How AI Will Step Off the Screen and into the Real World | Daniela Rus | TED
280,826 views ・ 2024-04-19
請雙擊下方英文字幕播放視頻。
譯者: Armani Chen
審譯者: 麗玲 辛
當我還在學機器人學的時候,
00:04
When I was a student studying robotics,
0
4334
2377
00:06
a group of us decided to make a present
for our professor's birthday.
1
6711
4046
我們決定為教授做一份生日禮物,
00:11
We wanted to program our robot
to cut a slice of cake for him.
2
11508
4212
我們想讓我們做的機器人,
為他切一片生日蛋糕。
00:16
We pulled an all-nighter
writing the software,
3
16638
3170
並花了一整晚開發軟體,
00:19
and the next day, disaster.
4
19849
2253
但是隔天...是一場災難。
00:22
We programmed this robot to cut
a soft, round sponge cake,
5
22769
4546
我們為這個機器人寫好程式,
要切柔軟的圓形海綿蛋糕
00:27
but we didn't coordinate well.
6
27357
1710
但我們沒有協調好,
00:29
And instead, we received a square
hard ice cream cake.
7
29109
4588
我們反而得到了一個
方又硬的冰淇淋蛋糕,
00:34
The robot flailed wildly
and nearly destroyed the cake.
8
34239
3879
機器人瘋狂地揮動,
幾乎摧毀了蛋糕。
00:38
(Laughter)
9
38159
1377
(笑聲)
00:39
Our professor was delighted, anyway.
10
39578
2335
但總之,我們的教授很開心。
00:41
He calmly pushed the stop button
11
41955
3045
他冷靜地按下停止按鈕,
00:45
and declared the erratic
behavior of the robot
12
45041
3128
並表明說機器人不穩定行為
00:48
a control singularity.
13
48169
1836
是它控制的獨特性,
00:50
A robotics technical term.
14
50046
1710
這是機器人技術術語,
00:52
I was disappointed, but I learned
a very important lesson.
15
52882
3879
那讓我很失望,
但我學到非常重要的教訓。
00:56
The physical world,
16
56761
1794
在實體世界,
00:58
with its physics laws and imprecisions,
17
58555
2502
有其物理定律和不精確性,
是一個比數位世界要求更高的空間。
01:01
is a far more demanding space
than the digital world.
18
61057
3462
01:05
Today, I lead MIT's
Computer Science and AI lab,
19
65478
3838
現在我帶領著麻省理工學院
計算機科學和 AI 實驗室,
01:09
the largest research unit at MIT.
20
69357
2419
這是麻省理工學院最大的研究單位。
01:11
This is our buildingm where I work
with brilliant and brave researchers
21
71776
5214
這是我們的大樓,
我在此與其他傑出的研究人員工作,
01:16
to invent the future of computing
and intelligent machines.
22
76990
3545
一同研發計算機學和智能機器的未來。
01:21
Today in computing,
23
81286
1168
在現在的計算機學裡,
01:22
artificial intelligence and robotics
are largely separate fields.
24
82454
4087
人工智能和機器人學是兩個獨立領域,
01:27
AI has amazed you with its
decision-making and learning,
25
87375
4129
AI 有令人驚艷的決策和學習能力,
01:31
but it remains confined inside computers.
26
91546
2878
但它仍被限制在電腦內。
01:34
Robots have a physical presence
and can execute pre-programmed tasks,
27
94883
4796
機器人則具有實體,
可以執行預先編程的任務,
01:39
but they're not intelligent.
28
99679
1794
卻不具智能。
01:42
Well, this separation
is starting to change.
29
102140
2669
不過這種分水嶺將開始改變。
01:45
AI is about to break free from the 2D
computer screen interactions
30
105268
4713
AI 將擺脫只能在
2D 螢幕互動這項限制,
並進入充滿活力的
實體 3D 世界中,
01:50
and enter a vibrant, physical 3D world.
31
110023
3462
01:54
In my lab, we're fusing
the digital intelligence of AI
32
114361
3837
在我的實驗室,
我們將 AI 的數位智慧,
01:58
with the mechanical prowess of robots.
33
118198
2377
與機器人的機械能力融合。
將 AI 從數位世界
帶到我們的實體世界,
02:01
Moving AI from the digital world
into the physical world
34
121034
2836
02:03
is making machines intelligent
35
123912
2127
使機器更加聰明,
02:06
and leading to the next
great breakthrough,
36
126081
2419
並將帶來下一個巨大突破,
02:08
what I call physical intelligence.
37
128541
2253
我稱它為物理智能,
02:11
Physical intelligence is when AI's
power to understand text,
38
131586
4505
物理智能是指當 AI 有理解文字、
圖像和其他網路上資訊的能力,
02:16
images and other online information
39
136132
2419
02:18
is used to make
real-world machines smarter.
40
138593
3128
被用來讓真實世界的機器更聰明。
02:21
This means AI can help pre-programmed
robots do their tasks better
41
141721
5381
這代表 AI 可以使用數據的知識,
幫助預先編程好的機器人,
02:27
by using knowledge from data.
42
147143
1877
更好的完成任務,
02:31
With physical intelligence,
43
151022
1460
借助物理智能,
02:32
AI doesn't just reside in our computers,
44
152482
4713
AI 不僅存在於我們的電腦中,
02:37
but walks, rolls, flies
45
157237
2502
它可以走、滾動、飛行,
02:39
and interacts with us in surprising ways.
46
159781
2961
並用其他令人驚艷的方式與我們互動,
02:42
Imagine being surrounded by helpful
robots at the supermarket.
47
162784
4630
想像你在超市時,
周圍都是協助你的機器人,
02:47
The one on the left
can help you carry a heavy box.
48
167414
3044
左邊的機器人可以幫你提重的箱子,
02:51
To make it happen,
we need to do a few things.
49
171251
3378
為實現這一點,
我們需要做一些事。
02:54
We need to rethink how machines think.
50
174671
2377
我們需要重新思考機器的思考方式。
02:57
We need to reorganize how
they are designed and how they learn.
51
177382
4796
我們需要重新構思,
它們是如何設計及學習的。
03:03
So for physical intelligence,
52
183596
1585
因此對於物理智能,
03:05
AI has to run on computers
that fit on the body of the robot.
53
185223
4129
AI 必須在適合機器人
體型大小的電腦上運行。
03:09
For example, our soft robot fish.
54
189853
2502
例如,我們的機器魚。
03:13
Today's AI uses server farms
that do not fit.
55
193189
3128
但現今的 AI 使用
不合適的伺服器農場。
03:17
Today's AI also makes mistakes.
56
197318
3212
現在的 AI 也會犯錯。
03:20
This AI system on a robot car
does not detect pedestrians.
57
200572
4171
這台機器汽車上的 AI 系統,
沒辦法檢測到行人。
03:25
For physical intelligence,
58
205660
1418
為了實現物理智能,
我們需要不會犯錯的小型腦袋。
03:27
we need small brains
that do not make mistakes.
59
207120
2961
03:31
We're tackling these challenges
using inspiration
60
211958
2836
我們尋找靈感來應對這些挑戰,
03:34
from a worm called C. elegans
61
214794
2169
這靈感來自於一種線蟲,
叫秀麗隱桿線蟲 (C. elegans),
03:37
In sharp contrast to the billions
of neurons in the human brain,
62
217839
4630
與人腦中數十億個神經元
形成鮮明對比,
03:42
C. elegans has a happy life
on only 302 neurons,
63
222469
4546
秀麗隱桿線蟲只靠 302 個
神經元,就過著幸福的生活,
03:47
and biologists understand the math
of what each of these neurons do.
64
227015
4171
而生物學家了解
這些神經元運作的數學原理。
03:53
So here's the idea.
65
233354
1168
這就是我們想法。
03:54
Can we build AI using inspiration
from the math of these neurons?
66
234564
5547
我們能否用這些神經元的
數學原理來構建 AI ?
04:01
We have developed, together
with my collaborators and students,
67
241529
4255
我和合作夥伴及學生一起開發了
04:05
a new approach to AI
we call “liquid networks.”
68
245784
3670
一種 AI 的新方法
我們稱為「液態網絡」。
04:10
And liquid networks results
in much more compact
69
250121
3754
而液態網絡相較於傳統 AI ,
有更簡潔且的更容易解釋的解決方案。
04:13
and explainable solutions
than today's traditional AI solutions.
70
253917
3962
04:17
Let me show you.
71
257921
1251
讓我展示給你看。
04:19
This is our self-driving car.
72
259464
1918
這是我們的自動駕駛汽車。
04:21
It's trained using
a traditional AI solution,
73
261800
2669
它使用傳統的 AI 方案進行訓練,
04:24
the kind you find in many
applications today.
74
264511
2836
這種解決方案在許多
應用程式中都可以找到。
04:28
This is the dashboard of the car.
75
268097
2086
這是汽車的儀表板。
04:30
In the lower right corner,
you'll see the map.
76
270225
2294
在右下角,你會看到地圖,
04:32
In the upper left corner,
the camera input stream.
77
272560
3254
在左上角則是攝影機收到的訊號。
04:35
And the big box in the middle
with the blinking lights
78
275814
2836
而且中間有閃爍燈的大箱子,
04:38
is the decision-making engine.
79
278691
2169
是決策引擎。
04:40
It consists of tens of thousands
of artificial neurons,
80
280902
4004
它由數十萬個人工神經元組成,
04:44
and it decides how the car should steer.
81
284948
2502
而且它決定了汽車應該如何駕駛。
04:48
It is impossible to correlate
the activity of these neurons
82
288076
3336
很難將這些神經元的活動
與車輛的行為聯繫起來。
04:51
with the behavior of the car.
83
291454
2211
04:53
Moreover, if you look
at the lower left side,
84
293706
3379
此外,如果你看左下角,
04:57
you see where in the image
this decision-making engine looks
85
297085
4045
你會看到圖片中的是決策引擎,
05:01
to tell the car what to do.
86
301172
2086
它會跟汽車說該做什麼。
05:03
And you see how noisy it is.
87
303299
1418
你可以看到它有多嘈雜。
05:04
And this car drives by looking
at the bushes and the trees
88
304759
4254
而這輛車行駛時,
是看著路邊的灌木和樹木。
05:09
on the side of the road.
89
309013
1460
05:10
That's not how we drive.
90
310473
1418
但這不是我們人類開車的方法。
05:11
People look at the road.
91
311933
1335
我們會看著道路。
05:13
Now contrast this with our
liquid network solution,
92
313643
3253
現在,我們拿它和
液態網絡的解決方案對比,
05:16
which consists of only 19 neurons
rather than tens of thousands.
93
316938
4922
它僅由 19 個神經元組成,
而不是數十萬個。
05:21
And look at its attention map.
94
321860
1543
看左下的注意力地圖
(attention map)。
05:23
It's so clean and focused
on the road horizon
95
323403
2752
它非常乾淨,並專注於道路的
地平線和兩旁。
05:26
and the side of the road.
96
326197
1669
05:28
Because these models are so much smaller,
97
328491
2294
因為它模型小得多,
05:30
we actually understand
how they make decisions.
98
330827
2669
我們實際上了解
它們如何做出每個決定。
05:34
So how did we get this performance?
99
334831
2586
那我們是如何得到這個成果的?
05:38
Well, in a traditional AI system,
100
338418
2752
在傳統的 AI 系統中,
05:41
the computational neuron
is the artificial neuron,
101
341170
3003
計算神經元是人工神經元,
05:44
and the artificial neuron is essentially
an on/off computational unit.
102
344215
4213
人工神經元本質上
是一個開/關的計算單元。
05:48
It takes in some numbers, adds them up,
103
348469
2211
它會採用一些數字,將它們相加,
05:50
applies some basic math
104
350680
1293
應用一些基本數學,
05:52
and passes along the result.
105
352015
2002
並把結果傳遞下去。
05:54
And this is complex
106
354058
1335
而這是很複雜的,
05:55
because it happens across
thousands of computational units.
107
355435
3712
因為它發生在數千個計算單位中。
05:59
In liquid networks,
108
359439
1585
在液態網絡中,
06:01
we have fewer neurons,
109
361065
1377
它們的神經元較少,
06:02
but each one does more complex math.
110
362483
2711
但每個神經元都能進行更複雜的數學。
06:05
Here's what happens
inside our liquid neuron.
111
365194
2628
這是在液態神經元內發生的事。
06:08
We use differential equations
to model the neural computation
112
368239
3921
我們使用微分方程模擬神經計算,
06:12
and the artificial synapse.
113
372201
1669
以及人工突觸。
06:14
And these differential equations
114
374412
2085
這些微分方程
06:16
are what biologists have mapped
for the neural structure of the worms.
115
376539
5089
是生物學家對蠕蟲的
神經結構映射出的結果。
06:22
We also wire the neurons differently
to increase the information flow.
116
382337
4963
我們也以不同的方式連結神經元
以增加資訊流量。
06:27
Well, these changes yield
phenomenal results.
117
387675
3045
這些變化帶來了驚人的結果。
06:31
Traditional AI systems
are frozen after training.
118
391054
3420
傳統的 AI 系統
在訓練後會被凍結。
06:34
That means they cannot continue to improve
119
394515
2294
這意味著在外面物理世界裡,
當我們部署它們後,
06:36
when we deploy them
in a physical world in the wild.
120
396809
3379
這些系統沒辦法再繼續進步,
06:40
We just wait for the next release.
121
400229
2253
我們只能等下一個版本,
06:43
Because of what's happening
inside the liquid neuron,
122
403316
3378
由於液態神經元內部發生的事情,
06:46
liquid networks continue
to adapt after training
123
406736
2920
液態網絡在訓練後,會根據
所看到的輸入內容來適應改動。
06:49
based on the inputs that they see.
124
409697
1752
06:51
Let me show you.
125
411449
1293
我來展示給你看。
06:53
We trained traditional AI
and liquid networks
126
413493
3086
我們用這類夏天影片
來訓練傳統 AI 和液態網絡,
06:56
using summertime videos like these ones,
127
416621
3253
06:59
and the task was to find
things in the woods.
128
419916
3045
任務是在樹林中找到東西。
07:02
All the models learned
how to do the task in the summer.
129
422961
3044
所有模型在夏天時
都學會了如何完成任務。
07:06
Then we tried to use the models
on drones in the fall.
130
426589
3754
我們接著嘗試在秋天
在無人機上使用這些模型。
07:10
The traditional AI solution gets
confused by the background.
131
430343
3837
傳統的 AI 會因背景產生混亂,
07:14
Look at the attention map,
cannot do the task.
132
434222
2836
你看注意力地圖 (attention map) ,
它無法完成任務。
07:17
Liquid networks do not get confused
by the background
133
437350
3170
但液態網絡不會因背景感到混亂,
07:20
and very successfully execute the task.
134
440520
4004
並非常成功地執行任務。
07:24
So this is it.
135
444899
1168
所以就是這樣。
這是前進的一步:
07:26
This is the step forward:
136
446109
1334
07:27
AI that adapts after training.
137
447443
2670
訓練後能適應的 AI 。
07:31
Liquid networks are important
138
451072
2044
液態網絡非常重要,
07:33
because they give us a new way
of getting machines to think
139
453116
5088
因為它們為我們提供了
一種讓機器思考的新方式,
07:38
that is rooted into physics models,
140
458246
2669
讓機器思考植根於實體模型,
07:40
a new technology for AI.
141
460957
2044
這是一種新的 AI 技術。
07:43
We can run them
on smartphones, on robots,
142
463418
3003
我們可以在智能手機、機器人、
07:46
on enterprise computers,
143
466462
2169
企業電腦上運行它們,
07:48
and even on new types of machines
144
468631
2252
甚至在我們現在開始想像、
設計的新類型的機器上運行。
07:50
that we can now begin
to imagine and design.
145
470925
2669
07:53
The second aspect
of physical intelligence.
146
473594
2753
物理智能的第二方面,
07:56
So by now you've probably generated images
using text-to-image systems.
147
476848
5589
現在你可能已經使用
文本生成圖像系統,生成了圖像,
08:02
We can also do text-to-robot,
148
482437
1918
我們也可以用文本生成機器人,
08:04
but not using today's AI solutions
because they work on statistics
149
484397
3962
但不是使用現今的 AI 方案,
因為它們依賴統計學而不理解物理。
08:08
and do not understand physics.
150
488359
1960
08:11
In my lab,
151
491154
1167
在我的實驗室中,
08:12
we developed an approach
that guides the design process
152
492363
4004
我們開發了一種方法,
通過檢查和模擬機器的物理限制,
來引導設計過程。
08:16
by checking and simulating
the physical constraints for the machine.
153
496409
4838
08:21
We start with a language prompt,
154
501706
1877
我們從語言提示開始,
08:23
"Make me a robot that can walk forward,"
155
503583
2502
「幫我做一個能向前走的機器人。」
08:26
and our system generates the designs
including shape, materials, actuators,
156
506085
6090
我們的系統會產生設計,
包括形狀、材料、執行器、
08:32
sensors, the program to control it
157
512175
3003
感測器、控制它的程式,
以及製作的檔案。
08:35
and the fabrication files to make it.
158
515178
2294
08:37
And then the designs
get refined in simulation
159
517805
3254
接下來,設計會在模擬中進行精細化,
08:41
until they meet the specifications.
160
521100
2753
直到符合規格為止。
08:44
So in a few hours we can go from idea
161
524312
3670
因此在幾個小時內,
08:48
to controllable physical machine.
162
528024
2294
我們可以從想法轉為
可以控制的物理機器。
08:51
We can also do image-to-robot.
163
531486
1960
我們也可以用圖像創造機器人。
08:53
This photo can be transformed
into a cuddly robotic bunny.
164
533488
4629
這張照片可以變成可愛的兔子機器人。
08:58
To do so, our algorithm computes
a 3D representation of the photo
165
538618
5297
為此,我們的演算法計算
裁切、折疊、列印後的照片,
09:03
that gets sliced and folded, printed.
166
543915
4254
並以 3D 表示。
09:08
Then we fold the printed layers,
we string some motors and sensors.
167
548169
4338
我們接著折疊打印的圖層,
串起一些馬達和感測器。
09:12
We write some code, and we get
the bunny you see in this video.
168
552548
3504
我們寫一些程式,
就得到你現在看到的兔子。
09:16
We can use this approach
to make anything almost,
169
556844
3379
我們可以用這種方法
幾乎製作任何東西,
09:20
from an image, from a photo.
170
560264
2169
從一張照片,一張圖片。
09:23
So the ability to transform
text into images
171
563309
4922
因此,將文字轉換為圖像,
09:28
and to transform images
into robots is important,
172
568231
3253
並將圖像轉換為
機器人的能力非常重要,
09:31
because we are drastically
reducing the amount of time
173
571484
3920
因為我們正在大幅減少
做原型和測試新產品所需的時間,
09:35
and the resources needed to prototype
and test new products,
174
575404
3796
09:39
and this is allowing for a much
faster innovation cycle.
175
579200
5255
而這使得創新周期大大加快。
09:45
And now we are ready
to even make the leap
176
585164
3587
現在我們已準備好了,
甚至躍到下一步,
09:48
to get these machines to learn.
177
588751
1752
讓這些機器學習。
09:50
The third aspect of physical intelligence.
178
590545
3044
物理智能的第三個方面。
09:54
These machines can learn
from humans how to do tasks.
179
594507
2753
這些機器可以向
人類學習如何完成任務。
09:57
You can think of it as human-to-robot.
180
597260
2377
你可以將它視為人對機器人。
09:59
In my lab, we created
a kitchen environment
181
599929
2753
在我的實驗室中,
我們建了一個廚房的環境,
10:02
where we instrument people with sensors,
182
602723
2294
我們為人們佩戴感測器,
10:05
and we collect a lot of data
about how people do kitchen tasks.
183
605017
4213
並收集了大量有關人們
如何執行廚房任務的數據。
10:09
We need physical data
184
609689
2043
我們需要實體數據,
10:11
because videos do not capture
the dynamics of the task.
185
611774
4004
因為影片無法捕獲任務的動態。
10:15
So we collect muscle, pose,
even gaze information
186
615820
3170
因此我們收集肌肉、姿態,
甚至是視線信息,
10:18
about how people do tasks.
187
618990
2043
來了解人們如何執行任務。
10:21
And then we train AI using this data
188
621075
3462
然後我們使用這些數據訓練 AI ,
10:24
to teach robots how to do the same tasks.
189
624579
2711
來教導機器人如何執行相同的任務。
10:28
And the end result is machines
that move with grace and agility,
190
628541
5589
最終的結果是
機器能優雅和敏捷地移動,
10:34
as well as adapt and learn.
191
634172
2335
以及適應和學習。
10:36
Physical intelligence.
192
636549
1668
物理智能,
10:39
We can use this approach to teach robots
193
639177
3044
我們可以使用這種方法
來教導機器人
10:42
how to do a wide range of tasks:
194
642263
2294
完成各式各樣的任務:
10:44
food preparation, cleaning
and so much more.
195
644557
3170
包括準備食材、清潔等,甚至更多。
10:49
The ability to turn images and text
into functional machines,
196
649312
5630
將圖像和文本
轉換為功能機器的能力,
10:54
coupled with using liquid networks
197
654984
1960
加上使用液態網絡,
10:56
to create powerful brains
for these machines
198
656986
2336
來創造強大的機器大腦,
這些大腦可以向人類學習,
10:59
that can learn from humans,
is incredibly exciting.
199
659322
3211
是令人非常興奮的。
11:02
Because this means we can make
almost anything we imagine.
200
662533
4505
因為這意味著我們幾乎可以製作
我們想像的任何東西。
11:07
Today's AI has a ceiling.
201
667663
2086
今天的 AI 有一個上限。
11:09
It requires server farms.
202
669790
1377
它需要伺服器農場。
11:11
It's not sustainable.
203
671167
1293
它不能永續發展。
11:12
It makes inexplicable mistakes.
204
672501
2503
它會犯令人費解的錯誤。
11:15
Let's not settle for the current offering.
205
675046
2460
我們不能滿足於當前它所提供的價值。
11:18
When AI moves into the physical world,
206
678132
2461
當 AI 進入實體世界時,
11:20
the opportunities for benefits
and for breakthroughs is extraordinary.
207
680635
4838
帶來好處以及重大突破的
機會是非凡的。
11:26
You can get personal assistants
that optimize your routines
208
686849
4505
你可以擁有個人助理,
來優化你的日常工作,
並預測你的需求,
11:31
and anticipate your needs,
209
691354
1835
11:33
bespoke machines that help you at work
210
693606
2919
客製化的機器來協助你的工作,
11:36
and robots that delight you
in your spare time.
211
696525
3170
以及空閒時取悅你的機器人,
11:40
The promise of physical intelligence
is to transcend our human limitations
212
700321
5380
物理智能帶給我們的承諾是
超越我們人類的限制,
11:45
with capabilities that extend our reach,
213
705743
3045
擴展我們的影響力,加強我們的力量,
11:48
amplify our strengths
214
708829
1710
11:50
and refine our precision
215
710539
2128
以及提高我們的精確度,
11:52
and grant us ways
to interact with the world
216
712667
3086
並賦予我們方法
與我們夢想的世界互動,
11:55
we've only dreamed of.
217
715795
1668
11:58
We are the only species
so advanced, so aware,
218
718547
4296
我們是唯一先進且有意識的物種,
12:02
so capable of building
these extraordinary tools.
219
722843
3295
如此有能力建造
這些非凡的工具。
12:06
Yet, developing physical intelligence
220
726973
2919
然而發展物理智能,
12:09
is teaching us that we have
so much more to learn
221
729934
2544
正在教導我們,還有更多
科技和人類的知識要學習。
12:12
about technology and about ourselves.
222
732520
3003
12:16
We need human guiding hands over AI
sooner rather than later.
223
736232
4588
我們需要人類儘早指導 AI 。
12:20
After all, we remain
responsible for this planet
224
740820
3086
畢竟我們仍然必須對
這個星球以及生活於此的物種負責。
12:23
and everything living on it.
225
743948
1918
12:26
I remain convinced that we have the power
226
746450
3128
我仍然相信我們有能力,
12:29
to use physical intelligence to ensure
a better future for humanity
227
749620
5339
使用物理智能可以確保人類和地球
擁有更美好的未來。
12:34
and for the planet.
228
754959
1460
12:36
And I'd like to invite you
to help us in this quest.
229
756460
3462
我想邀請你幫助我們完成這個任務。
12:39
Some of you will help develop
physical intelligence.
230
759964
3337
在座有些人能協助發展物理智能。
12:43
Some of you will use it.
231
763301
2002
有些人會使用它。
12:45
And some of you will invent the future.
232
765344
2795
而有些人將創造未來。
12:48
Thank you.
233
768139
1168
謝謝。
12:49
(Applause)
234
769348
4672
(掌聲)
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。