preparation, cleaning and so much more.
195
644557
3170
准备食物、打扫卫生等等。
10:49
The ability to turn images and text into functional machines,
196
649312
5630
将图像和文本 转换为实用机器的能力,
10:54
coupled with using liquid networks
197
654984
1960
再加上液态网络,
10:56
to create powerful brains for these machines
198
656986
2336
为这些可以向人类学习的机器
10:59
that can learn from humans, is incredibly exciting.
199
659322
3211
创造强大的大脑, 真是激动人心。
11:02
Because this means we can make almost anything we imagine.
200
662533
4505
因为这意味着我们几乎 可以做到任何我们想象的东西。
11:07
Today's AI has a ceiling.
201
667663
2086
如今的 AI 有上限。
11:09
It requires server farms.
202
669790
1377
它需要服务器群。
11:11
It's not sustainable.
203
671167
1293
这是不可持续的。
11:12
It makes inexplicable mistakes.
204
672501
2503
它会犯莫名其妙的错误。
11:15
Let's not settle for the current offering.
205
675046
2460
我们不能安于现状。
11:18
When AI moves into the physical world,
206
678132
2461
当 AI 进入物理世界时,
11:20
the opportunities for benefits and for breakthroughs is extraordinary.
207
680635
4838
受惠和突破的机会是与众不同的。
11:26
You can get personal assistants that optimize your routines
208
686849
4505
你可以获得帮你优化日常工作、
11:31
and anticipate your needs,
209
691354
1835
预测需求的私人助理,
11:33
bespoke machines that help you at work
210
693606
2919
为辅助你工作量身打造的机器,
11:36
and robots that delight you in your spare time.
211
696525
3170
还有在业余时间取悦你的机器人。
11:40
The promise of physical intelligence is to transcend our human limitations
212
700321
5380
物理智能的前景是超越人类的局限,
11:45
with capabilities that extend our reach,
213
705743
3045
这些能力可以扩大我们的触达范围,
11:48
amplify our strengths
214
708829
1710
增强我们的优势,
11:50
and refine our precision
215
710539
2128
提高我们的精度,
11:52
and grant us ways to interact with the world
216
712667
3086
为我们提供与梦寐以求的 世界互动的方式。
11:55
we've only dreamed of.
217
715795
1668
11:58
We are the only species so advanced, so aware,
218
718547
4296
我们是唯一一个 如此先进、如此敏锐、
12:02
so capable of building these extraordinary tools.
219
722843
3295
有能力打造 这些非凡工具的物种。
12:06
Yet, developing physical intelligence
220
726973
2919
然而,发展物理智能
12:09
is teaching us that we have so much more to learn
221
729934
2544
告诉我们,我们还有 很多东西需要学习,
12:12
about technology and about ourselves.
222
732520
3003
学习技术,学习我们自己。
12:16
We need human guiding hands over AI sooner rather than later.
223
736232
4588
我们需要尽快而不是拖延 让人类引导 AI。
12:20
After all, we remain responsible for this planet
224
740820
3086
毕竟,我们还是要对这个星球
12:23
and everything living on it.
225
743948
1918
和身处其中的一切负责。
12:26
I remain convinced that we have the power
226
746450
3128
我仍然坚信,我们有能力
12:29
to use physical intelligence to ensure a better future for humanity
227
749620
5339
使用物理智能来保障人类
和地球更美好的未来。
12:34
and for the planet.
228
754959
1460
12:36
And I'd like to invite you to help us in this quest.
229
756460
3462
我想邀请你帮助我们完成这个任务。
12:39
Some of you will help develop physical intelligence.
230
759964
3337
有些人将协助开发物理智慧。
12:43
Some of you will use it.
231
763301
2002
有些人会使用它。
12:45
And some of you will invent the future.
232
765344
2795
有些人会创造未来。
12:48
Thank you.
233
768139
1168
谢谢。
12:49
(Applause)
234
769348
4672
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7