Are You Really As Good at Something As You Think? | Robin Kramer | TED

95,290 views ・ 2023-11-16

TED


请双击下面的英文字幕来播放视频。

翻译人员: Joyce Lim 校对人员: Yip Yan Yeung
00:04
I don't mean to brag,
0
4300
1760
我无意吹嘘,
00:06
but there are lots of things that I'm pretty average at.
1
6060
3000
但在很多方面我都相当平庸。
00:09
From playing table tennis,
2
9100
1400
从打乒乓球、
00:10
cooking risotto, finding countries on a map,
3
10500
2560
做意大利烩饭、查看地图,
00:13
just to name a few.
4
13100
1400
仅举几例。
00:14
Now, in our everyday lives,
5
14540
1440
在我们的日常生活中,
00:16
we're not typically assessed on our skills and abilities,
6
16020
2760
我们的能力和技能通常不被外界评估,
00:18
so we're forced to rely on our own judgments.
7
18820
2400
因此我们被迫依靠自己的判断。
00:21
I may think I'm pretty decent with Italian cuisine,
8
21260
3080
我可能认为自己在意大利料理方面不算太差,
00:24
but how accurate is my assessment?
9
24380
2520
但我的评估有多准确呢?
00:26
Now, what we’re talking about here is metacognition:
10
26940
3080
我想讲的是“元认知”:
00:30
our insight into our own thought processes.
11
30020
2920
我们对自己思维过程的见解。
00:33
If I have good metacognitive insight,
12
33620
2320
如果我具备良好的元认知洞察力,
00:35
then how good I think I am at a particular task
13
35940
2880
那么我预期的表现
00:38
should line up pretty well with how good I actually am.
14
38860
3320
应该与我的实际表现吻合。
00:42
Of course, in the real world this is often not the case.
15
42180
2840
当然,在现实世界中往往与之相反。
00:45
And indeed, we probably all know someone
16
45780
2160
实际上,我们可能都认识
00:47
who thinks they're great at navigating maps,
17
47980
2760
一个自认为很擅长看地图的人,
00:50
when in fact the reality is often the opposite.
18
50780
2920
而实际情况却恰恰相反。
00:53
Not to name any names, of course, but still.
19
53740
2960
不指名道姓,但事实就是如此。
00:57
Perhaps you think this applies to other people
20
57260
2400
也许你认为这只适用于其他人,
00:59
and that you, yourself, wouldn't make this sort of mistake.
21
59700
3080
而你自己绝对不会犯这样的错误。
01:02
So let's try a quick experiment.
22
62780
2600
让我们来进行一个快速的实验。
01:05
I want you to think about how you would rate yourself
23
65380
2680
我想让你评估一下
01:08
in terms of your driving ability.
24
68100
1960
自己的驾驶能力。
01:10
Would you rate yourself as below average, average
25
70060
2480
你认为自己低于平均水平、处于平均水平
01:12
or perhaps even above average?
26
72580
2360
又或是高于平均水平呢?
01:15
So most people rate themselves as above average,
27
75380
3560
大多数人都认为自己高于平均水平,
01:18
which, of course, is mathematically impossible,
28
78980
2320
而这从数学的角度是不可能的,
01:21
and something that we call the "better than average" effect.
29
81300
3120
我们称之为“优于平均效应”。
01:24
This is just one of a number of cognitive biases that we see
30
84460
3160
这只是人们在判断自身能力时
01:27
when people judge their own abilities.
31
87620
2200
所出现的众多认知偏差之一。
01:30
Today, I'm going to focus on a related bias,
32
90180
2560
今天,我将重点讨论一个相关的认知偏差,
01:32
the Dunning-Kruger effect.
33
92740
1880
即邓宁-克鲁格效应。
01:34
So back in 1999,
34
94660
1680
早在 1999 年,
01:36
two psychologists at Cornell University, Dunning and Kruger,
35
96380
3720
两位来自康奈尔大学的心理学家, 邓宁和克鲁格,
01:40
described the mistakes people make when estimating their own abilities.
36
100100
4480
描述了人们在自我能力评估时所犯的错误。
01:44
So if we take a sample of people and we divide them into four groups
37
104580
3320
如果我们随机选人然后
01:47
based on their scores on a test,
38
107940
1840
根据他们测试的分数将他们分为四组,
01:49
and order those groups from lowest to highest.
39
109820
2400
再从低到高对这些组进行排序。
01:52
If we plot those scores on a graph along with their self-estimates,
40
112260
3880
如果将这些分数与他们的自我评估数值 一起绘制在图表上,
01:56
so how well they thought they did on the test,
41
116180
2680
我们所看到的这个图形
01:58
this is the pattern that we see.
42
118900
1840
就是他们对这项测试的预期表现。
02:00
So the red line is a steep slope representing their actual scores.
43
120780
4800
红色的陡坡代表的是他们实际分数。
02:05
As it must be, since we ordered the groups
44
125580
2040
这是必然的,毕竟我们原先就是
02:07
based on their scores in the first place.
45
127620
2120
根据小组分数进行排序的。
02:09
Now what's interesting is the blue shallower line.
46
129780
3320
真正有趣的是相对平缓的蓝线。
02:13
This represents their self-estimates.
47
133140
2400
这代表他们的自我评估数值。
02:15
So, how good they thought they did on the test.
48
135580
2520
那么,他们认为自己在测试中的表现多好呢。
02:18
Now the Dunning-Kruger effect describes how the weakest performers
49
138540
4680
邓宁-克鲁格效应描述了表现最差的人如何
02:23
significantly overestimate their performance,
50
143220
2720
过于高估自己的表现,
02:25
shown here in the green oval.
51
145980
1920
就如这个绿色椭圆所示。
02:28
The explanation for this, according to Dunning and Kruger,
52
148500
3480
根据邓宁和克鲁格的说法,对此的解释
02:31
is that insight and ability rely on the same thing.
53
151980
3840
是洞察力和能力相辅相成。
02:35
So if I'm poor at a task,
54
155860
1920
如果我做事表现不佳,
02:37
I also lack the metacognitive insight to accurately assess my ability.
55
157820
4800
我也会因此缺乏元认知洞察力 而无法准确评估自身能力。
02:43
Now this pattern has been seen again and again
56
163540
2320
这种趋势在许多领域中
02:45
across a number of domains,
57
165860
1440
反复出现,
02:47
from driving skill to exam-taking, even chess-playing.
58
167340
3440
从驾驶技术到考试,甚至是下棋。
02:51
However, in recent years,
59
171620
1600
然而近年来,
02:53
a number of criticisms have been leveled at this approach,
60
173220
3000
这种方法受到了许多批评,
02:56
and we now have reason to believe
61
176260
1600
但我们现在有理由相信
02:57
that this pattern results is virtually unavoidable.
62
177900
3000
这种模式几乎是不可避免的。
03:02
One reason for this is the statistical effect,
63
182460
3000
其中一个原因是统计效应,
03:05
regression to the mean.
64
185460
1520
即回归均值。
03:07
Now this is something that comes about
65
187380
1840
当我们有两个相互关联
03:09
when we have two measures that are related but not perfectly so.
66
189220
3720
但并不一致的衡量标准时, 就会出现这种情况。
03:13
So imagine we have a sample of people
67
193540
1840
试想我们随机抽人
03:15
and we measure their heights and their weights.
68
195420
2440
并测量他们的身高和体重。
03:17
Now height and weight are related,
69
197900
1880
身高和体重是有关联的,
03:19
tall people are typically heavier,
70
199820
2600
高的人通常更重,
03:22
but the relationship is far from perfect.
71
202420
2480
但是这个说法并非无懈可击。
03:24
So unlike in the figure at the top here,
72
204940
3240
与上图红线所示不同,
03:28
the shortest people in red won't all be the lightest people.
73
208220
4000
在红色区块的人虽然最矮但未必最轻。
03:32
Some of them will be overweight or particularly muscular, for example.
74
212220
3520
例如,有些人会超重或肌肉特别发达。
03:35
Similarly at the top end,
75
215780
1640
在另一端,同样的,
03:37
the tallest people in blue won't all be the heaviest people.
76
217460
3800
蓝色区块的人虽然最高但未必最重。
03:41
Some of them will be underweight, and so on.
77
221260
2600
他们当中有些人会体重不足,依此类推。
03:43
Now as a result, on average,
78
223900
2080
因此,平均而言,
03:46
the shortest people will rank higher for weight than they do for height,
79
226020
4200
比起身高来说身材矮小的人 会在体重上排名更高,
03:50
and the tallest people will rank lower for weight than they do for height
80
230220
3880
而最高的人比起身高来说 体重排名更低
03:54
producing this blue line here
81
234140
1800
因而产生这条蓝线
03:55
and the crossover pattern you're now becoming familiar with.
82
235980
3040
和这个两线之间的交点。
03:59
Now, some people might put forward a spurious explanation
83
239420
3120
有些人可能会试图提出一些谬论,
04:02
for why short people are relatively overweight
84
242540
2840
说明为什么个子矮小的人相对超重,
04:05
or tall people relatively underweight,
85
245420
2120
或者个子高大的人相对过瘦,
04:07
when in fact no explanation is needed.
86
247580
2400
但这实际上并不需要任何解释。
04:10
Perhaps more compelling a reason to doubt the Dunning-Kruger effect
87
250700
4240
或许质疑邓宁-克鲁格效应更合理的原因
04:14
is that we can produce the same pattern in our data
88
254980
2640
在于我们可以用已经损坏的数据
04:17
when our data is entirely meaningless.
89
257660
2640
复刻出相同的图形。
04:20
So if we collect people's test scores
90
260340
2720
因此如果我们收集人们的测试分数
04:23
along with their self-estimates of those scores,
91
263100
2640
以及他们的自我评估数值,
04:25
but then we shuffle those self-estimates
92
265740
2520
随后将这些自我评估数值随机打乱
04:28
and then analyze as before,
93
268260
2000
再像之前一样进行分析,
04:30
then we still find that same pattern in the data.
94
270260
2760
我们仍然会发现同样的规律。
04:33
Of course, any effect that we can find
95
273420
2160
当然,在随机打乱的数据中
04:35
with shuffled or randomized data
96
275580
2480
发现到的的任何差异
04:38
is one that we should surely be suspicious of.
97
278100
2320
都值得被关注。
04:41
So, given these and other issues with the Dunning-Kruger approach,
98
281140
4240
考虑到邓宁-克鲁格效应 存在的种种问题,
04:45
I was saddened and disappointed
99
285420
1920
当我在发现到这个趋势逐渐
04:47
and, frankly, a little annoyed to discover
100
287380
2600
适用于我所在的领域,
04:49
that the same approach was now being applied
101
289980
2320
即面部配对时,
04:52
in my field of expertise,
102
292340
1480
我感到伤心和失望,
04:53
which is face-matching.
103
293860
1520
坦白说也有点烦躁。
04:55
Now, this is a task where we're showing two images of faces
104
295420
3160
上图显示的工作便是对比两张脸部图像
04:58
or an image and a live person,
105
298620
1640
或是对比一张图像和一个活人,
05:00
and we're asked to decide whether they show the same person
106
300300
2760
并被要求判断究竟来自同一个人
05:03
or two different people.
107
303100
1400
又或是来自不同的人。
05:04
Now, we've all stood in line at passport control,
108
304540
2320
我们则在边检柜台排队,
05:06
anxiously awaiting the passport officer's decision
109
306900
3120
焦急地等待官员决定
05:10
as to whether our ID photos look sufficiently like us or not.
110
310060
3640
我们的样子是否与证件照片吻合。
05:14
Indeed, I've included at the top here
111
314140
2120
事实上,我在上方列出了
05:16
some examples of ID images from my own life,
112
316300
3240
一些我自己生活中的证件照片为例,
05:19
just to illustrate some variability.
113
319580
2200
只是为了说明一些可变性。
05:21
Some proud moments in photographic history,
114
321780
2040
我相信你也会同意这些照片
05:23
I'm sure you'll agree.
115
323860
1360
展现着一些摄影史上令人骄傲的时刻。
05:25
And so what I'd like to do now
116
325220
1840
所以我现在想做的
05:27
is first see how well you might perform as passport officers.
117
327060
3760
就是先测试你们 作为护照官员能表现得多好。
05:31
So here are four pairs of images,
118
331180
2160
这里有四组照片,
05:33
some students’ ID images and some student photos.
119
333340
2880
一些学生证件照和学生自己的照片。
05:36
For each pair, I'd like you to decide whether it's a match,
120
336260
3800
我希望你们来判断每一组照片是匹配的,
05:40
so two images of the same person,
121
340060
2040
即两张照片均来自同一个人,
05:42
or a mismatch,
122
342140
1160
或是不匹配的,
05:43
two images of different people.
123
343340
1640
即两张照片均来自不同的人。
05:45
Some of you might be surprised to hear that the top two pairs are matches,
124
345420
5320
你们可能有人会惊讶于 上方两对其实是匹配的,
05:50
so images of the same people,
125
350740
1600
均来自同一个人,
05:52
and the bottom two pairs show mismatches,
126
352380
2240
以及下方两对是不匹配的,
05:54
so two different people.
127
354660
1720
即来自不同的人。
05:56
Now we know this task is particularly difficult
128
356700
2840
我们现在知道了分辨陌生的脸庞
05:59
when the images show identities that we're unfamiliar with.
129
359580
3240
这项任务其实特别困难。
06:03
This is because it's hard to take into account the changes
130
363140
2720
这是因为我们很难去辨别
06:05
that can happen to the face across time,
131
365900
2840
那些随着时间而产生的面部变化,
06:08
as well as over different situations,
132
368740
2040
又或是一些其他的变数,
06:10
so changes in facial expression or lighting, for instance.
133
370820
3000
例如面部表情又或是光线的变化。
06:14
We know this task is difficult for passport officers as well,
134
374620
3800
这项任务对护照官员来说也很困难,
06:18
and they also make mistakes.
135
378420
2000
并且他们也会犯错。
06:20
So this is why I thought it would be particularly interesting
136
380460
2880
这就是为什么我认为从这种安保角度下
06:23
to look at the relationship between insight and ability
137
383380
3000
去观察元认知洞察力 和真实能力之间的关系
06:26
in this important security context.
138
386380
2360
将会特别有趣。
06:28
So given the issues we’ve described already
139
388740
2080
考虑到我们在看待整体分数和自我评估时
06:30
with looking at overall scores and people’s self-estimates,
140
390860
2920
所描述的问题,
06:33
I instead decided to focus on individual decision making.
141
393820
3520
我决定专注于个人决策。
06:37
So over a series of experiments,
142
397340
2120
在接下来一系列实验中,
06:39
I asked people to look at pairs of images
143
399460
2640
我的要求是观察一对照片
06:42
and decide whether they were a match or a mismatch.
144
402100
2520
并决定它们是否匹配。
06:45
But I also asked people to provide a rating of confidence in each decision.
145
405020
4280
我同时要求参与者 对自己的自信程度进行评估。
06:49
Now a good metacognitive insight
146
409980
2240
良好的元认知洞察力
06:52
would be reflected in people being much more confident
147
412260
3720
将会反映在那些做出正确选择
06:56
in decisions that turned out to be correct
148
416020
2440
且对自己的答案极为确信的人身上,
06:58
and much less confident in decisions that turned out to be incorrect.
149
418500
3800
反之错误的决定 往往伴随的是自信心的缺失。
07:03
So let's have a look at how people did.
150
423300
2040
让我们一起来看看他们的表现。
07:06
Now I think this pattern is particularly fascinating,
151
426260
2480
我认为这个图形特别有趣,
07:08
but also fairly intuitive.
152
428780
1720
但也相当直观。
07:10
Let's start with the red line,
153
430860
1520
从红线开始看,
07:12
which represents people's confidence in their incorrect responses.
154
432380
4280
它代表的是做出错误决策时 人们的自信程度。
07:17
So as you can see,
155
437020
1320
正如你所看到的,
07:18
it doesn't matter how good people were at the test overall,
156
438380
3040
无论大家整体上做得多好
07:21
represented by the score on the X-axis at the bottom there;
157
441460
3320
(下方X轴上的分数作代表);
07:24
people were approximately the same
158
444780
2360
答错的人对自己的信心程度
07:27
in terms of their confidence when they were incorrect.
159
447140
3080
大致相同。
07:30
Now what's interesting is the blue line,
160
450580
2080
现在有趣的是蓝线,
07:32
which represents confidence when people were correct in their decisions.
161
452700
4040
它代表的是做出正确决策时人们的自信程度。
07:36
As you can see, the best performers on the test
162
456780
2760
如你所见,比起答错的人,
07:39
were much more confident in their correct responses
163
459580
3200
那些表现优越的人
07:42
in comparison with their incorrect ones.
164
462780
2360
对自己所做出的决策要自信的多。
07:45
So shows good metacognitive insight.
165
465180
2400
这显示了良好的元认知洞察力。
07:47
The weakest performers, on the other hand,
166
467860
2120
另一方面,表现最差的人
07:50
were no different in their confidence
167
470020
1880
对自己的答案
07:51
for their correct and incorrect responses,
168
471940
2400
所具有的自信程度大抵一致,
07:54
shown here in the green circle.
169
474340
2360
正如绿圈所示。
07:56
And so they show poor metacognitive insight.
170
476700
2920
这说明他们不具备良好的元认知洞察力。
07:59
So what might be going on with these weak performers?
171
479620
2720
这些表现较差的人到底是怎么一回事呢?
08:02
Now it could be the case that they have some sense
172
482340
2360
有可能他们感知到了
08:04
they tend to perform poorly on tests in general,
173
484700
2520
自己在测试中表现得较差,
08:07
and so they're just less confident overall in their responses.
174
487260
3160
因此对自己的决策较为不自信。
08:10
However, I didn't find that pattern of lower confidence in my data,
175
490460
4160
然而我并没有在我的数据中 观察到自信心较低的规律,
08:14
at least with individual decision-making.
176
494620
2320
至少在个人决策方面是如此。
08:16
Instead, it's more likely that they were more confident in their correct responses
177
496980
4360
这更像是比起错误答案,
08:21
in comparison with their incorrect ones.
178
501380
2080
他们对自己的正确答案更有自信。
08:23
But this was simply unrelated to their accuracy on each trial
179
503820
3600
但这与他们在每项试验中的准确率完全无关,
08:27
because they had poor insight.
180
507460
1920
因为他们的洞察力很差。
08:29
So how does this all fit in with the Dunning-Kruger effect?
181
509820
3480
那么邓宁-克鲁格效应如何适用于这一切呢?
08:33
So Dunning and Kruger argued that the weakest performers
182
513820
3680
邓宁和克鲁格认为表现最差的人
08:37
show the least amount of insight
183
517540
2320
具备较弱的洞察力
08:39
and they overestimated their performance.
184
519860
2760
并往往高估自己的表现。
08:43
And that's implied that they had greater confidence.
185
523420
2960
这意味着他们更有信心。
08:46
Now, we didn't see that here in our data.
186
526780
3040
我们的数据没有体现这一点。
08:49
The weakest performers didn't seem to be overly confident.
187
529820
2880
表现最差的人并没有过度自信。
08:53
However, the Dunning-Kruger effect
188
533020
1640
但是,邓宁-克鲁格效应
08:54
also describes how insight depends on ability.
189
534700
3760
也描述了洞察力如何取决于个人能力。
08:59
And so the weakest performers showed the least amount of insight,
190
539020
3640
表现最差的人表现出的洞察力最弱,
09:02
overestimating their performance in their case.
191
542660
2720
因此往往高估了自己的表现。
09:05
As we've just seen,
192
545780
1160
正如我们刚才所见,
09:06
the weakest performers do seem to show the least amount of insight.
193
546940
3840
表现最差的群体体现出的洞察力似乎最弱。
09:10
Here, they couldn't differentiate between their correct and incorrect responses.
194
550820
4160
他们无法区分正确和错误的决策。
09:15
So insight does appear to depend on ability,
195
555540
2760
因此,洞察力似乎确实取决于能力,
09:18
but not in the way that Dunning and Kruger originally thought.
196
558340
3400
但并非像邓宁和克鲁格所想的那样。
09:21
So if there are two things I'd like you to remember from this talk
197
561780
3120
如果我想让你从这次演讲中记住两件事
09:24
and take home, think about afterwards,
198
564900
2480
并带回家思考,
09:27
they are: first, more broadly, science is always updating.
199
567380
4680
这两件事就是:首先,更广泛地说, 科学一直在更新。
09:32
Research comes along, new evidence that may contradict
200
572100
3240
随着不停的研究, 新的证据可能与以前的研究相矛盾
09:35
or even disprove previous work.
201
575340
2120
甚至是推翻以前的研究成果。
09:37
In this case, the Dunning-Kruger effect may well not be a thing,
202
577900
3600
在这种情况下,邓宁-克鲁格效应 很可能不适用。
09:41
despite the fact that it's so prevalent in popular culture.
203
581540
3320
尽管它在流行文化中非常普遍。
09:44
Second, insight depends on ability.
204
584860
2880
其次,洞察力取决于能力。
09:48
For the weakest performers,
205
588100
1520
对于表现最差的人来说,
09:49
there's no difference between their confidence
206
589620
2200
他们对于正确和错误回答
09:51
for correct and incorrect responses.
207
591820
1760
所具有的信心没有区别。
09:53
They have poor insight, they can't tell the difference.
208
593580
2880
他们的洞察力很差, 他们无法分辨出区别。
09:56
For strong performers,
209
596500
1840
对于表现优异的人来说,
09:58
when they're giving a correct answer,
210
598380
1800
当他们给出正确答案时,
10:00
they're much more confident.
211
600180
1440
他们会更加自信。
10:02
Of course, the inverse isn't always true.
212
602020
2320
当然,反过来却不一定是正确的。
10:04
Being more confident doesn't mean that you're right.
213
604380
2440
更自信并不意味着你是对的。
10:06
You might be wrong and simply have poor insight.
214
606860
2960
你有可能只是因为洞察力弱。
10:10
So in our everyday lives,
215
610420
2040
因此在我们的日常生活中,
10:12
you should think about who it is that you ask the opinions of.
216
612500
3120
你应该考虑谁更适合征求意见。
10:16
If someone is an expert in their field,
217
616180
3080
如果他是自己所在领域里的专家,
10:19
then if they're more confident, they're probably right,
218
619300
3000
那么如果他们更自信, 他们可能是对的,
10:22
but if they're unsure,
219
622340
1480
但是如果他们不确定,
10:23
this is also informative and tells us something useful.
220
623860
3240
这也告诉我们一些有用的资讯。
10:27
It's much more sensible to find someone that we know is knowledgeable in an area,
221
627500
4400
找一个在特定领域更专业的人要明智得多,
10:31
rather than someone who is simply confident in their opinion,
222
631940
2880
而不是找一个单纯对自己观点 充满信心的人,
10:34
because confidence is easily misplaced.
223
634820
2200
因为信心是很容易被错用的。
10:37
And finally,
224
637780
1360
最后,
10:39
for those of you who are still wondering how good my risotto actually is,
225
639180
3680
对于那些想知道我的意大利烩饭 究竟有多好吃的人,
10:42
that may have to wait for a future talk.
226
642860
2280
这可能得等到下一次讲座了。
10:45
Thank you.
227
645180
1120
谢谢。
10:46
(Applause)
228
646340
3400
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7