Are You Really As Good at Something As You Think? | Robin Kramer | TED

96,020 views ・ 2023-11-16

TED


请双击下面的英文字幕来播放视频。

翻译人员: Joyce Lim 校对人员: Yip Yan Yeung
00:04
I don't mean to brag,
0
4300
1760
我无意吹嘘,
00:06
but there are lots of things that I'm pretty average at.
1
6060
3000
但在很多方面我都相当平庸。
00:09
From playing table tennis,
2
9100
1400
从打乒乓球、
00:10
cooking risotto, finding countries on a map,
3
10500
2560
做意大利烩饭、查看地图,
00:13
just to name a few.
4
13100
1400
仅举几例。
00:14
Now, in our everyday lives,
5
14540
1440
在我们的日常生活中,
00:16
we're not typically assessed on our skills and abilities,
6
16020
2760
我们的能力和技能通常不被外界评估,
00:18
so we're forced to rely on our own judgments.
7
18820
2400
因此我们被迫依靠自己的判断。
00:21
I may think I'm pretty decent with Italian cuisine,
8
21260
3080
我可能认为自己在意大利料理方面不算太差,
00:24
but how accurate is my assessment?
9
24380
2520
但我的评估有多准确呢?
00:26
Now, what we’re talking about here is metacognition:
10
26940
3080
我想讲的是“元认知”:
00:30
our insight into our own thought processes.
11
30020
2920
我们对自己思维过程的见解。
00:33
If I have good metacognitive insight,
12
33620
2320
如果我具备良好的元认知洞察力,
00:35
then how good I think I am at a particular task
13
35940
2880
那么我预期的表现
00:38
should line up pretty well with how good I actually am.
14
38860
3320
应该与我的实际表现吻合。
00:42
Of course, in the real world this is often not the case.
15
42180
2840
当然,在现实世界中往往与之相反。
00:45
And indeed, we probably all know someone
16
45780
2160
实际上,我们可能都认识
00:47
who thinks they're great at navigating maps,
17
47980
2760
一个自认为很擅长看地图的人,
00:50
when in fact the reality is often the opposite.
18
50780
2920
而实际情况却恰恰相反。
00:53
Not to name any names, of course, but still.
19
53740
2960
不指名道姓,但事实就是如此。
00:57
Perhaps you think this applies to other people
20
57260
2400
也许你认为这只适用于其他人,
00:59
and that you, yourself, wouldn't make this sort of mistake.
21
59700
3080
而你自己绝对不会犯这样的错误。
01:02
So let's try a quick experiment.
22
62780
2600
让我们来进行一个快速的实验。
01:05
I want you to think about how you would rate yourself
23
65380
2680
我想让你评估一下
01:08
in terms of your driving ability.
24
68100
1960
自己的驾驶能力。
01:10
Would you rate yourself as below average, average
25
70060
2480
你认为自己低于平均水平、处于平均水平
01:12
or perhaps even above average?
26
72580
2360
又或是高于平均水平呢?
01:15
So most people rate themselves as above average,
27
75380
3560
大多数人都认为自己高于平均水平,
01:18
which, of course, is mathematically impossible,
28
78980
2320
而这从数学的角度是不可能的,
01:21
and something that we call the "better than average" effect.
29
81300
3120
我们称之为“优于平均效应”。
01:24
This is just one of a number of cognitive biases that we see
30
84460
3160
这只是人们在判断自身能力时
01:27
when people judge their own abilities.
31
87620
2200
所出现的众多认知偏差之一。
01:30
Today, I'm going to focus on a related bias,
32
90180
2560
今天,我将重点讨论一个相关的认知偏差,
01:32
the Dunning-Kruger effect.
33
92740
1880
即邓宁-克鲁格效应。
01:34
So back in 1999,
34
94660
1680
早在 1999 年,
01:36
two psychologists at Cornell University, Dunning and Kruger,
35
96380
3720
两位来自康奈尔大学的心理学家, 邓宁和克鲁格,
01:40
described the mistakes people make when estimating their own abilities.
36
100100
4480
描述了人们在自我能力评估时所犯的错误。
01:44
So if we take a sample of people and we divide them into four groups
37
104580
3320
如果我们随机选人然后
01:47
based on their scores on a test,
38
107940
1840
根据他们测试的分数将他们分为四组,
01:49
and order those groups from lowest to highest.
39
109820
2400
再从低到高对这些组进行排序。
01:52
If we plot those scores on a graph along with their self-estimates,
40
112260
3880
如果将这些分数与他们的自我评估数值 一起绘制在图表上,
01:56
so how well they thought they did on the test,
41
116180
2680
我们所看到的这个图形
01:58
this is the pattern that we see.
42
118900
1840
就是他们对这项测试的预期表现。
02:00
So the red line is a steep slope representing their actual scores.
43
120780
4800
红色的陡坡代表的是他们实际分数。
02:05
As it must be, since we ordered the groups
44
125580
2040
这是必然的,毕竟我们原先就是
02:07
based on their scores in the first place.
45
127620
2120
根据小组分数进行排序的。
02:09
Now what's interesting is the blue shallower line.
46
129780
3320
真正有趣的是相对平缓的蓝线。
02:13
This represents their self-estimates.
47
133140
2400
这代表他们的自我评估数值。
02:15
So, how good they thought they did on the test.
48
135580
2520
那么,他们认为自己在测试中的表现多好呢。
02:18
Now the Dunning-Kruger effect describes how the weakest performers
49
138540
4680
邓宁-克鲁格效应描述了表现最差的人如何
02:23
significantly overestimate their performance,
50
143220
2720
过于高估自己的表现,
02:25
shown here in the green oval.
51
145980
1920
就如这个绿色椭圆所示。
02:28
The explanation for this, according to Dunning and Kruger,
52
148500
3480
根据邓宁和克鲁格的说法,对此的解释
02:31
is that insight and ability rely on the same thing.
53
151980
3840
是洞察力和能力相辅相成。
02:35
So if I'm poor at a task,
54
155860
1920
如果我做事表现不佳,
02:37
I also lack the metacognitive insight to accurately assess my ability.
55
157820
4800
我也会因此缺乏元认知洞察力 而无法准确评估自身能力。
02:43
Now this pattern has been seen again and again
56
163540
2320
这种趋势在许多领域中
02:45
across a number of domains,
57
165860
1440
反复出现,
02:47
from driving skill to exam-taking, even chess-playing.
58
167340
3440
从驾驶技术到考试,甚至是下棋。
02:51
However, in recent years,
59
171620
1600
然而近年来,
02:53
a number of criticisms have been leveled at this approach,
60
173220
3000
这种方法受到了许多批评,
02:56
and we now have reason to believe
61
176260
1600
但我们现在有理由相信
02:57
that this pattern results is virtually unavoidable.
62
177900
3000
这种模式几乎是不可避免的。
03:02
One reason for this is the statistical effect,
63
182460
3000
其中一个原因是统计效应,
03:05
regression to the mean.
64
185460
1520
即回归均值。
03:07
Now this is something that comes about
65
187380
1840
当我们有两个相互关联
03:09
when we have two measures that are related but not perfectly so.
66
189220
3720
但并不一致的衡量标准时, 就会出现这种情况。
03:13
So imagine we have a sample of people
67
193540
1840
试想我们随机抽人
03:15
and we measure their heights and their weights.
68
195420
2440
并测量他们的身高和体重。
03:17
Now height and weight are related,
69
197900
1880
身高和体重是有关联的,
03:19
tall people are typically heavier,
70
199820
2600
高的人通常更重,
03:22
but the relationship is far from perfect.
71
202420
2480
但是这个说法并非无懈可击。
03:24
So unlike in the figure at the top here,
72
204940
3240
与上图红线所示不同,
03:28
the shortest people in red won't all be the lightest people.
73
208220
4000
在红色区块的人虽然最矮但未必最轻。
03:32
Some of them will be overweight or particularly muscular, for example.
74
212220
3520
例如,有些人会超重或肌肉特别发达。
03:35
Similarly at the top end,
75
215780
1640
在另一端,同样的,
03:37
the tallest people in blue won't all be the heaviest people.
76
217460
3800
蓝色区块的人虽然最高但未必最重。
03:41
Some of them will be underweight, and so on.
77
221260
2600
他们当中有些人会体重不足,依此类推。
03:43
Now as a result, on average,
78
223900
2080
因此,平均而言,
03:46
the shortest people will rank higher for weight than they do for height,
79
226020
4200
比起身高来说身材矮小的人 会在体重上排名更高,
03:50
and the tallest people will rank lower for weight than they do for height
80
230220
3880
而最高的人比起身高来说 体重排名更低
03:54
producing this blue line here
81
234140
1800
因而产生这条蓝线
03:55
and the crossover pattern you're now becoming familiar with.
82
235980
3040
和这个两线之间的交点。
03:59
Now, some people might put forward a spurious explanation
83
239420
3120
有些人可能会试图提出一些谬论,
04:02
for why short people are relatively overweight
84
242540
2840
说明为什么个子矮小的人相对超重,
04:05
or tall people relatively underweight,
85
245420
2120
或者个子高大的人相对过瘦,
04:07
when in fact no explanation is needed.
86
247580
2400
但这实际上并不需要任何解释。
04:10
Perhaps more compelling a reason to doubt the Dunning-Kruger effect
87
250700
4240
或许质疑邓宁-克鲁格效应更合理的原因
04:14
is that we can produce the same pattern in our data
88
254980
2640
在于我们可以用已经损坏的数据
04:17
when our data is entirely meaningless.
89
257660
2640
复刻出相同的图形。
04:20
So if we collect people's test scores
90
260340
2720
因此如果我们收集人们的测试分数
04:23
along with their self-estimates of those scores,
91
263100
2640
以及他们的自我评估数值,
04:25
but then we shuffle those self-estimates
92
265740
2520
随后将这些自我评估数值随机打乱
04:28
and then analyze as before,
93
268260
2000
再像之前一样进行分析,
04:30
then we still find that same pattern in the data.
94
270260
2760
我们仍然会发现同样的规律。
04:33
Of course, any effect that we can find
95
273420
2160
当然,在随机打乱的数据中
04:35
with shuffled or randomized data
96
275580
2480
发现到的的任何差异
04:38
is one that we should surely be suspicious of.
97
278100
2320
都值得被关注。
04:41
So, given these and other issues with the Dunning-Kruger approach,
98
281140
4240
考虑到邓宁-克鲁格效应 存在的种种问题,
04:45
I was saddened and disappointed
99
285420
1920
当我在发现到这个趋势逐渐
04:47
and, frankly, a little annoyed to discover
100
287380
2600
适用于我所在的领域,
04:49
that the same approach was now being applied
101
289980
2320
即面部配对时,
04:52
in my field of expertise,
102
292340
1480
我感到伤心和失望,
04:53
which is face-matching.
103
293860
1520
坦白说也有点烦躁。
04:55
Now, this is a task where we're showing two images of faces
104
295420
3160
上图显示的工作便是对比两张脸部图像
04:58
or an image and a live person,
105
298620
1640
或是对比一张图像和一个活人,
05:00
and we're asked to decide whether they show the same person
106
300300
2760
并被要求判断究竟来自同一个人
05:03
or two different people.
107
303100
1400
又或是来自不同的人。
05:04
Now, we've all stood in line at passport control,
108
304540
2320
我们则在边检柜台排队,
05:06
anxiously awaiting the passport officer's decision
109
306900
3120
焦急地等待官员决定
05:10
as to whether our ID photos look sufficiently like us or not.
110
310060
3640
我们的样子是否与证件照片吻合。
05:14
Indeed, I've included at the top here
111
314140
2120
事实上,我在上方列出了
05:16
some examples of ID images from my own life,
112
316300
3240
一些我自己生活中的证件照片为例,
05:19
just to illustrate some variability.
113
319580
2200
只是为了说明一些可变性。
05:21
Some proud moments in photographic history,
114
321780
2040
我相信你也会同意这些照片
05:23
I'm sure you'll agree.
115
323860
1360
展现着一些摄影史上令人骄傲的时刻。
05:25
And so what I'd like to do now
116
325220
1840
所以我现在想做的
05:27
is first see how well you might perform as passport officers.
117
327060
3760
就是先测试你们 作为护照官员能表现得多好。
05:31
So here are four pairs of images,
118
331180
2160
这里有四组照片,
05:33
some students’ ID images and some student photos.
119
333340
2880
一些学生证件照和学生自己的照片。
05:36
For each pair, I'd like you to decide whether it's a match,
120
336260
3800
我希望你们来判断每一组照片是匹配的,
05:40
so two images of the same person,
121
340060
2040
即两张照片均来自同一个人,
05:42
or a mismatch,
122
342140
1160
或是不匹配的,
05:43
two images of different people.
123
343340
1640
即两张照片均来自不同的人。
05:45
Some of you might be surprised to hear that the top two pairs are matches,
124
345420
5320
你们可能有人会惊讶于 上方两对其实是匹配的,
05:50
so images of the same people,
125
350740
1600
均来自同一个人,
05:52
and the bottom two pairs show mismatches,
126
352380
2240
以及下方两对是不匹配的,
05:54
so two different people.
127
354660
1720
即来自不同的人。
05:56
Now we know this task is particularly difficult
128
356700
2840
我们现在知道了分辨陌生的脸庞
05:59
when the images show identities that we're unfamiliar with.
129
359580
3240
这项任务其实特别困难。
06:03
This is because it's hard to take into account the changes
130
363140
2720
这是因为我们很难去辨别
06:05
that can happen to the face across time,
131
365900
2840
那些随着时间而产生的面部变化,
06:08
as well as over different situations,
132
368740
2040
又或是一些其他的变数,
06:10
so changes in facial expression or lighting, for instance.
133
370820
3000
例如面部表情又或是光线的变化。
06:14
We know this task is difficult for passport officers as well,
134
374620
3800
这项任务对护照官员来说也很困难,
06:18
and they also make mistakes.
135
378420
2000
并且他们也会犯错。
06:20
So this is why I thought it would be particularly interesting
136
380460
2880
这就是为什么我认为从这种安保角度下
06:23
to look at the relationship between insight and ability
137
383380
3000
去观察元认知洞察力 和真实能力之间的关系
06:26
in this important security context.
138
386380
2360
将会特别有趣。
06:28
So given the issues we’ve described already
139
388740
2080
考虑到我们在看待整体分数和自我评估时
06:30
with looking at overall scores and people’s self-estimates,
140
390860
2920
所描述的问题,
06:33
I instead decided to focus on individual decision making.
141
393820
3520
我决定专注于个人决策。
06:37
So over a series of experiments,
142
397340
2120
在接下来一系列实验中,
06:39
I asked people to look at pairs of images
143
399460
2640
我的要求是观察一对照片
06:42
and decide whether they were a match or a mismatch.
144
402100
2520
并决定它们是否匹配。
06:45
But I also asked people to provide a rating of confidence in each decision.
145
405020
4280
我同时要求参与者 对自己的自信程度进行评估。
06:49
Now a good metacognitive insight
146
409980
2240
良好的元认知洞察力
06:52
would be reflected in people being much more confident
147
412260
3720
将会反映在那些做出正确选择
06:56
in decisions that turned out to be correct
148
416020
2440
且对自己的答案极为确信的人身上,
06:58
and much less confident in decisions that turned out to be incorrect.
149
418500
3800
反之错误的决定 往往伴随的是自信心的缺失。
07:03
So let's have a look at how people did.
150
423300
2040
让我们一起来看看他们的表现。
07:06
Now I think this pattern is particularly fascinating,
151
426260
2480
我认为这个图形特别有趣,
07:08
but also fairly intuitive.
152
428780
1720
但也相当直观。
07:10
Let's start with the red line,
153
430860
1520
从红线开始看,
07:12
which represents people's confidence in their incorrect responses.
154
432380
4280
它代表的是做出错误决策时 人们的自信程度。
07:17
So as you can see,
155
437020
1320
正如你所看到的,
07:18
it doesn't matter how good people were at the test overall,
156
438380
3040
无论大家整体上做得多好
07:21
represented by the score on the X-axis at the bottom there;
157
441460
3320
(下方X轴上的分数作代表);
07:24
people were approximately the same
158
444780
2360
答错的人对自己的信心程度
07:27
in terms of their confidence when they were incorrect.
159
447140
3080
大致相同。
07:30
Now what's interesting is the blue line,
160
450580
2080
现在有趣的是蓝线,
07:32
which represents confidence when people were correct in their decisions.
161
452700
4040
它代表的是做出正确决策时人们的自信程度。
07:36
As you can see, the best performers on the test
162
456780
2760
如你所见,比起答错的人,
07:39
were much more confident in their correct responses
163
459580
3200
那些表现优越的人
07:42
in comparison with their incorrect ones.
164
462780
2360
对自己所做出的决策要自信的多。
07:45
So shows good metacognitive insight.
165
465180
2400
这显示了良好的元认知洞察力。
07:47
The weakest performers, on the other hand,
166
467860
2120
另一方面,表现最差的人
07:50
were no different in their confidence
167
470020
1880
对自己的答案
07:51
for their correct and incorrect responses,
168
471940
2400
所具有的自信程度大抵一致,
07:54
shown here in the green circle.
169
474340
2360
正如绿圈所示。
07:56
And so they show poor metacognitive insight.
170
476700
2920
这说明他们不具备良好的元认知洞察力。
07:59
So what might be going on with these weak performers?
171
479620
2720
这些表现较差的人到底是怎么一回事呢?
08:02
Now it could be the case that they have some sense
172
482340
2360
有可能他们感知到了
08:04
they tend to perform poorly on tests in general,
173
484700
2520
自己在测试中表现得较差,
08:07
and so they're just less confident overall in their responses.
174
487260
3160
因此对自己的决策较为不自信。
08:10
However, I didn't find that pattern of lower confidence in my data,
175
490460
4160
然而我并没有在我的数据中 观察到自信心较低的规律,
08:14
at least with individual decision-making.
176
494620
2320
至少在个人决策方面是如此。
08:16
Instead, it's more likely that they were more confident in their correct responses
177
496980
4360
这更像是比起错误答案,
08:21
in comparison with their incorrect ones.
178
501380
2080
他们对自己的正确答案更有自信。
08:23
But this was simply unrelated to their accuracy on each trial
179
503820
3600
但这与他们在每项试验中的准确率完全无关,
08:27
because they had poor insight.
180
507460
1920
因为他们的洞察力很差。
08:29
So how does this all fit in with the Dunning-Kruger effect?
181
509820
3480
那么邓宁-克鲁格效应如何适用于这一切呢?
08:33
So Dunning and Kruger argued that the weakest performers
182
513820
3680
邓宁和克鲁格认为表现最差的人
08:37
show the least amount of insight
183
517540
2320
具备较弱的洞察力
08:39
and they overestimated their performance.
184
519860
2760
并往往高估自己的表现。
08:43
And that's implied that they had greater confidence.
185
523420
2960
这意味着他们更有信心。
08:46
Now, we didn't see that here in our data.
186
526780
3040
我们的数据没有体现这一点。
08:49
The weakest performers didn't seem to be overly confident.
187
529820
2880
表现最差的人并没有过度自信。
08:53
However, the Dunning-Kruger effect
188
533020
1640
但是,邓宁-克鲁格效应
08:54
also describes how insight depends on ability.
189
534700
3760
也描述了洞察力如何取决于个人能力。
08:59
And so the weakest performers showed the least amount of insight,
190
539020
3640
表现最差的人表现出的洞察力最弱,
09:02
overestimating their performance in their case.
191
542660
2720
因此往往高估了自己的表现。
09:05
As we've just seen,
192
545780
1160
正如我们刚才所见,
09:06
the weakest performers do seem to show the least amount of insight.
193
546940
3840
表现最差的群体体现出的洞察力似乎最弱。
09:10
Here, they couldn't differentiate between their correct and incorrect responses.
194
550820
4160
他们无法区分正确和错误的决策。
09:15
So insight does appear to depend on ability,
195
555540
2760
因此,洞察力似乎确实取决于能力,
09:18
but not in the way that Dunning and Kruger originally thought.
196
558340
3400
但并非像邓宁和克鲁格所想的那样。
09:21
So if there are two things I'd like you to remember from this talk
197
561780
3120
如果我想让你从这次演讲中记住两件事
09:24
and take home, think about afterwards,
198
564900
2480
并带回家思考,
09:27
they are: first, more broadly, science is always updating.
199
567380
4680
这两件事就是:首先,更广泛地说, 科学一直在更新。
09:32
Research comes along, new evidence that may contradict
200
572100
3240
随着不停的研究, 新的证据可能与以前的研究相矛盾
09:35
or even disprove previous work.
201
575340
2120
甚至是推翻以前的研究成果。
09:37
In this case, the Dunning-Kruger effect may well not be a thing,
202
577900
3600
在这种情况下,邓宁-克鲁格效应 很可能不适用。
09:41
despite the fact that it's so prevalent in popular culture.
203
581540
3320
尽管它在流行文化中非常普遍。
09:44
Second, insight depends on ability.
204
584860
2880
其次,洞察力取决于能力。
09:48
For the weakest performers,
205
588100
1520
对于表现最差的人来说,
09:49
there's no difference between their confidence
206
589620
2200
他们对于正确和错误回答
09:51
for correct and incorrect responses.
207
591820
1760
所具有的信心没有区别。
09:53
They have poor insight, they can't tell the difference.
208
593580
2880
他们的洞察力很差, 他们无法分辨出区别。
09:56
For strong performers,
209
596500
1840
对于表现优异的人来说,
09:58
when they're giving a correct answer,
210
598380
1800
当他们给出正确答案时,
10:00
they're much more confident.
211
600180
1440
他们会更加自信。
10:02
Of course, the inverse isn't always true.
212
602020
2320
当然,反过来却不一定是正确的。
10:04
Being more confident doesn't mean that you're right.
213
604380
2440
更自信并不意味着你是对的。
10:06
You might be wrong and simply have poor insight.
214
606860
2960
你有可能只是因为洞察力弱。
10:10
So in our everyday lives,
215
610420
2040
因此在我们的日常生活中,
10:12
you should think about who it is that you ask the opinions of.
216
612500
3120
你应该考虑谁更适合征求意见。
10:16
If someone is an expert in their field,
217
616180
3080
如果他是自己所在领域里的专家,
10:19
then if they're more confident, they're probably right,
218
619300
3000
那么如果他们更自信, 他们可能是对的,
10:22
but if they're unsure,
219
622340
1480
但是如果他们不确定,
10:23
this is also informative and tells us something useful.
220
623860
3240
这也告诉我们一些有用的资讯。
10:27
It's much more sensible to find someone that we know is knowledgeable in an area,
221
627500
4400
找一个在特定领域更专业的人要明智得多,
10:31
rather than someone who is simply confident in their opinion,
222
631940
2880
而不是找一个单纯对自己观点 充满信心的人,
10:34
because confidence is easily misplaced.
223
634820
2200
因为信心是很容易被错用的。
10:37
And finally,
224
637780
1360
最后,
10:39
for those of you who are still wondering how good my risotto actually is,
225
639180
3680
对于那些想知道我的意大利烩饭 究竟有多好吃的人,
10:42
that may have to wait for a future talk.
226
642860
2280
这可能得等到下一次讲座了。
10:45
Thank you.
227
645180
1120
谢谢。
10:46
(Applause)
228
646340
3400
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog