How AI Will Step Off the Screen and into the Real World | Daniela Rus | TED

291,435 views ・ 2024-04-19

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yip Yan Yeung
00:04
When I was a student studying robotics,
0
4334
2377
当我还是个研究机器人的学生时,
00:06
a group of us decided to make a present for our professor's birthday.
1
6711
4046
我们一群人决定为我们的教授 做一份生日礼物。
00:11
We wanted to program our robot to cut a slice of cake for him.
2
11508
4212
我们想给机器人写个程序, 让它为他切一片蛋糕。
00:16
We pulled an all-nighter writing the software,
3
16638
3170
我们通宵写了这个软件,
00:19
and the next day, disaster.
4
19849
2253
第二天就翻车了。
00:22
We programmed this robot to cut a soft, round sponge cake,
5
22769
4546
我们为这个机器人写了程序, 让它切一个柔软的圆形海绵蛋糕,
00:27
but we didn't coordinate well.
6
27357
1710
但我们没协调好。
00:29
And instead, we received a square hard ice cream cake.
7
29109
4588
我们拿到了一个 方形的坚硬冰淇淋蛋糕。
00:34
The robot flailed wildly and nearly destroyed the cake.
8
34239
3879
机器人张牙舞爪, 差点毁了这个蛋糕。
00:38
(Laughter)
9
38159
1377
(笑声)
00:39
Our professor was delighted, anyway.
10
39578
2335
不管怎样,我们的教授很高兴。
00:41
He calmly pushed the stop button
11
41955
3045
他冷静地按下了停止按钮,
00:45
and declared the erratic behavior of the robot
12
45041
3128
宣布机器人的异常行为
00:48
a control singularity.
13
48169
1836
是一个“控制异变”。
00:50
A robotics technical term.
14
50046
1710
机器人技术术语。
00:52
I was disappointed, but I learned a very important lesson.
15
52882
3879
我很失望, 但我吸取了非常重要的教训。
00:56
The physical world,
16
56761
1794
物理世界
00:58
with its physics laws and imprecisions,
17
58555
2502
有其物理定律和不准确度,
01:01
is a far more demanding space than the digital world.
18
61057
3462
是一个比数字世界要求更严格的空间。
01:05
Today, I lead MIT's Computer Science and AI lab,
19
65478
3838
如今,我领导着麻省理工学院的 计算机科学和人工智能实验室,
01:09
the largest research unit at MIT.
20
69357
2419
这是 MIT 最大的研究单位。
01:11
This is our buildingm where I work with brilliant and brave researchers
21
71776
5214
这是我们的大楼,我在这里 与优秀勇敢的研究人员合作,
01:16
to invent the future of computing and intelligent machines.
22
76990
3545
共同发明计算机 和智能机器的未来。
01:21
Today in computing,
23
81286
1168
如今,在计算领域,
01:22
artificial intelligence and robotics are largely separate fields.
24
82454
4087
人工智能和机器人技术 是泾渭分明的两个领域。
01:27
AI has amazed you with its decision-making and learning,
25
87375
4129
AI 用决策和学习惊艳了你,
01:31
but it remains confined inside computers.
26
91546
2878
但它仍然被困在计算机里。
01:34
Robots have a physical presence and can execute pre-programmed tasks,
27
94883
4796
机器人有物理的实体, 可以执行预先编程的任务,
01:39
but they're not intelligent.
28
99679
1794
但它们并不智能。
01:42
Well, this separation is starting to change.
29
102140
2669
这种隔阂要开始改变了。
01:45
AI is about to break free from the 2D computer screen interactions
30
105268
4713
AI 即将摆脱二维计算机屏幕的交互,
01:50
and enter a vibrant, physical 3D world.
31
110023
3462
进入一个充满活力的物理三维世界。
01:54
In my lab, we're fusing the digital intelligence of AI
32
114361
3837
在我的实验室里, 我们正在将 AI 的数字智能
01:58
with the mechanical prowess of robots.
33
118198
2377
与机器人的机械能力融为一体。
02:01
Moving AI from the digital world into the physical world
34
121034
2836
将 AI 从数字世界转移到物理世界
02:03
is making machines intelligent
35
123912
2127
正在让机器变得智能,
02:06
and leading to the next great breakthrough,
36
126081
2419
带来下一个重大突破,
02:08
what I call physical intelligence.
37
128541
2253
我称之为“物理智能”。
02:11
Physical intelligence is when AI's power to understand text,
38
131586
4505
“物理智能”是指利用 AI 理解文本、
02:16
images and other online information
39
136132
2419
图像和其他在线信息的能力,
02:18
is used to make real-world machines smarter.
40
138593
3128
使现实世界中的机器变得更智能。
02:21
This means AI can help pre-programmed robots do their tasks better
41
141721
5381
这意味着 AI 可以从数据中获取知识,
帮助预编程的机器人更好地完成任务。
02:27
by using knowledge from data.
42
147143
1877
02:31
With physical intelligence,
43
151022
1460
借助物理智能,
02:32
AI doesn't just reside in our computers,
44
152482
4713
AI 不仅存在于我们的计算机中,
02:37
but walks, rolls, flies
45
157237
2502
还能行走、滚动、飞翔、 以惊人的方式与我们互动。
02:39
and interacts with us in surprising ways.
46
159781
2961
02:42
Imagine being surrounded by helpful robots at the supermarket.
47
162784
4630
想象一下,在超市里 周围都是能干的机器人。
02:47
The one on the left can help you carry a heavy box.
48
167414
3044
左边的那个可以帮你 搬一个沉重的箱子。
02:51
To make it happen, we need to do a few things.
49
171251
3378
为了实现这一目标, 我们得做几件事。
02:54
We need to rethink how machines think.
50
174671
2377
我们得重新思考 机器人是如何思考的。
02:57
We need to reorganize how they are designed and how they learn.
51
177382
4796
我们需要重构 它们的设计方式和学习方式。
03:03
So for physical intelligence,
52
183596
1585
对于物理智能来说,
03:05
AI has to run on computers that fit on the body of the robot.
53
185223
4129
AI 必须运行于可以适配 机器人机身的计算机上。
03:09
For example, our soft robot fish.
54
189853
2502
例如,我们的软体机器鱼。
03:13
Today's AI uses server farms that do not fit.
55
193189
3128
现在 AI 使用的服务器群 就放不进去。
03:17
Today's AI also makes mistakes.
56
197318
3212
如今的 AI 也会犯错误。
03:20
This AI system on a robot car does not detect pedestrians.
57
200572
4171
机器人汽车上的这个 AI 系统 无法检测到行人。
03:25
For physical intelligence,
58
205660
1418
对于物理智能,
03:27
we need small brains that do not make mistakes.
59
207120
2961
我们需要不会犯错误的小大脑。
03:31
We're tackling these challenges using inspiration
60
211958
2836
我们受到了一种名为 “秀丽隐杆线虫”的启发,
03:34
from a worm called C. elegans
61
214794
2169
应对这样的挑战。
03:37
In sharp contrast to the billions of neurons in the human brain,
62
217839
4630
与人脑中数十亿个神经元 形成鲜明对比的是,
03:42
C. elegans has a happy life on only 302 neurons,
63
222469
4546
秀丽隐杆线虫仅靠 302 个神经元过着快乐的生活,
03:47
and biologists understand the math of what each of these neurons do.
64
227015
4171
生物学家了解 每个神经元功能的奥秘。
03:53
So here's the idea.
65
233354
1168
于是有了这样的想法。
03:54
Can we build AI using inspiration from the math of these neurons?
66
234564
5547
我们可以通过这些神经元的奥秘 启发我们创造 AI 吗?
04:01
We have developed, together with my collaborators and students,
67
241529
4255
我与我的合作者和学生们 一起开发了
04:05
a new approach to AI we call “liquid networks.”
68
245784
3670
一种新的 AI 方法, 我们称之为“液态网络”。
04:10
And liquid networks results in much more compact
69
250121
3754
液态网络可以拿出 比当今传统的 AI 解决方案
04:13
and explainable solutions than today's traditional AI solutions.
70
253917
3962
更紧凑、更可解释的方案。
04:17
Let me show you.
71
257921
1251
我来给你看看。
04:19
This is our self-driving car.
72
259464
1918
这是我们的自动驾驶汽车。
04:21
It's trained using a traditional AI solution,
73
261800
2669
它是通过传统的 AI 解决方案训练的,
04:24
the kind you find in many applications today.
74
264511
2836
如同现在很多应用采取的方式。
04:28
This is the dashboard of the car.
75
268097
2086
这是汽车的仪表板。
04:30
In the lower right corner, you'll see the map.
76
270225
2294
右下角可以看到地图。
04:32
In the upper left corner, the camera input stream.
77
272560
3254
左上角是摄像机输入信号。
04:35
And the big box in the middle with the blinking lights
78
275814
2836
中间那个闪烁着亮光的大盒子
04:38
is the decision-making engine.
79
278691
2169
是决策引擎。
04:40
It consists of tens of thousands of artificial neurons,
80
280902
4004
它由成千上万个人造神经元组成,
04:44
and it decides how the car should steer.
81
284948
2502
决定了汽车应该如何转向。
04:48
It is impossible to correlate the activity of these neurons
82
288076
3336
不可能将这些神经元的活动
04:51
with the behavior of the car.
83
291454
2211
与汽车的行为相关联。
04:53
Moreover, if you look at the lower left side,
84
293706
3379
此外,请看左下角,
04:57
you see where in the image this decision-making engine looks
85
297085
4045
你会看到这个决策引擎 会根据图像上的什么位置,
05:01
to tell the car what to do.
86
301172
2086
告诉汽车该怎么做。
05:03
And you see how noisy it is.
87
303299
1418
可以看到噪声有多大。
05:04
And this car drives by looking at the bushes and the trees
88
304759
4254
这辆车是通过观察 路边的灌木和树木来行驶的。
05:09
on the side of the road.
89
309013
1460
05:10
That's not how we drive.
90
310473
1418
我们不是这样开车的。
05:11
People look at the road.
91
311933
1335
人们会看着路。
05:13
Now contrast this with our liquid network solution,
92
313643
3253
我们来将其与我们的 液态网络解决方案对比,
05:16
which consists of only 19 neurons rather than tens of thousands.
93
316938
4922
我们的方案只有 19 个神经元, 而不是成千上万个。
05:21
And look at its attention map.
94
321860
1543
来看一下它的注意力图。
05:23
It's so clean and focused on the road horizon
95
323403
2752
非常干净, 关注水平路面和路边。
05:26
and the side of the road.
96
326197
1669
05:28
Because these models are so much smaller,
97
328491
2294
由于这些模型要小得多,
05:30
we actually understand how they make decisions.
98
330827
2669
我们其实是了解它们的决策方式的。
05:34
So how did we get this performance?
99
334831
2586
我们是如何得到这样的表现的呢?
05:38
Well, in a traditional AI system,
100
338418
2752
在传统的 AI 系统中,
05:41
the computational neuron is the artificial neuron,
101
341170
3003
计算神经元是人工神经元,
05:44
and the artificial neuron is essentially an on/off computational unit.
102
344215
4213
而人工神经元本质上 是一个开/关的计算单元。
05:48
It takes in some numbers, adds them up,
103
348469
2211
输入一些数字,加起来,
05:50
applies some basic math
104
350680
1293
应用一些基本的数学运算,
05:52
and passes along the result.
105
352015
2002
传递结果。
05:54
And this is complex
106
354058
1335
这很复杂,
05:55
because it happens across thousands of computational units.
107
355435
3712
因为它发生在 数千个计算单元上。
05:59
In liquid networks,
108
359439
1585
在液态网络中,
06:01
we have fewer neurons,
109
361065
1377
我们的神经元较少,
06:02
but each one does more complex math.
110
362483
2711
但每个神经元都进行更复杂的数学运算。
06:05
Here's what happens inside our liquid neuron.
111
365194
2628
以下是我们的液体神经元 内部发生的事情。
06:08
We use differential equations to model the neural computation
112
368239
3921
我们使用微分方程对神经计算 和人工突触进行建模。
06:12
and the artificial synapse.
113
372201
1669
06:14
And these differential equations
114
374412
2085
而这些微分方程
06:16
are what biologists have mapped for the neural structure of the worms.
115
376539
5089
就是生物学家 为蠕虫的神经结构建立的方程。
06:22
We also wire the neurons differently to increase the information flow.
116
382337
4963
我们还为增大信息流 重新联结了神经元。
06:27
Well, these changes yield phenomenal results.
117
387675
3045
这些改变产生了惊人的结果。
06:31
Traditional AI systems are frozen after training.
118
391054
3420
传统的 AI 系统 在训练后会被冻结。
06:34
That means they cannot continue to improve
119
394515
2294
也就是说当我们把它们 部署在物理世界的自然环境中时,
06:36
when we deploy them in a physical world in the wild.
120
396809
3379
它们是无法被持续改进的。
06:40
We just wait for the next release.
121
400229
2253
我们只能等待下一个版本。
06:43
Because of what's happening inside the liquid neuron,
122
403316
3378
由于液态神经元的内部运作,
06:46
liquid networks continue to adapt after training
123
406736
2920
液态网络会在训练之后
06:49
based on the inputs that they see.
124
409697
1752
根据看到的输入持续调整。
06:51
Let me show you.
125
411449
1293
我来给你看。
06:53
We trained traditional AI and liquid networks
126
413493
3086
我们训练了传统的 AI 和液态网络,
06:56
using summertime videos like these ones,
127
416621
3253
基于这种夏季的视频,
06:59
and the task was to find things in the woods.
128
419916
3045
任务是在森林里找东西。
07:02
All the models learned how to do the task in the summer.
129
422961
3044
所有的模型都在夏天 学会了如何完成任务。
07:06
Then we tried to use the models on drones in the fall.
130
426589
3754
然后到了秋天, 我们尝试在无人机上使用这些模型。
07:10
The traditional AI solution gets confused by the background.
131
430343
3837
传统的 AI 解决方案 被背景搞糊涂了。
07:14
Look at the attention map, cannot do the task.
132
434222
2836
看看注意力图, 无法完成任务。
07:17
Liquid networks do not get confused by the background
133
437350
3170
液态网络不会被背景搞糊涂,
07:20
and very successfully execute the task.
134
440520
4004
可以非常成功地执行任务。
07:24
So this is it.
135
444899
1168
就是这样。
07:26
This is the step forward:
136
446109
1334
这就是向前迈出的一步:
07:27
AI that adapts after training.
137
447443
2670
训练后还会适应的 AI。
07:31
Liquid networks are important
138
451072
2044
液态网络之所以重要,
07:33
because they give us a new way of getting machines to think
139
453116
5088
是因为它们为我们提供了 一种让机器思考的新方式,
07:38
that is rooted into physics models,
140
458246
2669
这种方式植根于物理模型,
07:40
a new technology for AI.
141
460957
2044
一种新的 AI 技术。
07:43
We can run them on smartphones, on robots,
142
463418
3003
我们可以将它们 运行在智能手机、机器人、
07:46
on enterprise computers,
143
466462
2169
企业计算机上,
07:48
and even on new types of machines
144
468631
2252
甚至是在那些我们现在可以 开始想象和设计的新型机器上。
07:50
that we can now begin to imagine and design.
145
470925
2669
07:53
The second aspect of physical intelligence.
146
473594
2753
物理智能的第二个方面。
07:56
So by now you've probably generated images using text-to-image systems.
147
476848
5589
到目前为止,你可能已经 用文本生成图像系统生成了图片。
08:02
We can also do text-to-robot,
148
482437
1918
我们也能做到“文本生成机器人”,
08:04
but not using today's AI solutions because they work on statistics
149
484397
3962
但没有利用现在的 AI 解决方案, 因为它们基于统计数字,
08:08
and do not understand physics.
150
488359
1960
不懂物理学。
08:11
In my lab,
151
491154
1167
在我的实验室,
08:12
we developed an approach that guides the design process
152
492363
4004
我们开发了一种方法 引导设计过程,
08:16
by checking and simulating the physical constraints for the machine.
153
496409
4838
方法是检查和模拟机器的物理限制。
08:21
We start with a language prompt,
154
501706
1877
我们从语言提示开始,
08:23
"Make me a robot that can walk forward,"
155
503583
2502
“让我成为一个能向前行走的机器人”,
08:26
and our system generates the designs including shape, materials, actuators,
156
506085
6090
然后我们的系统生成的设计 包括形状、材料、驱动器、
08:32
sensors, the program to control it
157
512175
3003
传感器、控制它的程序
08:35
and the fabrication files to make it.
158
515178
2294
和用于制造它的制造文件。
08:37
And then the designs get refined in simulation
159
517805
3254
然后,在仿真中对设计进行完善,
08:41
until they meet the specifications.
160
521100
2753
直到它们符合规格。
08:44
So in a few hours we can go from idea
161
524312
3670
在几个小时内,我们可以将想法
08:48
to controllable physical machine.
162
528024
2294
变成可控的物理机器。
08:51
We can also do image-to-robot.
163
531486
1960
我们也可以做到“图像生成机器人”。
08:53
This photo can be transformed into a cuddly robotic bunny.
164
533488
4629
这张照片可以 变成可爱的机器人兔子。
08:58
To do so, our algorithm computes a 3D representation of the photo
165
538618
5297
为此,我们的算法计算出 照片的三维表现形式,
09:03
that gets sliced and folded, printed.
166
543915
4254
然后进行切片、折叠、打印。
09:08
Then we fold the printed layers, we string some motors and sensors.
167
548169
4338
然后我们折叠打印层, 安装一些马达和传感器。
09:12
We write some code, and we get the bunny you see in this video.
168
552548
3504
我们写一些代码,然后我们得到了 你在这段视频中看到的那只兔子。
09:16
We can use this approach to make anything almost,
169
556844
3379
我们可以使用这种方法 制作几乎任何东西,
09:20
from an image, from a photo.
170
560264
2169
从图像、从照片中制作任何东西。
09:23
So the ability to transform text into images
171
563309
4922
因此,将文本转换为图像
09:28
and to transform images into robots is important,
172
568231
3253
以及将图像转换为 机器人的能力非常重要,
09:31
because we are drastically reducing the amount of time
173
571484
3920
因为我们正在大大减少原型设计
09:35
and the resources needed to prototype and test new products,
174
575404
3796
和测试新产品所需的时间和资源,
09:39
and this is allowing for a much faster innovation cycle.
175
579200
5255
这使得创新周期大大提速。
09:45
And now we are ready to even make the leap
176
585164
3587
我们现在甚至准备迈出一大步,
09:48
to get these machines to learn.
177
588751
1752
让这些机器学习。
09:50
The third aspect of physical intelligence.
178
590545
3044
物理智能的第三个方面。
09:54
These machines can learn from humans how to do tasks.
179
594507
2753
这些机器可以 向人类学习如何完成任务。
09:57
You can think of it as human-to-robot.
180
597260
2377
你可以把它看作是“人到机器人”。
09:59
In my lab, we created a kitchen environment
181
599929
2753
在我的实验室里, 我们打造了一个厨房环境,
10:02
where we instrument people with sensors,
182
602723
2294
给人装上传感器,
10:05
and we collect a lot of data about how people do kitchen tasks.
183
605017
4213
收集了大量人们完成厨房任务的数据。
10:09
We need physical data
184
609689
2043
我们需要物理数据,
10:11
because videos do not capture the dynamics of the task.
185
611774
4004
因为视频无法捕捉任务的动态。
10:15
So we collect muscle, pose, even gaze information
186
615820
3170
于是我们收集了人们完成任务时的
10:18
about how people do tasks.
187
618990
2043
肌肉、姿势,甚至凝视信息。
10:21
And then we train AI using this data
188
621075
3462
然后我们使用这些数据训练 AI,
10:24
to teach robots how to do the same tasks.
189
624579
2711
教机器人如何完成同样的任务。
10:28
And the end result is machines that move with grace and agility,
190
628541
5589
最终结果是机器既能优雅灵活地移动,
10:34
as well as adapt and learn.
191
634172
2335
又能适应和学习。
10:36
Physical intelligence.
192
636549
1668
物理智能。
10:39
We can use this approach to teach robots
193
639177
3044
我们可以使用这种方法教机器人
10:42
how to do a wide range of tasks:
194
642263
2294
如何完成各种各样的任务:
10:44
food preparation, cleaning and so much more.
195
644557
3170
准备食物、打扫卫生等等。
10:49
The ability to turn images and text into functional machines,
196
649312
5630
将图像和文本 转换为实用机器的能力,
10:54
coupled with using liquid networks
197
654984
1960
再加上液态网络,
10:56
to create powerful brains for these machines
198
656986
2336
为这些可以向人类学习的机器
10:59
that can learn from humans, is incredibly exciting.
199
659322
3211
创造强大的大脑, 真是激动人心。
11:02
Because this means we can make almost anything we imagine.
200
662533
4505
因为这意味着我们几乎 可以做到任何我们想象的东西。
11:07
Today's AI has a ceiling.
201
667663
2086
如今的 AI 有上限。
11:09
It requires server farms.
202
669790
1377
它需要服务器群。
11:11
It's not sustainable.
203
671167
1293
这是不可持续的。
11:12
It makes inexplicable mistakes.
204
672501
2503
它会犯莫名其妙的错误。
11:15
Let's not settle for the current offering.
205
675046
2460
我们不能安于现状。
11:18
When AI moves into the physical world,
206
678132
2461
当 AI 进入物理世界时,
11:20
the opportunities for benefits and for breakthroughs is extraordinary.
207
680635
4838
受惠和突破的机会是与众不同的。
11:26
You can get personal assistants that optimize your routines
208
686849
4505
你可以获得帮你优化日常工作、
11:31
and anticipate your needs,
209
691354
1835
预测需求的私人助理,
11:33
bespoke machines that help you at work
210
693606
2919
为辅助你工作量身打造的机器,
11:36
and robots that delight you in your spare time.
211
696525
3170
还有在业余时间取悦你的机器人。
11:40
The promise of physical intelligence is to transcend our human limitations
212
700321
5380
物理智能的前景是超越人类的局限,
11:45
with capabilities that extend our reach,
213
705743
3045
这些能力可以扩大我们的触达范围,
11:48
amplify our strengths
214
708829
1710
增强我们的优势,
11:50
and refine our precision
215
710539
2128
提高我们的精度,
11:52
and grant us ways to interact with the world
216
712667
3086
为我们提供与梦寐以求的 世界互动的方式。
11:55
we've only dreamed of.
217
715795
1668
11:58
We are the only species so advanced, so aware,
218
718547
4296
我们是唯一一个 如此先进、如此敏锐、
12:02
so capable of building these extraordinary tools.
219
722843
3295
有能力打造 这些非凡工具的物种。
12:06
Yet, developing physical intelligence
220
726973
2919
然而,发展物理智能
12:09
is teaching us that we have so much more to learn
221
729934
2544
告诉我们,我们还有 很多东西需要学习,
12:12
about technology and about ourselves.
222
732520
3003
学习技术,学习我们自己。
12:16
We need human guiding hands over AI sooner rather than later.
223
736232
4588
我们需要尽快而不是拖延 让人类引导 AI。
12:20
After all, we remain responsible for this planet
224
740820
3086
毕竟,我们还是要对这个星球
12:23
and everything living on it.
225
743948
1918
和身处其中的一切负责。
12:26
I remain convinced that we have the power
226
746450
3128
我仍然坚信,我们有能力
12:29
to use physical intelligence to ensure a better future for humanity
227
749620
5339
使用物理智能来保障人类
和地球更美好的未来。
12:34
and for the planet.
228
754959
1460
12:36
And I'd like to invite you to help us in this quest.
229
756460
3462
我想邀请你帮助我们完成这个任务。
12:39
Some of you will help develop physical intelligence.
230
759964
3337
有些人将协助开发物理智慧。
12:43
Some of you will use it.
231
763301
2002
有些人会使用它。
12:45
And some of you will invent the future.
232
765344
2795
有些人会创造未来。
12:48
Thank you.
233
768139
1168
谢谢。
12:49
(Applause)
234
769348
4672
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog