How AI Will Step Off the Screen and into the Real World | Daniela Rus | TED

291,435 views ・ 2024-04-19

TED


請雙擊下方英文字幕播放視頻。

譯者: Armani Chen 審譯者: 麗玲 辛
當我還在學機器人學的時候,
00:04
When I was a student studying robotics,
0
4334
2377
00:06
a group of us decided to make a present for our professor's birthday.
1
6711
4046
我們決定為教授做一份生日禮物,
00:11
We wanted to program our robot to cut a slice of cake for him.
2
11508
4212
我們想讓我們做的機器人, 為他切一片生日蛋糕。
00:16
We pulled an all-nighter writing the software,
3
16638
3170
並花了一整晚開發軟體,
00:19
and the next day, disaster.
4
19849
2253
但是隔天...是一場災難。
00:22
We programmed this robot to cut a soft, round sponge cake,
5
22769
4546
我們為這個機器人寫好程式, 要切柔軟的圓形海綿蛋糕
00:27
but we didn't coordinate well.
6
27357
1710
但我們沒有協調好,
00:29
And instead, we received a square hard ice cream cake.
7
29109
4588
我們反而得到了一個 方又硬的冰淇淋蛋糕,
00:34
The robot flailed wildly and nearly destroyed the cake.
8
34239
3879
機器人瘋狂地揮動, 幾乎摧毀了蛋糕。
00:38
(Laughter)
9
38159
1377
(笑聲)
00:39
Our professor was delighted, anyway.
10
39578
2335
但總之,我們的教授很開心。
00:41
He calmly pushed the stop button
11
41955
3045
他冷靜地按下停止按鈕,
00:45
and declared the erratic behavior of the robot
12
45041
3128
並表明說機器人不穩定行為
00:48
a control singularity.
13
48169
1836
是它控制的獨特性,
00:50
A robotics technical term.
14
50046
1710
這是機器人技術術語,
00:52
I was disappointed, but I learned a very important lesson.
15
52882
3879
那讓我很失望, 但我學到非常重要的教訓。
00:56
The physical world,
16
56761
1794
在實體世界,
00:58
with its physics laws and imprecisions,
17
58555
2502
有其物理定律和不精確性, 是一個比數位世界要求更高的空間。
01:01
is a far more demanding space than the digital world.
18
61057
3462
01:05
Today, I lead MIT's Computer Science and AI lab,
19
65478
3838
現在我帶領著麻省理工學院 計算機科學和 AI 實驗室,
01:09
the largest research unit at MIT.
20
69357
2419
這是麻省理工學院最大的研究單位。
01:11
This is our buildingm where I work with brilliant and brave researchers
21
71776
5214
這是我們的大樓, 我在此與其他傑出的研究人員工作,
01:16
to invent the future of computing and intelligent machines.
22
76990
3545
一同研發計算機學和智能機器的未來。
01:21
Today in computing,
23
81286
1168
在現在的計算機學裡,
01:22
artificial intelligence and robotics are largely separate fields.
24
82454
4087
人工智能和機器人學是兩個獨立領域,
01:27
AI has amazed you with its decision-making and learning,
25
87375
4129
AI 有令人驚艷的決策和學習能力,
01:31
but it remains confined inside computers.
26
91546
2878
但它仍被限制在電腦內。
01:34
Robots have a physical presence and can execute pre-programmed tasks,
27
94883
4796
機器人則具有實體, 可以執行預先編程的任務,
01:39
but they're not intelligent.
28
99679
1794
卻不具智能。
01:42
Well, this separation is starting to change.
29
102140
2669
不過這種分水嶺將開始改變。
01:45
AI is about to break free from the 2D computer screen interactions
30
105268
4713
AI 將擺脫只能在 2D 螢幕互動這項限制,
並進入充滿活力的 實體 3D 世界中,
01:50
and enter a vibrant, physical 3D world.
31
110023
3462
01:54
In my lab, we're fusing the digital intelligence of AI
32
114361
3837
在我的實驗室, 我們將 AI 的數位智慧,
01:58
with the mechanical prowess of robots.
33
118198
2377
與機器人的機械能力融合。
將 AI 從數位世界 帶到我們的實體世界,
02:01
Moving AI from the digital world into the physical world
34
121034
2836
02:03
is making machines intelligent
35
123912
2127
使機器更加聰明,
02:06
and leading to the next great breakthrough,
36
126081
2419
並將帶來下一個巨大突破,
02:08
what I call physical intelligence.
37
128541
2253
我稱它為物理智能,
02:11
Physical intelligence is when AI's power to understand text,
38
131586
4505
物理智能是指當 AI 有理解文字、
圖像和其他網路上資訊的能力,
02:16
images and other online information
39
136132
2419
02:18
is used to make real-world machines smarter.
40
138593
3128
被用來讓真實世界的機器更聰明。
02:21
This means AI can help pre-programmed robots do their tasks better
41
141721
5381
這代表 AI 可以使用數據的知識, 幫助預先編程好的機器人,
02:27
by using knowledge from data.
42
147143
1877
更好的完成任務,
02:31
With physical intelligence,
43
151022
1460
借助物理智能,
02:32
AI doesn't just reside in our computers,
44
152482
4713
AI 不僅存在於我們的電腦中,
02:37
but walks, rolls, flies
45
157237
2502
它可以走、滾動、飛行,
02:39
and interacts with us in surprising ways.
46
159781
2961
並用其他令人驚艷的方式與我們互動,
02:42
Imagine being surrounded by helpful robots at the supermarket.
47
162784
4630
想像你在超市時, 周圍都是協助你的機器人,
02:47
The one on the left can help you carry a heavy box.
48
167414
3044
左邊的機器人可以幫你提重的箱子,
02:51
To make it happen, we need to do a few things.
49
171251
3378
為實現這一點, 我們需要做一些事。
02:54
We need to rethink how machines think.
50
174671
2377
我們需要重新思考機器的思考方式。
02:57
We need to reorganize how they are designed and how they learn.
51
177382
4796
我們需要重新構思, 它們是如何設計及學習的。
03:03
So for physical intelligence,
52
183596
1585
因此對於物理智能,
03:05
AI has to run on computers that fit on the body of the robot.
53
185223
4129
AI 必須在適合機器人 體型大小的電腦上運行。
03:09
For example, our soft robot fish.
54
189853
2502
例如,我們的機器魚。
03:13
Today's AI uses server farms that do not fit.
55
193189
3128
但現今的 AI 使用 不合適的伺服器農場。
03:17
Today's AI also makes mistakes.
56
197318
3212
現在的 AI 也會犯錯。
03:20
This AI system on a robot car does not detect pedestrians.
57
200572
4171
這台機器汽車上的 AI 系統, 沒辦法檢測到行人。
03:25
For physical intelligence,
58
205660
1418
為了實現物理智能, 我們需要不會犯錯的小型腦袋。
03:27
we need small brains that do not make mistakes.
59
207120
2961
03:31
We're tackling these challenges using inspiration
60
211958
2836
我們尋找靈感來應對這些挑戰,
03:34
from a worm called C. elegans
61
214794
2169
這靈感來自於一種線蟲, 叫秀麗隱桿線蟲 (C. elegans),
03:37
In sharp contrast to the billions of neurons in the human brain,
62
217839
4630
與人腦中數十億個神經元 形成鮮明對比,
03:42
C. elegans has a happy life on only 302 neurons,
63
222469
4546
秀麗隱桿線蟲只靠 302 個 神經元,就過著幸福的生活,
03:47
and biologists understand the math of what each of these neurons do.
64
227015
4171
而生物學家了解 這些神經元運作的數學原理。
03:53
So here's the idea.
65
233354
1168
這就是我們想法。
03:54
Can we build AI using inspiration from the math of these neurons?
66
234564
5547
我們能否用這些神經元的 數學原理來構建 AI ?
04:01
We have developed, together with my collaborators and students,
67
241529
4255
我和合作夥伴及學生一起開發了
04:05
a new approach to AI we call “liquid networks.”
68
245784
3670
一種 AI 的新方法 我們稱為「液態網絡」。
04:10
And liquid networks results in much more compact
69
250121
3754
而液態網絡相較於傳統 AI ,
有更簡潔且的更容易解釋的解決方案。
04:13
and explainable solutions than today's traditional AI solutions.
70
253917
3962
04:17
Let me show you.
71
257921
1251
讓我展示給你看。
04:19
This is our self-driving car.
72
259464
1918
這是我們的自動駕駛汽車。
04:21
It's trained using a traditional AI solution,
73
261800
2669
它使用傳統的 AI 方案進行訓練,
04:24
the kind you find in many applications today.
74
264511
2836
這種解決方案在許多 應用程式中都可以找到。
04:28
This is the dashboard of the car.
75
268097
2086
這是汽車的儀表板。
04:30
In the lower right corner, you'll see the map.
76
270225
2294
在右下角,你會看到地圖,
04:32
In the upper left corner, the camera input stream.
77
272560
3254
在左上角則是攝影機收到的訊號。
04:35
And the big box in the middle with the blinking lights
78
275814
2836
而且中間有閃爍燈的大箱子,
04:38
is the decision-making engine.
79
278691
2169
是決策引擎。
04:40
It consists of tens of thousands of artificial neurons,
80
280902
4004
它由數十萬個人工神經元組成,
04:44
and it decides how the car should steer.
81
284948
2502
而且它決定了汽車應該如何駕駛。
04:48
It is impossible to correlate the activity of these neurons
82
288076
3336
很難將這些神經元的活動 與車輛的行為聯繫起來。
04:51
with the behavior of the car.
83
291454
2211
04:53
Moreover, if you look at the lower left side,
84
293706
3379
此外,如果你看左下角,
04:57
you see where in the image this decision-making engine looks
85
297085
4045
你會看到圖片中的是決策引擎,
05:01
to tell the car what to do.
86
301172
2086
它會跟汽車說該做什麼。
05:03
And you see how noisy it is.
87
303299
1418
你可以看到它有多嘈雜。
05:04
And this car drives by looking at the bushes and the trees
88
304759
4254
而這輛車行駛時, 是看著路邊的灌木和樹木。
05:09
on the side of the road.
89
309013
1460
05:10
That's not how we drive.
90
310473
1418
但這不是我們人類開車的方法。
05:11
People look at the road.
91
311933
1335
我們會看著道路。
05:13
Now contrast this with our liquid network solution,
92
313643
3253
現在,我們拿它和 液態網絡的解決方案對比,
05:16
which consists of only 19 neurons rather than tens of thousands.
93
316938
4922
它僅由 19 個神經元組成, 而不是數十萬個。
05:21
And look at its attention map.
94
321860
1543
看左下的注意力地圖 (attention map)。
05:23
It's so clean and focused on the road horizon
95
323403
2752
它非常乾淨,並專注於道路的 地平線和兩旁。
05:26
and the side of the road.
96
326197
1669
05:28
Because these models are so much smaller,
97
328491
2294
因為它模型小得多,
05:30
we actually understand how they make decisions.
98
330827
2669
我們實際上了解 它們如何做出每個決定。
05:34
So how did we get this performance?
99
334831
2586
那我們是如何得到這個成果的?
05:38
Well, in a traditional AI system,
100
338418
2752
在傳統的 AI 系統中,
05:41
the computational neuron is the artificial neuron,
101
341170
3003
計算神經元是人工神經元,
05:44
and the artificial neuron is essentially an on/off computational unit.
102
344215
4213
人工神經元本質上 是一個開/關的計算單元。
05:48
It takes in some numbers, adds them up,
103
348469
2211
它會採用一些數字,將它們相加,
05:50
applies some basic math
104
350680
1293
應用一些基本數學,
05:52
and passes along the result.
105
352015
2002
並把結果傳遞下去。
05:54
And this is complex
106
354058
1335
而這是很複雜的,
05:55
because it happens across thousands of computational units.
107
355435
3712
因為它發生在數千個計算單位中。
05:59
In liquid networks,
108
359439
1585
在液態網絡中,
06:01
we have fewer neurons,
109
361065
1377
它們的神經元較少,
06:02
but each one does more complex math.
110
362483
2711
但每個神經元都能進行更複雜的數學。
06:05
Here's what happens inside our liquid neuron.
111
365194
2628
這是在液態神經元內發生的事。
06:08
We use differential equations to model the neural computation
112
368239
3921
我們使用微分方程模擬神經計算,
06:12
and the artificial synapse.
113
372201
1669
以及人工突觸。
06:14
And these differential equations
114
374412
2085
這些微分方程
06:16
are what biologists have mapped for the neural structure of the worms.
115
376539
5089
是生物學家對蠕蟲的 神經結構映射出的結果。
06:22
We also wire the neurons differently to increase the information flow.
116
382337
4963
我們也以不同的方式連結神經元 以增加資訊流量。
06:27
Well, these changes yield phenomenal results.
117
387675
3045
這些變化帶來了驚人的結果。
06:31
Traditional AI systems are frozen after training.
118
391054
3420
傳統的 AI 系統 在訓練後會被凍結。
06:34
That means they cannot continue to improve
119
394515
2294
這意味著在外面物理世界裡, 當我們部署它們後,
06:36
when we deploy them in a physical world in the wild.
120
396809
3379
這些系統沒辦法再繼續進步,
06:40
We just wait for the next release.
121
400229
2253
我們只能等下一個版本,
06:43
Because of what's happening inside the liquid neuron,
122
403316
3378
由於液態神經元內部發生的事情,
06:46
liquid networks continue to adapt after training
123
406736
2920
液態網絡在訓練後,會根據 所看到的輸入內容來適應改動。
06:49
based on the inputs that they see.
124
409697
1752
06:51
Let me show you.
125
411449
1293
我來展示給你看。
06:53
We trained traditional AI and liquid networks
126
413493
3086
我們用這類夏天影片 來訓練傳統 AI 和液態網絡,
06:56
using summertime videos like these ones,
127
416621
3253
06:59
and the task was to find things in the woods.
128
419916
3045
任務是在樹林中找到東西。
07:02
All the models learned how to do the task in the summer.
129
422961
3044
所有模型在夏天時 都學會了如何完成任務。
07:06
Then we tried to use the models on drones in the fall.
130
426589
3754
我們接著嘗試在秋天 在無人機上使用這些模型。
07:10
The traditional AI solution gets confused by the background.
131
430343
3837
傳統的 AI 會因背景產生混亂,
07:14
Look at the attention map, cannot do the task.
132
434222
2836
你看注意力地圖 (attention map) , 它無法完成任務。
07:17
Liquid networks do not get confused by the background
133
437350
3170
但液態網絡不會因背景感到混亂,
07:20
and very successfully execute the task.
134
440520
4004
並非常成功地執行任務。
07:24
So this is it.
135
444899
1168
所以就是這樣。
這是前進的一步:
07:26
This is the step forward:
136
446109
1334
07:27
AI that adapts after training.
137
447443
2670
訓練後能適應的 AI 。
07:31
Liquid networks are important
138
451072
2044
液態網絡非常重要,
07:33
because they give us a new way of getting machines to think
139
453116
5088
因為它們為我們提供了 一種讓機器思考的新方式,
07:38
that is rooted into physics models,
140
458246
2669
讓機器思考植根於實體模型,
07:40
a new technology for AI.
141
460957
2044
這是一種新的 AI 技術。
07:43
We can run them on smartphones, on robots,
142
463418
3003
我們可以在智能手機、機器人、
07:46
on enterprise computers,
143
466462
2169
企業電腦上運行它們,
07:48
and even on new types of machines
144
468631
2252
甚至在我們現在開始想像、 設計的新類型的機器上運行。
07:50
that we can now begin to imagine and design.
145
470925
2669
07:53
The second aspect of physical intelligence.
146
473594
2753
物理智能的第二方面,
07:56
So by now you've probably generated images using text-to-image systems.
147
476848
5589
現在你可能已經使用 文本生成圖像系統,生成了圖像,
08:02
We can also do text-to-robot,
148
482437
1918
我們也可以用文本生成機器人,
08:04
but not using today's AI solutions because they work on statistics
149
484397
3962
但不是使用現今的 AI 方案,
因為它們依賴統計學而不理解物理。
08:08
and do not understand physics.
150
488359
1960
08:11
In my lab,
151
491154
1167
在我的實驗室中,
08:12
we developed an approach that guides the design process
152
492363
4004
我們開發了一種方法,
通過檢查和模擬機器的物理限制, 來引導設計過程。
08:16
by checking and simulating the physical constraints for the machine.
153
496409
4838
08:21
We start with a language prompt,
154
501706
1877
我們從語言提示開始,
08:23
"Make me a robot that can walk forward,"
155
503583
2502
「幫我做一個能向前走的機器人。」
08:26
and our system generates the designs including shape, materials, actuators,
156
506085
6090
我們的系統會產生設計, 包括形狀、材料、執行器、
08:32
sensors, the program to control it
157
512175
3003
感測器、控制它的程式, 以及製作的檔案。
08:35
and the fabrication files to make it.
158
515178
2294
08:37
And then the designs get refined in simulation
159
517805
3254
接下來,設計會在模擬中進行精細化,
08:41
until they meet the specifications.
160
521100
2753
直到符合規格為止。
08:44
So in a few hours we can go from idea
161
524312
3670
因此在幾個小時內,
08:48
to controllable physical machine.
162
528024
2294
我們可以從想法轉為 可以控制的物理機器。
08:51
We can also do image-to-robot.
163
531486
1960
我們也可以用圖像創造機器人。
08:53
This photo can be transformed into a cuddly robotic bunny.
164
533488
4629
這張照片可以變成可愛的兔子機器人。
08:58
To do so, our algorithm computes a 3D representation of the photo
165
538618
5297
為此,我們的演算法計算 裁切、折疊、列印後的照片,
09:03
that gets sliced and folded, printed.
166
543915
4254
並以 3D 表示。
09:08
Then we fold the printed layers, we string some motors and sensors.
167
548169
4338
我們接著折疊打印的圖層, 串起一些馬達和感測器。
09:12
We write some code, and we get the bunny you see in this video.
168
552548
3504
我們寫一些程式, 就得到你現在看到的兔子。
09:16
We can use this approach to make anything almost,
169
556844
3379
我們可以用這種方法 幾乎製作任何東西,
09:20
from an image, from a photo.
170
560264
2169
從一張照片,一張圖片。
09:23
So the ability to transform text into images
171
563309
4922
因此,將文字轉換為圖像,
09:28
and to transform images into robots is important,
172
568231
3253
並將圖像轉換為 機器人的能力非常重要,
09:31
because we are drastically reducing the amount of time
173
571484
3920
因為我們正在大幅減少
做原型和測試新產品所需的時間,
09:35
and the resources needed to prototype and test new products,
174
575404
3796
09:39
and this is allowing for a much faster innovation cycle.
175
579200
5255
而這使得創新周期大大加快。
09:45
And now we are ready to even make the leap
176
585164
3587
現在我們已準備好了, 甚至躍到下一步,
09:48
to get these machines to learn.
177
588751
1752
讓這些機器學習。
09:50
The third aspect of physical intelligence.
178
590545
3044
物理智能的第三個方面。
09:54
These machines can learn from humans how to do tasks.
179
594507
2753
這些機器可以向 人類學習如何完成任務。
09:57
You can think of it as human-to-robot.
180
597260
2377
你可以將它視為人對機器人。
09:59
In my lab, we created a kitchen environment
181
599929
2753
在我的實驗室中, 我們建了一個廚房的環境,
10:02
where we instrument people with sensors,
182
602723
2294
我們為人們佩戴感測器,
10:05
and we collect a lot of data about how people do kitchen tasks.
183
605017
4213
並收集了大量有關人們 如何執行廚房任務的數據。
10:09
We need physical data
184
609689
2043
我們需要實體數據,
10:11
because videos do not capture the dynamics of the task.
185
611774
4004
因為影片無法捕獲任務的動態。
10:15
So we collect muscle, pose, even gaze information
186
615820
3170
因此我們收集肌肉、姿態, 甚至是視線信息,
10:18
about how people do tasks.
187
618990
2043
來了解人們如何執行任務。
10:21
And then we train AI using this data
188
621075
3462
然後我們使用這些數據訓練 AI ,
10:24
to teach robots how to do the same tasks.
189
624579
2711
來教導機器人如何執行相同的任務。
10:28
And the end result is machines that move with grace and agility,
190
628541
5589
最終的結果是 機器能優雅和敏捷地移動,
10:34
as well as adapt and learn.
191
634172
2335
以及適應和學習。
10:36
Physical intelligence.
192
636549
1668
物理智能,
10:39
We can use this approach to teach robots
193
639177
3044
我們可以使用這種方法 來教導機器人
10:42
how to do a wide range of tasks:
194
642263
2294
完成各式各樣的任務:
10:44
food preparation, cleaning and so much more.
195
644557
3170
包括準備食材、清潔等,甚至更多。
10:49
The ability to turn images and text into functional machines,
196
649312
5630
將圖像和文本 轉換為功能機器的能力,
10:54
coupled with using liquid networks
197
654984
1960
加上使用液態網絡,
10:56
to create powerful brains for these machines
198
656986
2336
來創造強大的機器大腦, 這些大腦可以向人類學習,
10:59
that can learn from humans, is incredibly exciting.
199
659322
3211
是令人非常興奮的。
11:02
Because this means we can make almost anything we imagine.
200
662533
4505
因為這意味著我們幾乎可以製作 我們想像的任何東西。
11:07
Today's AI has a ceiling.
201
667663
2086
今天的 AI 有一個上限。
11:09
It requires server farms.
202
669790
1377
它需要伺服器農場。
11:11
It's not sustainable.
203
671167
1293
它不能永續發展。
11:12
It makes inexplicable mistakes.
204
672501
2503
它會犯令人費解的錯誤。
11:15
Let's not settle for the current offering.
205
675046
2460
我們不能滿足於當前它所提供的價值。
11:18
When AI moves into the physical world,
206
678132
2461
當 AI 進入實體世界時,
11:20
the opportunities for benefits and for breakthroughs is extraordinary.
207
680635
4838
帶來好處以及重大突破的 機會是非凡的。
11:26
You can get personal assistants that optimize your routines
208
686849
4505
你可以擁有個人助理,
來優化你的日常工作, 並預測你的需求,
11:31
and anticipate your needs,
209
691354
1835
11:33
bespoke machines that help you at work
210
693606
2919
客製化的機器來協助你的工作,
11:36
and robots that delight you in your spare time.
211
696525
3170
以及空閒時取悅你的機器人,
11:40
The promise of physical intelligence is to transcend our human limitations
212
700321
5380
物理智能帶給我們的承諾是 超越我們人類的限制,
11:45
with capabilities that extend our reach,
213
705743
3045
擴展我們的影響力,加強我們的力量,
11:48
amplify our strengths
214
708829
1710
11:50
and refine our precision
215
710539
2128
以及提高我們的精確度,
11:52
and grant us ways to interact with the world
216
712667
3086
並賦予我們方法 與我們夢想的世界互動,
11:55
we've only dreamed of.
217
715795
1668
11:58
We are the only species so advanced, so aware,
218
718547
4296
我們是唯一先進且有意識的物種,
12:02
so capable of building these extraordinary tools.
219
722843
3295
如此有能力建造 這些非凡的工具。
12:06
Yet, developing physical intelligence
220
726973
2919
然而發展物理智能,
12:09
is teaching us that we have so much more to learn
221
729934
2544
正在教導我們,還有更多 科技和人類的知識要學習。
12:12
about technology and about ourselves.
222
732520
3003
12:16
We need human guiding hands over AI sooner rather than later.
223
736232
4588
我們需要人類儘早指導 AI 。
12:20
After all, we remain responsible for this planet
224
740820
3086
畢竟我們仍然必須對 這個星球以及生活於此的物種負責。
12:23
and everything living on it.
225
743948
1918
12:26
I remain convinced that we have the power
226
746450
3128
我仍然相信我們有能力,
12:29
to use physical intelligence to ensure a better future for humanity
227
749620
5339
使用物理智能可以確保人類和地球 擁有更美好的未來。
12:34
and for the planet.
228
754959
1460
12:36
And I'd like to invite you to help us in this quest.
229
756460
3462
我想邀請你幫助我們完成這個任務。
12:39
Some of you will help develop physical intelligence.
230
759964
3337
在座有些人能協助發展物理智能。
12:43
Some of you will use it.
231
763301
2002
有些人會使用它。
12:45
And some of you will invent the future.
232
765344
2795
而有些人將創造未來。
12:48
Thank you.
233
768139
1168
謝謝。
12:49
(Applause)
234
769348
4672
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog