Daniel Wolpert: The real reason for brains

341,413 views ・ 2011-11-03

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Gadjanski Lektor: Ana Zivanovic-Nenadovic
00:15
I'm a neuroscientist.
0
15260
2000
Ja sam neurobiolog.
00:17
And in neuroscience,
1
17260
2000
U neurobiologiji,
00:19
we have to deal with many difficult questions about the brain.
2
19260
3000
moramo da se bavimo mnogim teškim pitanjima o mozgu.
00:22
But I want to start with the easiest question
3
22260
2000
Ali, hteo bih da počnem od najlakšeg pitanja,
00:24
and the question you really should have all asked yourselves at some point in your life,
4
24260
3000
pitanja, koje bi svako trebalo sam sebi da postavi bar jednom u životu,
00:27
because it's a fundamental question
5
27260
2000
jer je to fundamentalno pitanje
00:29
if we want to understand brain function.
6
29260
2000
za razumevanje funkcije mozga.
00:31
And that is, why do we and other animals
7
31260
2000
A to je, zbog čega, mi i druge životinje
00:33
have brains?
8
33260
2000
imamo mozak?
00:35
Not all species on our planet have brains,
9
35260
3000
Nemaju sve vrste na našoj planeti mozak,
00:38
so if we want to know what the brain is for,
10
38260
2000
i ako želimo da znamo za šta služi mozak,
00:40
let's think about why we evolved one.
11
40260
2000
hajde da pogledamo zbog čega mozak evoluira.
00:42
Now you may reason that we have one
12
42260
2000
Mogli biste reći da imamo mozak
00:44
to perceive the world or to think,
13
44260
2000
za opažanje ili za razmišljanje,
00:46
and that's completely wrong.
14
46260
2000
a to je potpuno pogrešno.
00:48
If you think about this question for any length of time,
15
48260
3000
Ako razmišljate o ovom pitanju nešto duže,
00:51
it's blindingly obvious why we have a brain.
16
51260
2000
biće zaslepljujuće očigledno zbog čega imamo mozak.
00:53
We have a brain for one reason and one reason only,
17
53260
3000
Imamo mozak iz samo jednog jedinog razloga,
00:56
and that's to produce adaptable and complex movements.
18
56260
3000
a to je da bismo izvodili prilagodljivo i kompleksno kretanje.
00:59
There is no other reason to have a brain.
19
59260
2000
Ne postoji drugi razlog zašto imamo mozak.
01:01
Think about it.
20
61260
2000
Razmislite o tome.
01:03
Movement is the only way you have
21
63260
2000
Kretanje je jedini način koji imamo
01:05
of affecting the world around you.
22
65260
2000
da utičemo na svet oko sebe.
01:07
Now that's not quite true. There's one other way, and that's through sweating.
23
67260
3000
To nije sasvim tačno. Postoji još jedan način, a to je znojenje.
01:10
But apart from that,
24
70260
2000
Ali, pored toga,
01:12
everything else goes through contractions of muscles.
25
72260
2000
sve drugo se dešava putem kontrakcija mišića.
01:14
So think about communication --
26
74260
2000
Razmislite o komunikaciji
01:16
speech, gestures, writing, sign language --
27
76260
3000
govor, gestovi, pisanje, jezik znakova
01:19
they're all mediated through contractions of your muscles.
28
79260
3000
sve je to posredovano kroz kontrakcije mišića.
01:22
So it's really important to remember
29
82260
2000
Zato je veoma važno zapamtiti
01:24
that sensory, memory and cognitive processes are all important,
30
84260
4000
da su i senzorni i memorijski i kognitivni procesi važni,
01:28
but they're only important
31
88260
2000
ali su važni jedino
01:30
to either drive or suppress future movements.
32
90260
2000
kao pokretači ili supresori nekog budućeg kretanja.
01:32
There can be no evolutionary advantage
33
92260
2000
Nema evolutivne prednosti
01:34
to laying down memories of childhood
34
94260
2000
u formiranju sećanja iz detinjstva
01:36
or perceiving the color of a rose
35
96260
2000
ili u primećivanju kakve boje je ruža
01:38
if it doesn't affect the way you're going to move later in life.
36
98260
3000
ukoliko to ne utiče na način kretanja tokom života.
01:41
Now for those who don't believe this argument,
37
101260
2000
Za one koji ne veruju u ovo tvrđenje,
01:43
we have trees and grass on our planet without the brain,
38
103260
2000
imamo drveće i travu na našoj planeti, bez mozga,
01:45
but the clinching evidence is this animal here --
39
105260
2000
ali ključni dokaz je ova životinja ovde,
01:47
the humble sea squirt.
40
107260
2000
ovaj skromni morski plaštaš.
01:49
Rudimentary animal, has a nervous system,
41
109260
3000
Primitivna životinja, ima nervni sistem,
01:52
swims around in the ocean in its juvenile life.
42
112260
2000
pliva naokolo u okeanu dok je mlada.
01:54
And at some point of its life,
43
114260
2000
U jednom stupnju svog života,
01:56
it implants on a rock.
44
116260
2000
pričvrstiće se za kamen.
01:58
And the first thing it does in implanting on that rock, which it never leaves,
45
118260
3000
I prvo što će uraditi na tom kamenu, koji više nikad neće napustiti,
02:01
is to digest its own brain and nervous system
46
121260
3000
je da upotrebi svoj mozak i nervni sistem
02:04
for food.
47
124260
2000
kao hranu.
02:06
So once you don't need to move,
48
126260
2000
Znači, kad više ne morate da se krećete,
02:08
you don't need the luxury of that brain.
49
128260
3000
više vam ne treba takav luksuz kao što je mozak.
02:11
And this animal is often taken
50
131260
2000
Ova životinja se često uzima
02:13
as an analogy to what happens at universities
51
133260
2000
kao analogija za ono što se dešava na univerzitetima
02:15
when professors get tenure,
52
135260
2000
kada profesori dobiju stalnu poziciju,
02:17
but that's a different subject.
53
137260
2000
ali to je već druga tema.
02:19
(Applause)
54
139260
2000
(aplauz)
02:21
So I am a movement chauvinist.
55
141260
3000
Znači, ja sam šovinista za kretanje.
02:24
I believe movement is the most important function of the brain --
56
144260
2000
Verujem da je kretanje najvažnija funkcija mozga,
02:26
don't let anyone tell you that it's not true.
57
146260
2000
i ne dozvolite da vam iko kaže da to nije tačno.
02:28
Now if movement is so important,
58
148260
2000
E sad, ako je kretanje tako važno,
02:30
how well are we doing
59
150260
2000
koliko dobro nam uspeva
02:32
understanding how the brain controls movement?
60
152260
2000
da razumemo kako mozak kontroliše kretanje?
02:34
And the answer is we're doing extremely poorly; it's a very hard problem.
61
154260
2000
Odgovor je da nam vrlo loše uspeva; to je vrlo težak problem.
02:36
But we can look at how well we're doing
62
156260
2000
Možemo pogledati koliko nam uspeva
02:38
by thinking about how well we're doing building machines
63
158260
2000
po tome koliko dobro nam ide pravljenje mašina
02:40
which can do what humans can do.
64
160260
2000
koje mogu da izvršavaju ono što i ljudi.
02:42
Think about the game of chess.
65
162260
2000
Uzmite šah za primer.
02:44
How well are we doing determining what piece to move where?
66
164260
3000
Koliko dobro možemo da odredimo koju figuru da pomerimo i gde?
02:47
If you pit Garry Kasparov here, when he's not in jail,
67
167260
3000
Ako stavite Garija Kasparova ovde, kad nije u zatvoru,
02:50
against IBM's Deep Blue,
68
170260
2000
da igra protiv IBM-ovog "Deep Blue" kompjutera,
02:52
well the answer is IBM's Deep Blue will occasionally win.
69
172260
3000
pa, odgovor je da će IBM-ov "Deep Blue" povremeno pobediti.
02:55
And I think if IBM's Deep Blue played anyone in this room, it would win every time.
70
175260
3000
Mislim da, kad bi IBM-ov "Deep Blue" igrao protiv bilo koga u ovoj sali, da bi pobedio svaki put.
02:58
That problem is solved.
71
178260
2000
Taj problem je rešen.
03:00
What about the problem
72
180260
2000
A šta je sa problemom
03:02
of picking up a chess piece,
73
182260
2000
podizanja šahovske figure,
03:04
dexterously manipulating it and putting it back down on the board?
74
184260
3000
veštog pomeranja i vraćanja figure dole na tablu?
03:07
If you put a five year-old child's dexterity against the best robots of today,
75
187260
3000
Ako uporedite veštinu 5-godišnjeg deteta i najboljih robota današnjice,
03:10
the answer is simple:
76
190260
2000
odgovor je jednostavan:
03:12
the child wins easily.
77
192260
2000
dete lako pobeđuje.
03:14
There's no competition at all.
78
194260
2000
Tu uopšte i nema takmičenja.
03:16
Now why is that top problem so easy
79
196260
2000
A zašto je taj gornji problem tako lagan,
03:18
and the bottom problem so hard?
80
198260
2000
a donji problem tako težak?
03:20
One reason is a very smart five year-old
81
200260
2000
Jedan razlog, vrlo pametan 5-godišnjak
03:22
could tell you the algorithm for that top problem --
82
202260
2000
bi mogao da vam kaže algoritam za taj gornji problem
03:24
look at all possible moves to the end of the game
83
204260
2000
a to je da ispitate sve moguće poteze do kraja partije
03:26
and choose the one that makes you win.
84
206260
2000
i da izaberete onaj kojim pobeđujete.
03:28
So it's a very simple algorithm.
85
208260
2000
To je vrlo prost algoritam.
03:30
Now of course there are other moves,
86
210260
2000
Naravno da postoje drugi potezi,
03:32
but with vast computers we approximate
87
212260
2000
ali sa ogromnim kompjuterima možemo uprostiti,
03:34
and come close to the optimal solution.
88
214260
2000
i stići blizu optimalnom rešenju.
03:36
When it comes to being dexterous,
89
216260
2000
Što se tiče manuelne veštine,
03:38
it's not even clear what the algorithm is you have to solve to be dexterous.
90
218260
2000
čak nije jasno koji algoritam treba rešiti da bi se došlo do veštine.
03:40
And we'll see you have to both perceive and act on the world,
91
220260
2000
Videćemo da je potrebno da se okolina detektuje
03:42
which has a lot of problems.
92
222260
2000
i da se deluje na nju, što nosi mnogo problema.
03:44
But let me show you cutting-edge robotics.
93
224260
2000
Ali, da vam pokažem vrhunsku robotiku.
03:46
Now a lot of robotics is very impressive,
94
226260
2000
Mnogo robota je vrlo impresivno,
03:48
but manipulation robotics is really just in the dark ages.
95
228260
3000
ali manipulativna robotika je ipak tek na početku.
03:51
So this is the end of a Ph.D. project
96
231260
2000
Ovo je kraj jednog projekta za doktorat
03:53
from one of the best robotics institutes.
97
233260
2000
iz jednog od najboljih instituta za robotiku.
03:55
And the student has trained this robot
98
235260
2000
Ovaj student je istrenirao robota
03:57
to pour this water into a glass.
99
237260
2000
da sipa vodu u čašu.
03:59
It's a hard problem because the water sloshes about, but it can do it.
100
239260
3000
To je težak problem, jer se voda prosipa, ali robot uspeva.
04:02
But it doesn't do it with anything like the agility of a human.
101
242260
3000
Ali ne uspeva da to uradi tako spretno kao ljudsko biće.
04:05
Now if you want this robot to do a different task,
102
245260
3000
Ako želite da ovaj robot izvrši drugi zadatak,
04:08
that's another three-year Ph.D. program.
103
248260
3000
to zahteva novi trogodišnji doktorat.
04:11
There is no generalization at all
104
251260
2000
Uopšte ne postoji generalizacija
04:13
from one task to another in robotics.
105
253260
2000
za izvršavanje zadataka u robotici.
04:15
Now we can compare this
106
255260
2000
Možemo uporediti ovo
04:17
to cutting-edge human performance.
107
257260
2000
sa vrhunskim ljudskim izvođenjem.
04:19
So what I'm going to show you is Emily Fox
108
259260
2000
Sada ću vam pokazati Emili Foks,
04:21
winning the world record for cup stacking.
109
261260
3000
kako postavlja svetski rekord u slaganju čaša.
04:24
Now the Americans in the audience will know all about cup stacking.
110
264260
2000
Amerikanci u publici će svi znati šta je slaganje čaša.
04:26
It's a high school sport
111
266260
2000
To je srednjoškolski sport
04:28
where you have 12 cups you have to stack and unstack
112
268260
2000
u kom treba da prvo poslažete 12 čaša, a onda ih skupite
04:30
against the clock in a prescribed order.
113
270260
2000
u propisanom redosledu i za određeno vreme.
04:32
And this is her getting the world record in real time.
114
272260
3000
I evo nje kako postiže svetski rekord - snimak nije ubrzan.
04:39
(Laughter)
115
279260
8000
(smeh)
04:47
(Applause)
116
287260
5000
(aplauz)
04:52
And she's pretty happy.
117
292260
2000
I prilično je srećna.
04:54
We have no idea what is going on inside her brain when she does that,
118
294260
2000
Nemamo nikakvu ideju šta joj se dešava u mozgu dok to radi,
04:56
and that's what we'd like to know.
119
296260
2000
a to je ono što bismo hteli da znamo.
04:58
So in my group, what we try to do
120
298260
2000
U mojoj grupi pokušavamo da uradimo
05:00
is reverse engineer how humans control movement.
121
300260
3000
obratno inženjerstvo o ljudskoj kontroli kretanja.
05:03
And it sounds like an easy problem.
122
303260
2000
To zvuči kao jednostavan problem.
05:05
You send a command down, it causes muscles to contract.
123
305260
2000
Pošaljete komandu dole, to dovede do kontrakcije mišića.
05:07
Your arm or body moves,
124
307260
2000
Ruka ili telo se pokreću,
05:09
and you get sensory feedback from vision, from skin, from muscles and so on.
125
309260
3000
i dobijate senzornu povratnu informaciju od čula vida, iz kože, mišića itd.
05:12
The trouble is
126
312260
2000
Nevolja je u tome
05:14
these signals are not the beautiful signals you want them to be.
127
314260
2000
što ti signali nisu tako divni signali kao što bismo mi hteli.
05:16
So one thing that makes controlling movement difficult
128
316260
2000
Jedna stvar zbog koje je kontrolisanje kretanja teško
05:18
is, for example, sensory feedback is extremely noisy.
129
318260
3000
je, npr. to što je senzorna povratna sprega vrlo bučna.
05:21
Now by noise, I do not mean sound.
130
321260
3000
Pod "bučna", ne mislim na zvuk.
05:24
We use it in the engineering and neuroscience sense
131
324260
2000
To kažemo u inženjerstvu i neurobiologiji u smislu
05:26
meaning a random noise corrupting a signal.
132
326260
2000
da su to nasumične smetnje koje ometaju signal.
05:28
So the old days before digital radio when you were tuning in your radio
133
328260
3000
U doba pre digitalnog radija, kad ste tražili stanicu na radiju
05:31
and you heard "crrcckkk" on the station you wanted to hear,
134
331260
2000
i ako biste čuli "krrrrrr" tamo gde treba da bude stanica,
05:33
that was the noise.
135
333260
2000
to su bile smetnje - buka.
05:35
But more generally, this noise is something that corrupts the signal.
136
335260
3000
Ali, generalno, ta buka je nešto što ometa signal.
05:38
So for example, if you put your hand under a table
137
338260
2000
Tako na primer, ako stavite šaku ispod stola
05:40
and try to localize it with your other hand,
138
340260
2000
i pokušate da je locirate svojom drugom šakom,
05:42
you can be off by several centimeters
139
342260
2000
promašićete čak i za nekoliko centimetara
05:44
due to the noise in sensory feedback.
140
344260
2000
zbog smetnji u senzornoj povratnoj sprezi.
05:46
Similarly, when you put motor output on movement output,
141
346260
2000
Slično tome, i u prenosu motornog signala u sam pokret,
05:48
it's extremely noisy.
142
348260
2000
ima mnogo smetnji.
05:50
Forget about trying to hit the bull's eye in darts,
143
350260
2000
Ne pokušavajte da pogodite centar mete u pikadu,
05:52
just aim for the same spot over and over again.
144
352260
2000
pokušajte samo da pogodite istu tačku više puta za redom.
05:54
You have a huge spread due to movement variability.
145
354260
3000
Pogodićete jako mnogo tačaka, zbog varijabilnosti pokreta ruke.
05:57
And more than that, the outside world, or task,
146
357260
2000
I šta više, i spoljašnji svet, i sama radnja,
05:59
is both ambiguous and variable.
147
359260
2000
su nejasni i varijabilni.
06:01
The teapot could be full, it could be empty.
148
361260
2000
Čajnik je možda pun, a možda prazan.
06:03
It changes over time.
149
363260
2000
Menja se tokom vremena.
06:05
So we work in a whole sensory movement task soup of noise.
150
365260
4000
Mi radimo u pravoj čorbi raznih smetnji, nastalih zbog oseta, pokreta, radnje,
06:09
Now this noise is so great
151
369260
2000
Te smetnje su tako velike
06:11
that society places a huge premium
152
371260
2000
da društvo daje velike nagrade
06:13
on those of us who can reduce the consequences of noise.
153
373260
3000
onima koji uspeju da smanje posledice tih smetnji.
06:16
So if you're lucky enough to be able to knock a small white ball
154
376260
3000
Ako imate dovoljno sreće da ubacite belu lopticu
06:19
into a hole several hundred yards away using a long metal stick,
155
379260
3000
u rupu udaljenu nekoliko stotina metara, koristeći dugački, metalni štap,
06:22
our society will be willing to reward you
156
382260
2000
naše društvo će vas rado nagraditi
06:24
with hundreds of millions of dollars.
157
384260
3000
stotinama miliona dolara.
06:27
Now what I want to convince you of
158
387260
2000
Ono u šta želim da vas ubedim je
06:29
is the brain also goes through a lot of effort
159
389260
2000
da se i mozak takođe jako trudi
06:31
to reduce the negative consequences
160
391260
2000
da smanji negativne posledice
06:33
of this sort of noise and variability.
161
393260
2000
ovakve vrste smetnji i varijabilnosti.
06:35
And to do that, I'm going to tell you about a framework
162
395260
2000
I da bih vas ubedio, ispričaću vam o jednom konceptu
06:37
which is very popular in statistics and machine learning of the last 50 years
163
397260
3000
koji je vrlo popularan u statistici i teoriji učenja kod mašina,
06:40
called Bayesian decision theory.
164
400260
2000
u poslednjih 50 godina, i zove se Bajesova teorija odlučivanja.
06:42
And it's more recently a unifying way
165
402260
3000
I od skora je to način razmišljanja koji
06:45
to think about how the brain deals with uncertainty.
166
405260
3000
razmatra sve ono čime se mozak bori protiv neodređenosti.
06:48
And the fundamental idea is you want to make inferences and then take actions.
167
408260
3000
Osnovna ideja je da želite nešto da zaključite i onda da preduzmete neku akciju.
06:51
So let's think about the inference.
168
411260
2000
Hajde da razmislimo o zaključivanju.
06:53
You want to generate beliefs about the world.
169
413260
2000
Želite da formulišete neke stavove o svetu oko vas.
06:55
So what are beliefs?
170
415260
2000
Šta su ti stavovi?
06:57
Beliefs could be: where are my arms in space?
171
417260
2000
To može biti npr. "gde mi se nalaze ruke u prostoru?"
06:59
Am I looking at a cat or a fox?
172
419260
2000
"Da li sad gledam u mačku ili u lisicu?"
07:01
But we're going to represent beliefs with probabilities.
173
421260
3000
Ali, mi ćemo predstaviti stavove sa verovatnoćama.
07:04
So we're going to represent a belief
174
424260
2000
Zato ćemo predstaviti stav
07:06
with a number between zero and one --
175
426260
2000
koristeći broj između nula i jedan
07:08
zero meaning I don't believe it at all, one means I'm absolutely certain.
176
428260
3000
nula znači da uopšte ne verujem u stav, jedan znači da sam apsolutno siguran.
07:11
And numbers in between give you the gray levels of uncertainty.
177
431260
3000
A brojevi između prave sivu zonu neodređenosti.
07:14
And the key idea to Bayesian inference
178
434260
2000
I ključna ideja zaključivanja po Bajesovoj teoriji
07:16
is you have two sources of information
179
436260
2000
je da imate dva izvora informacija
07:18
from which to make your inference.
180
438260
2000
koje koristite da izvedete svoj zaključak.
07:20
You have data,
181
440260
2000
Imate podatke,
07:22
and data in neuroscience is sensory input.
182
442260
2000
"podaci" u neurobiologiji znače senzorni unos (input).
07:24
So I have sensory input, which I can take in to make beliefs.
183
444260
3000
Znači, imam senzorni unos, koji mogu da koristim da formiram stav.
07:27
But there's another source of information, and that's effectively prior knowledge.
184
447260
3000
Ali, postoji drugi izvor informacija, a to je prethodno znanje.
07:30
You accumulate knowledge throughout your life in memories.
185
450260
3000
Tokom života čovek nagomilava znanje u vidu sećanja.
07:33
And the point about Bayesian decision theory
186
453260
2000
Poenta Bajesove teorije odlučivanja je
07:35
is it gives you the mathematics
187
455260
2000
u tome da pruža matematički način
07:37
of the optimal way to combine
188
457260
2000
za optimalno kombinovanje
07:39
your prior knowledge with your sensory evidence
189
459260
2000
prethodnog znanja sa senzornim unosima
07:41
to generate new beliefs.
190
461260
2000
u cilju generisanja novih stavova.
07:43
And I've put the formula up there.
191
463260
2000
Stavio sam formulu tu gore.
07:45
I'm not going to explain what that formula is, but it's very beautiful.
192
465260
2000
Neću objašnjavati šta je ta formula, ali je to divna formula.
07:47
And it has real beauty and real explanatory power.
193
467260
3000
Vrlo je lepa i može dobro da objasni.
07:50
And what it really says, and what you want to estimate,
194
470260
2000
A šta zapravo govori, to je i ono što želite da procenite,
07:52
is the probability of different beliefs
195
472260
2000
to je verovatnoća za različite stavove
07:54
given your sensory input.
196
474260
2000
uzimajući u obzir senzorni unos o kom se radi.
07:56
So let me give you an intuitive example.
197
476260
2000
Evo da vam dam jedan intuitivno jasan primer.
07:58
Imagine you're learning to play tennis
198
478260
3000
Zamislite da učite da igrate tenis
08:01
and you want to decide where the ball is going to bounce
199
481260
2000
i hoćete da odlučite gde će lopta odskočiti
08:03
as it comes over the net towards you.
200
483260
2000
kada stigne preko mreže ka vama.
08:05
There are two sources of information
201
485260
2000
Postoje dva izvora informacija
08:07
Bayes' rule tells you.
202
487260
2000
po Bajesovom pravilu.
08:09
There's sensory evidence -- you can use visual information auditory information,
203
489260
3000
Postoji senzorni podatak - to može biti vizuelna ili audio informacija,
08:12
and that might tell you it's going to land in that red spot.
204
492260
3000
i to vam može ukazati gde da postavite tu crvenu tačku.
08:15
But you know that your senses are not perfect,
205
495260
3000
Ali, znate da čula nisu savršena,
08:18
and therefore there's some variability of where it's going to land
206
498260
2000
i zato postoji varijabilnost oko toga gde će loptica pasti
08:20
shown by that cloud of red,
207
500260
2000
što se vidi kao oblak crvene boje,
08:22
representing numbers between 0.5 and maybe 0.1.
208
502260
3000
koji predstavlja brojeve između 0.5 i možda 0.1
08:26
That information is available in the current shot,
209
506260
2000
Tu informaciju imamo za trenutni udarac,
08:28
but there's another source of information
210
508260
2000
ali postoji i drugi izvor informacija
08:30
not available on the current shot,
211
510260
2000
koji ne postoji pri trenutnom udarcu,
08:32
but only available by repeated experience in the game of tennis,
212
512260
3000
već se dobija iskustvom kroz ponovljeno igranje tenisa,
08:35
and that's that the ball doesn't bounce
213
515260
2000
i ta informacija je da loptica ne odskače
08:37
with equal probability over the court during the match.
214
517260
2000
sa istom verovatnoćom preko celog terena tokom meča.
08:39
If you're playing against a very good opponent,
215
519260
2000
Ako igrate protiv jako dobrog igrača,
08:41
they may distribute it in that green area,
216
521260
2000
takav protivnik može poslati lopticu u tu zelenu zonu
08:43
which is the prior distribution,
217
523260
2000
što je prethodna distribucija,
08:45
making it hard for you to return.
218
525260
2000
čime vama otežava da vratite lopticu.
08:47
Now both these sources of information carry important information.
219
527260
2000
Oba ova izvora pružaju važne informacije.
08:49
And what Bayes' rule says
220
529260
2000
A Bajesovo pravilo kaže
08:51
is that I should multiply the numbers on the red by the numbers on the green
221
531260
3000
da treba pomnožiti crvene brojeve sa zelenim brojevima
08:54
to get the numbers of the yellow, which have the ellipses,
222
534260
3000
da biste dobili žute brojeve, koji daju ove elipse,
08:57
and that's my belief.
223
537260
2000
i to je moj stav.
08:59
So it's the optimal way of combining information.
224
539260
3000
To je optimalni način kombinovanja informacija.
09:02
Now I wouldn't tell you all this if it wasn't that a few years ago,
225
542260
2000
Ne bih vam pričao o ovome da, pre nekoliko godina,
09:04
we showed this is exactly what people do
226
544260
2000
nismo pokazali da upravo na ovaj način
09:06
when they learn new movement skills.
227
546260
2000
ljudi uče nove tehnike kretanja.
09:08
And what it means
228
548260
2000
To znači
09:10
is we really are Bayesian inference machines.
229
550260
2000
da smo mi, u stvari, bajesovske mašine za zaključivanje.
09:12
As we go around, we learn about statistics of the world and lay that down,
230
552260
4000
Tokom života skupljamo statističke podatke o svetu i to pamtimo,
09:16
but we also learn
231
556260
2000
ali takođe i učimo
09:18
about how noisy our own sensory apparatus is,
232
558260
2000
da je naš sopstveni senzorni aparat pun smetnji,
09:20
and then combine those
233
560260
2000
i zatim to sve kombinujemo
09:22
in a real Bayesian way.
234
562260
2000
na pravi bajesovski način.
09:24
Now a key part to the Bayesian is this part of the formula.
235
564260
3000
Ključni deo Bajesovskog zaključivanja je ovaj deo formule.
09:27
And what this part really says
236
567260
2000
Taj deo zapravo govori
09:29
is I have to predict the probability
237
569260
2000
da ja treba da predvidim verovatnoću
09:31
of different sensory feedbacks
238
571260
2000
različitih senzornih povratnih reakcija
09:33
given my beliefs.
239
573260
2000
u odnosu na moje stavove.
09:35
So that really means I have to make predictions of the future.
240
575260
3000
To, u stvari, znači da treba da predvidim budućnost.
09:38
And I want to convince you the brain does make predictions
241
578260
2000
Želim da vas ubedim da mozak zaista pravi ta predviđanja
09:40
of the sensory feedback it's going to get.
242
580260
2000
o senzornim povratnim reakcijama koje će primiti.
09:42
And moreover, it profoundly changes your perceptions
243
582260
2000
I šta više, tako mozak značajno menja percepciju
09:44
by what you do.
244
584260
2000
zavisno od toga šta činite.
09:46
And to do that, I'll tell you
245
586260
2000
Da bih vas ubedio, ispričaću vam
09:48
about how the brain deals with sensory input.
246
588260
2000
kako mozak obrađuje senzorni unos.
09:50
So you send a command out,
247
590260
3000
Znači, pošaljete komandu napolje,
09:53
you get sensory feedback back,
248
593260
2000
dobijete povratnu senzornu reakciju,
09:55
and that transformation is governed
249
595260
2000
a na tu transformaciju utiču
09:57
by the physics of your body and your sensory apparatus.
250
597260
3000
vaše fizičke osobine i vaš senzorni aparat.
10:00
But you can imagine looking inside the brain.
251
600260
2000
Ali, zamislite da gledate u unutrašnjost mozga.
10:02
And here's inside the brain.
252
602260
2000
Evo unutrašnjosti mozga.
10:04
You might have a little predictor, a neural simulator,
253
604260
2000
Možda imate mali pokazivač, nervni simulator,
10:06
of the physics of your body and your senses.
254
606260
2000
fizičkih osobina vašeg tela i čula.
10:08
So as you send a movement command down,
255
608260
2000
Pa, kad pošaljete komandu za pokret,
10:10
you tap a copy of that off
256
610260
2000
pokrenete i kopiju te komande
10:12
and run it into your neural simulator
257
612260
2000
i ubacite u svoj nervni simulator
10:14
to anticipate the sensory consequences of your actions.
258
614260
4000
da biste predvideli senzorne posledice te akcije.
10:18
So as I shake this ketchup bottle,
259
618260
2000
Kada protresem ovu flašu kečapa,
10:20
I get some true sensory feedback as the function of time in the bottom row.
260
620260
3000
dobijam prave senzorne povratne reakcije u zavisnosti od vremena, u donjem redu.
10:23
And if I've got a good predictor, it predicts the same thing.
261
623260
3000
Ako imam dobar pokazivač, predvideće istu tu stvar.
10:26
Well why would I bother doing that?
262
626260
2000
A zašto da se bakćem da to sve radim?
10:28
I'm going to get the same feedback anyway.
263
628260
2000
Primiću iste povratne reakcije u svakom slučaju.
10:30
Well there's good reasons.
264
630260
2000
Pa, postoje dobri razlozi.
10:32
Imagine, as I shake the ketchup bottle,
265
632260
2000
Zamisliite, dok ja mućkam flašu kečapa,
10:34
someone very kindly comes up to me and taps it on the back for me.
266
634260
3000
neko mi se tiho prišunja i lupne dno flaše.
10:37
Now I get an extra source of sensory information
267
637260
2000
Sad imam dodatni izvor senzornih informacija
10:39
due to that external act.
268
639260
2000
zbog te spoljne akcije.
10:41
So I get two sources.
269
641260
2000
Znači, imam dva izvora.
10:43
I get you tapping on it, and I get me shaking it,
270
643260
3000
Imam to da je neko lupnuo flašu i to da ja tresem flašu,
10:46
but from my senses' point of view,
271
646260
2000
ali sa gledišta mojih čula,
10:48
that is combined together into one source of information.
272
648260
3000
to se zajedno kombinuje u jedan izvor informacija.
10:51
Now there's good reason to believe
273
651260
2000
Postoje dobri razlozi za verovanje
10:53
that you would want to be able to distinguish external events from internal events.
274
653260
3000
da želite da budete u stanju da razlikujete spoljne događaje od unutrašnjih.
10:56
Because external events are actually much more behaviorally relevant
275
656260
3000
Zato što su spoljašnji događaji u stvari mnogo važniji za ponašanje
10:59
than feeling everything that's going on inside my body.
276
659260
3000
nego to da se oseti sve što se dešava unutar tela.
11:02
So one way to reconstruct that
277
662260
2000
Jedan način da se to rekonstruiše
11:04
is to compare the prediction --
278
664260
2000
je da se uporedi to predviđanje
11:06
which is only based on your movement commands --
279
666260
2000
koje se bazira samo na vašim komandama za pokret
11:08
with the reality.
280
668260
2000
sa stvarnim stanjem.
11:10
Any discrepancy should hopefully be external.
281
670260
3000
Svako neslaganje bi trebalo da bude zbog spoljnih uticaja.
11:13
So as I go around the world,
282
673260
2000
I tako, dok se krećem po svetu,
11:15
I'm making predictions of what I should get, subtracting them off.
283
675260
3000
pravim predviđanja o tome šta bi trebalo da dobijem i onda ih oduzimam.
11:18
Everything left over is external to me.
284
678260
2000
I ono što preostane su spoljni uticaji.
11:20
What evidence is there for this?
285
680260
2000
Kakvi dokazi postoje za ovo?
11:22
Well there's one very clear example
286
682260
2000
Pa, postoji jedan vrlo jasan primer
11:24
where a sensation generated by myself feels very different
287
684260
2000
u kom senzacija koju sam ja proizveo deluje sasvim drugačije
11:26
then if generated by another person.
288
686260
2000
od one koju stvara neka druga osoba.
11:28
And so we decided the most obvious place to start
289
688260
2000
Odlučili smo da je očigledno najbolje početi
11:30
was with tickling.
290
690260
2000
sa golicanjem.
11:32
It's been known for a long time, you can't tickle yourself
291
692260
2000
Dugo je već poznato da ne možete sami sebe golicati,
11:34
as well as other people can.
292
694260
2000
a da drugi ljudi mogu da vas golicaju.
11:36
But it hasn't really been shown, it's because you have a neural simulator,
293
696260
3000
Ali nije do sada pokazano da je to zato što imate nervni simulator,
11:39
simulating your own body
294
699260
2000
kojim simulirate sopstveno telo
11:41
and subtracting off that sense.
295
701260
2000
i oduzimate taj osećaj.
11:43
So we can bring the experiments of the 21st century
296
703260
3000
U 21.veku možemo da eksperimentišemo
11:46
by applying robotic technologies to this problem.
297
706260
3000
primenjujući robotičke tehnologije na ovaj problem.
11:49
And in effect, what we have is some sort of stick in one hand attached to a robot,
298
709260
3000
Zapravo, imamo neku vrstu štapa u ruci pričvršćenoj za robota,
11:52
and they're going to move that back and forward.
299
712260
2000
i roboti će to pomerati napred-nazad.
11:54
And then we're going to track that with a computer
300
714260
2000
A mi ćemo to pratiti preko kompjutera
11:56
and use it to control another robot,
301
716260
2000
i koristiti to za kontrolisanje drugog robota,
11:58
which is going to tickle their palm with another stick.
302
718260
2000
koji će golicati po dlanu drugim štapom.
12:00
And then we're going to ask them to rate a bunch of things
303
720260
2000
A onda ćemo ih pitati da ocene nekoliko stvari
12:02
including ticklishness.
304
722260
2000
uključujući i golicljivost.
12:04
I'll show you just one part of our study.
305
724260
2000
Pokazaću vam samo deo našeg istraživanja.
12:06
And here I've taken away the robots,
306
726260
2000
I tu sam sklonio robote,
12:08
but basically people move with their right arm sinusoidally back and forward.
307
728260
3000
i vidimo ljude koji sinusoidalno pomeraju desnu ruku napred-nazad.
12:11
And we replay that to the other hand with a time delay.
308
731260
3000
To ponovo puštamo drugoj ruci, sa izvesnim kašnjenjem.
12:14
Either no time delay,
309
734260
2000
U slučaju da nema kašnjenja,
12:16
in which case light would just tickle your palm,
310
736260
2000
svetlosni snop će golicati vaš dlan,
12:18
or with a time delay of two-tenths of three-tenths of a second.
311
738260
4000
ili će postojati kašnjenje od dve ili tri desetinke.
12:22
So the important point here
312
742260
2000
Ono što je važno u ovome
12:24
is the right hand always does the same things -- sinusoidal movement.
313
744260
3000
je da desna ruka uvek radi istu stvar -- sinusoidalni pokret.
12:27
The left hand always is the same and puts sinusoidal tickle.
314
747260
3000
Leva ruka je uvek ista i pravi sinusoidalno golicanje.
12:30
All we're playing with is a tempo causality.
315
750260
2000
Mi se samo igramo sa uzročnom vezom u odnosu na tempo pokreta.
12:32
And as we go from naught to 0.1 second,
316
752260
2000
Kako napredujemo od nule ka 0.1 sekundi,
12:34
it becomes more ticklish.
317
754260
2000
postaje sve golicljivije.
12:36
As you go from 0.1 to 0.2,
318
756260
2000
Kako idemo od 0.1 ka 0.2,
12:38
it becomes more ticklish at the end.
319
758260
2000
postaje još golicljivije na kraju.
12:40
And by 0.2 of a second,
320
760260
2000
I na 0.2 sekunde
12:42
it's equivalently ticklish
321
762260
2000
podjednako je golicljivo,
12:44
to the robot that just tickled you without you doing anything.
322
764260
2000
kao robot koji vas je upravo zagolicao, a da vi niste ništa radili.
12:46
So whatever is responsible for this cancellation
323
766260
2000
Što god da je odgovorno za ovo poništavanje
12:48
is extremely tightly coupled with tempo causality.
324
768260
3000
je izuzetno blisko povezano sa uzročnom vezom tempa kretanja.
12:51
And based on this illustration, we really convinced ourselves in the field
325
771260
3000
Na osnovu ove ilustracije, svi mi koji radimo u ovoj oblasti smo se uverili
12:54
that the brain's making precise predictions
326
774260
2000
da mozak pravi precizna predviđanja
12:56
and subtracting them off from the sensations.
327
776260
3000
koja oduzima od onoga što se oseti.
12:59
Now I have to admit, these are the worst studies my lab has ever run.
328
779260
3000
Moram da priznam da su ovo najgora istraživanja ikad rađena
13:02
Because the tickle sensation on the palm comes and goes,
329
782260
2000
u mojoj laboratoriji, jer osećaj golicanja po dlanu dođe i prođe,
13:04
you need large numbers of subjects
330
784260
2000
treba vam veliki broj ispitanika
13:06
with these stars making them significant.
331
786260
2000
sa ovim zvezdicama koje znače da je statistički značajno.
13:08
So we were looking for a much more objective way
332
788260
2000
Zato smo tražili objektivniji način
13:10
to assess this phenomena.
333
790260
2000
za ispitivanje ovih pojava.
13:12
And in the intervening years I had two daughters.
334
792260
2000
A u međuvremenu sam ja dobio dve ćerke.
13:14
And one thing you notice about children in backseats of cars on long journeys,
335
794260
3000
Primetićete da deca, na zadnjem sedištu auta, na dugom putovanju,
13:17
they get into fights --
336
797260
2000
počinju da se tuku
13:19
which started with one of them doing something to the other, the other retaliating.
337
799260
3000
što započne tako što jedno uradi nešto onom drugom, koje onda uzvrati.
13:22
It quickly escalates.
338
802260
2000
To se brzo pojačava.
13:24
And children tend to get into fights which escalate in terms of force.
339
804260
3000
Deca započnu tuču koja se pojača u smislu jačine udaraca.
13:27
Now when I screamed at my children to stop,
340
807260
2000
Kad sam viknuo mojim ćerkama da prestanu,
13:29
sometimes they would both say to me
341
809260
2000
nekad bi mi obe rekle
13:31
the other person hit them harder.
342
811260
3000
da je ona druga udarala jače.
13:34
Now I happen to know my children don't lie,
343
814260
2000
E sad, ja znam da moja deca ne lažu,
13:36
so I thought, as a neuroscientist,
344
816260
2000
pa sam pomislio, kao neurobiolog,
13:38
it was important how I could explain
345
818260
2000
da je važno da pokušam da objasnim
13:40
how they were telling inconsistent truths.
346
820260
2000
kako to da govore suprotstavljene istinite stvari.
13:42
And we hypothesize based on the tickling study
347
822260
2000
Postavili smo hipotezu, na osnovu ovog istraživanja golicljivosti,
13:44
that when one child hits another,
348
824260
2000
da kad jedno dete udari drugo,
13:46
they generate the movement command.
349
826260
2000
ono generiše komandu za pokret.
13:48
They predict the sensory consequences and subtract it off.
350
828260
3000
Tako predviđa senzornu posledicu i to oduzima.
13:51
So they actually think they've hit the person less hard than they have --
351
831260
2000
Zato dete zapravo misli da je udarilo drugu osobu
13:53
rather like the tickling.
352
833260
2000
manjom jačinom nego što zaista jeste, slično kao za golicanje.
13:55
Whereas the passive recipient
353
835260
2000
Dok pasivni primalac
13:57
doesn't make the prediction, feels the full blow.
354
837260
2000
ne pravi to predviđanje i zato oseća punu jačinu udarca.
13:59
So if they retaliate with the same force,
355
839260
2000
I ako hoće da uzvrati istom jačinom,
14:01
the first person will think it's been escalated.
356
841260
2000
prva osoba će misliti da je to pojačano.
14:03
So we decided to test this in the lab.
357
843260
2000
Odlučili smo da to testiramo u laboratoriji.
14:05
(Laughter)
358
845260
3000
(smeh)
14:08
Now we don't work with children, we don't work with hitting,
359
848260
2000
Mi ne radimo sa decom, ne koristimo udaranje,
14:10
but the concept is identical.
360
850260
2000
ali koncept je isti.
14:12
We bring in two adults. We tell them they're going to play a game.
361
852260
3000
Doveli smo dvoje odraslih. Rekli smo im da će igrati jednu igru.
14:15
And so here's player one and player two sitting opposite to each other.
362
855260
2000
I evo prvog i drugog igrača kako sede jedan naspram drugog.
14:17
And the game is very simple.
363
857260
2000
Igra je vrlo jednostavna.
14:19
We started with a motor
364
859260
2000
Počeli smo sa motorom
14:21
with a little lever, a little force transfuser.
365
861260
2000
sa polugicom, malim prenosnikom sile.
14:23
And we use this motor to apply force down to player one's fingers
366
863260
2000
Koristimo taj motor da primenimo silu na prste prvog igrača
14:25
for three seconds and then it stops.
367
865260
3000
tokom tri sekunde i onda prestaje.
14:28
And that player's been told, remember the experience of that force
368
868260
3000
Tom igraču smo rekli da zapamti iskustvo o tom pritiskanju
14:31
and use your other finger
369
871260
2000
i da koristi svoj drugi prst
14:33
to apply the same force
370
873260
2000
da primeni istu takvu silu
14:35
down to the other subject's finger through a force transfuser -- and they do that.
371
875260
3000
na prst drugog subjekta putem prenosnika sile -- i oni to rade.
14:38
And player two's been told, remember the experience of that force.
372
878260
3000
I drugom igraču smo rekli da zapamti iskustvo o tom pritiskanju.
14:41
Use your other hand to apply the force back down.
373
881260
3000
I da svojom drugom rukom uzvrati pritisak.
14:44
And so they take it in turns
374
884260
2000
I tako oni naizmenično
14:46
to apply the force they've just experienced back and forward.
375
886260
2000
pritiskaju istom silom koju su upravo iskusili.
14:48
But critically,
376
888260
2000
Ali, jako je važno to da,
14:50
they're briefed about the rules of the game in separate rooms.
377
890260
3000
smo im rekli o pravilima igre u odvojenim sobama.
14:53
So they don't know the rules the other person's playing by.
378
893260
2000
Tako da ne znaju po kojim pravilima igra ona druga osoba.
14:55
And what we've measured
379
895260
2000
I ono što smo izmerili
14:57
is the force as a function of terms.
380
897260
2000
je sila u funkciji od uslova koji postoje.
14:59
And if we look at what we start with,
381
899260
2000
Kada pogledamo na ono od čega smo počeli,
15:01
a quarter of a Newton there, a number of turns,
382
901260
2000
četvrtina Njutna ovde, određen broj ponavljanja,
15:03
perfect would be that red line.
383
903260
2000
idealno bi bilo ovo po crvenoj liniji.
15:05
And what we see in all pairs of subjects is this --
384
905260
3000
A ono što vidimo kod svih parova subjekata je ovo
15:08
a 70 percent escalation in force
385
908260
2000
70 odsto povećanja jačine pritiska
15:10
on each go.
386
910260
2000
u svakom ciklusu.
15:12
So it really suggests, when you're doing this --
387
912260
2000
Iz ovoga sledi da kada to radite,
15:14
based on this study and others we've done --
388
914260
2000
i to je na osnovu ove studije i drugih koje smo sproveli,
15:16
that the brain is canceling the sensory consequences
389
916260
2000
mozak poništava senzorne posledice
15:18
and underestimating the force it's producing.
390
918260
2000
i potcenjuje silu koju stvara.
15:20
So it re-shows the brain makes predictions
391
920260
2000
To ponovo pokazuje da mozak pravi predviđanja
15:22
and fundamentally changes the precepts.
392
922260
3000
i fundamentalno menja naredbe.
15:25
So we've made inferences, we've done predictions,
393
925260
3000
Do sada smo pravili zaključke i predviđanja,
15:28
now we have to generate actions.
394
928260
2000
a sada treba da generišemo akcije.
15:30
And what Bayes' rule says is, given my beliefs,
395
930260
2000
A Bajesovo pravilo kaže da, u odnosu na moje stavove,
15:32
the action should in some sense be optimal.
396
932260
2000
akcija treba da bude, na neki način, optimalna.
15:34
But we've got a problem.
397
934260
2000
Ali, imamo problem.
15:36
Tasks are symbolic -- I want to drink, I want to dance --
398
936260
3000
Radnje su simbolične - hoću da pijem, hoću da igram -
15:39
but the movement system has to contract 600 muscles
399
939260
2000
ali sistem za kretanje mora da kontrahuje
15:41
in a particular sequence.
400
941260
2000
600 mišića u određenoj sekvenci.
15:43
And there's a big gap
401
943260
2000
I tu postoji veliki jaz
15:45
between the task and the movement system.
402
945260
2000
između određene radnje i sistema za kretanje.
15:47
So it could be bridged in infinitely many different ways.
403
947260
2000
Taj jaz se može premostiti na bezgranično mnogo načina.
15:49
So think about just a point to point movement.
404
949260
2000
Pomislite samo na kretanje od jedne do druge tačke.
15:51
I could choose these two paths
405
951260
2000
Mogu da izaberem ove dve putanje
15:53
out of an infinite number of paths.
406
953260
2000
od bezbrojno mnogo drugih putanja.
15:55
Having chosen a particular path,
407
955260
2000
Pošto sam izabrao određenu putanju,
15:57
I can hold my hand on that path
408
957260
2000
mogu da postavim ruku na toj putanji
15:59
as infinitely many different joint configurations.
409
959260
2000
u beskonačno mnogo različitih položaja zgloba.
16:01
And I can hold my arm in a particular joint configuration
410
961260
2000
I mogu da držim ruku u određenom položaju zgloba
16:03
either very stiff or very relaxed.
411
963260
2000
vrlo ukočeno ili vrlo opušteno.
16:05
So I have a huge amount of choice to make.
412
965260
3000
Znači da imam ogroman broj izbora koje mogu da napravim.
16:08
Now it turns out, we are extremely stereotypical.
413
968260
3000
Ispostavlja se da smo izuzetno stereotipni.
16:11
We all move the same way pretty much.
414
971260
3000
Svi se krećemo na skoro isti način.
16:14
And so it turns out we're so stereotypical,
415
974260
2000
Ispostavlja se da smo toliko stereotipni,
16:16
our brains have got dedicated neural circuitry
416
976260
2000
da naš mozak ima posebnu nervnu mrežu
16:18
to decode this stereotyping.
417
978260
2000
za dekodiranje te stereotipnosti.
16:20
So if I take some dots
418
980260
2000
Ako uzmem neke tačke
16:22
and set them in motion with biological motion,
419
982260
3000
i pomeram ih tako da izgleda kao biološko kretanje,
16:25
your brain's circuitry would understand instantly what's going on.
420
985260
3000
moždana mreža će odmah shvatiti o čemu se radi.
16:28
Now this is a bunch of dots moving.
421
988260
2000
Ovo je grupa tačaka koje se kreću.
16:30
You will know what this person is doing,
422
990260
3000
A vi znate šta ova osoba radi,
16:33
whether happy, sad, old, young -- a huge amount of information.
423
993260
3000
da li je srećna, tužna, stara, mlada - ogromna količina informacija.
16:36
If these dots were cars going on a racing circuit,
424
996260
2000
Da su ove tačke kola koja se kreću po trkačkoj stazi,
16:38
you would have absolutely no idea what's going on.
425
998260
3000
ne biste uopšte znali o čemu se radi.
16:41
So why is it
426
1001260
2000
Pa, zašto se
16:43
that we move the particular ways we do?
427
1003260
2000
krećemo na tako određene načine?
16:45
Well let's think about what really happens.
428
1005260
2000
Hajde da razmislimo šta se zaista dešava.
16:47
Maybe we don't all quite move the same way.
429
1007260
3000
Možda se ne krećemo svi na sasvim isti način.
16:50
Maybe there's variation in the population.
430
1010260
2000
Možda postoji varijacija u populaciji.
16:52
And maybe those who move better than others
431
1012260
2000
I možda oni koji se bolje kreću od drugih
16:54
have got more chance of getting their children into the next generation.
432
1014260
2000
imaju veću šansu da dobiju potomstvo u sledećoj generaciji.
16:56
So in evolutionary scales, movements get better.
433
1016260
3000
Tako se, na evolutivnoj skali, načini kretanja poboljšavaju.
16:59
And perhaps in life, movements get better through learning.
434
1019260
3000
I možda tokom života, načini kretanja postaju bolji kroz učenje.
17:02
So what is it about a movement which is good or bad?
435
1022260
2000
A šta je to što čini neki način kretanja dobrim ili lošim?
17:04
Imagine I want to intercept this ball.
436
1024260
2000
Zamislite da hoću da presretnem ovu loptu
17:06
Here are two possible paths to that ball.
437
1026260
3000
Evo dve moguće putanje do te lopte.
17:09
Well if I choose the left-hand path,
438
1029260
2000
Pa, ako izaberem putanju sa leve strane,
17:11
I can work out the forces required
439
1031260
2000
mogu da izračunam sile koje su potrebne
17:13
in one of my muscles as a function of time.
440
1033260
2000
za jedan od mojih mišića u zavisnosti od vremena.
17:15
But there's noise added to this.
441
1035260
2000
Ali, postoje smetnje koje se dodaju na to.
17:17
So what I actually get, based on this lovely, smooth, desired force,
442
1037260
3000
Ono što zapravo dobijam, počevši od ove fine, uglađene, željene sile,
17:20
is a very noisy version.
443
1040260
2000
je verzija sa puno smetnji.
17:22
So if I pick the same command through many times,
444
1042260
3000
Ako izaberem istu komandu više puta,
17:25
I will get a different noisy version each time, because noise changes each time.
445
1045260
3000
dobiću svaki put verzije sa različitim smetnjama, jer se smetnje menjaju svaki put.
17:28
So what I can show you here
446
1048260
2000
Ono što mogu da vam ovde pokažem je
17:30
is how the variability of the movement will evolve
447
1050260
2000
kako varijabilnost pokreta evoluira
17:32
if I choose that way.
448
1052260
2000
ukoliko izaberem taj način.
17:34
If I choose a different way of moving -- on the right for example --
449
1054260
3000
Ako izaberem drugi način kretanja - npr. ovaj sa desne strane
17:37
then I'll have a different command, different noise,
450
1057260
2000
onda ću imati drugačiju komandu, drugačije smetnje,
17:39
playing through a noisy system, very complicated.
451
1059260
3000
vrlo je komplikovano snaći se u sistemu punom smetnji.
17:42
All we can be sure of is the variability will be different.
452
1062260
3000
Jedino u šta smo sigurni je da će varijabilnost biti različita.
17:45
If I move in this particular way,
453
1065260
2000
Ako se krećem na ovaj određeni način,
17:47
I end up with a smaller variability across many movements.
454
1067260
3000
imaću manju varijabilnost kroz mnoge pokrete.
17:50
So if I have to choose between those two,
455
1070260
2000
Pa, ako treba da biram između ta dva,
17:52
I would choose the right one because it's less variable.
456
1072260
2000
izabraću ovaj desni, jer ima manju varijabilnost.
17:54
And the fundamental idea
457
1074260
2000
Osnovna ideja
17:56
is you want to plan your movements
458
1076260
2000
je da želite da planirate svoje pokrete
17:58
so as to minimize the negative consequence of the noise.
459
1078260
3000
da biste što više smanjili negativne posledice smetnji.
18:01
And one intuition to get
460
1081260
2000
Može se primetiti
18:03
is actually the amount of noise or variability I show here
461
1083260
2000
da se, zapravo, količina smetnji ili varijabilnost koju pokazujem
18:05
gets bigger as the force gets bigger.
462
1085260
2000
povećava kako se sila pojačava.
18:07
So you want to avoid big forces as one principle.
463
1087260
3000
U principu, želite da izbegnete jake sile.
18:10
So we've shown that using this,
464
1090260
2000
Tako smo pokazali da, koristeći ovo,
18:12
we can explain a huge amount of data --
465
1092260
2000
možemo da objasnimo veliki broj podataka
18:14
that exactly people are going about their lives planning movements
466
1094260
3000
da, u stvari, ljudi stalno planiraju svoje kretanje
18:17
so as to minimize negative consequences of noise.
467
1097260
3000
sa ciljem smanjivanja negativnih posledica smetnji.
18:20
So I hope I've convinced you the brain is there
468
1100260
2000
Nadam se da sam vas ubedio da je razlog za postojanje
18:22
and evolved to control movement.
469
1102260
2000
i evoluciju mozga to da bi kontrolisao kretanje.
18:24
And it's an intellectual challenge to understand how we do that.
470
1104260
3000
Intelektualno je zahtevno da se razume kako mi to radimo.
18:27
But it's also relevant
471
1107260
2000
I vrlo je važno
18:29
for disease and rehabilitation.
472
1109260
2000
zbog bolesti i rehabilitacije.
18:31
There are many diseases which effect movement.
473
1111260
3000
Ima mnogo bolesti koje utiču na kretanje.
18:34
And hopefully if we understand how we control movement,
474
1114260
2000
I nadamo se, ako razumemo kako kontrolišemo kretanje,
18:36
we can apply that to robotic technology.
475
1116260
2000
da ćemo to moći da primenimo na robotičku tehnologiju.
18:38
And finally, I want to remind you,
476
1118260
2000
I konačno, želim da vas podsetim,
18:40
when you see animals do what look like very simple tasks,
477
1120260
2000
kada vidite životinje da izvode ono što izgleda kao jednostavna radnja,
18:42
the actual complexity of what is going on inside their brain
478
1122260
2000
kompleksnost onoga što se dešava u njihovom mozgu
18:44
is really quite dramatic.
479
1124260
2000
je, u stvari, veoma upečatljiva.
18:46
Thank you very much.
480
1126260
2000
Hvala vam mnogo.
18:48
(Applause)
481
1128260
8000
(aplauz)
18:56
Chris Anderson: Quick question for you, Dan.
482
1136260
2000
Kris Enderson: Jedno brzo pitanje za tebe, Den.
18:58
So you're a movement -- (DW: Chauvinist.) -- chauvinist.
483
1138260
4000
Ti si, znači -- (DV: šovinista) -- šovinista za kretanje.
19:02
Does that mean that you think that the other things we think our brains are about --
484
1142260
3000
Da li to znači da misliš da druge stvari za koje smatramo da nam mozak služi
19:05
the dreaming, the yearning, the falling in love and all these things --
485
1145260
3000
snovi, želje, zaljubljivanje i sve te stvari
19:08
are a kind of side show, an accident?
486
1148260
3000
su neka vrsta sporednih dešavanja, samo slučajnost?
19:11
DW: No, no, actually I think they're all important
487
1151260
2000
DV: Ne, ne, ja, u stvari, mislim da je sve to važno
19:13
to drive the right movement behavior to get reproduction in the end.
488
1153260
3000
da bi usmerilo ka pravom načinu kretanja koji, na kraju, vodi do reprodukcije.
19:16
So I think people who study sensation or memory
489
1156260
3000
Mislim da ljudi koji proučavaju senzacije ili pamćenje,
19:19
without realizing why you're laying down memories of childhood.
490
1159260
2000
ne shvataju zašto skupljamo ta sećanja iz detinjstva.
19:21
The fact that we forget most of our childhood, for example,
491
1161260
3000
Npr. činjenica da većinu stvari iz detinjstva zaboravimo,
19:24
is probably fine, because it doesn't effect our movements later in life.
492
1164260
3000
je verovatno prihvatljiva, jer to ne utiče na naše kretanje kasnije u životu.
19:27
You only need to store things which are really going to effect movement.
493
1167260
3000
Potrebno nam je da čuvamo samo one stvari koje će zaista uticati na kretanje.
19:30
CA: So you think that people thinking about the brain, and consciousness generally,
494
1170260
3000
KE: Znači smatraš da bi ljudi, kad razmišljaju o mozgu i generalno o svesti,
19:33
could get real insight
495
1173260
2000
mogli da donesu bolje zaključke
19:35
by saying, where does movement play in this game?
496
1175260
2000
ako bi se zapitali, "a, gde je kretanje u svemu tome?"
19:37
DW: So people have found out for example
497
1177260
2000
DV: Pa, ljudi su zaključili, na primer
19:39
that studying vision in the absence of realizing why you have vision
498
1179260
2000
da je proučavanje čula vida bez svesti o tome zbog čega postoji čulo vida
19:41
is a mistake.
499
1181260
2000
pogrešno.
19:43
You have to study vision with the realization
500
1183260
2000
Treba proučavati čulo vida uz shvatanje
19:45
of how the movement system is going to use vision.
501
1185260
2000
o tome kako će sistem za kretanje da iskoristi čulo vida.
19:47
And it uses it very differently once you think about it that way.
502
1187260
2000
I kad počnete da razmišljate na taj način, shvatite da je to drugačije.
19:49
CA: Well that was quite fascinating. Thank you very much indeed.
503
1189260
3000
KE: Ovo je bilo baš fascinantno. Stvarno, puno ti hvala.
19:52
(Applause)
504
1192260
2000
(aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7