Daniel Wolpert: The real reason for brains

349,833 views ・ 2011-11-03

TED


请双击下面的英文字幕来播放视频。

翻译人员: Yina Jin 校对人员: Xiaoqiao Xie
00:15
I'm a neuroscientist.
0
15260
2000
我是个神经生物学家
00:17
And in neuroscience,
1
17260
2000
在神经生物学研究里
00:19
we have to deal with many difficult questions about the brain.
2
19260
3000
我们需要处理很多关于大脑的难题
00:22
But I want to start with the easiest question
3
22260
2000
不过我今天要从这个最简单的问题开始
00:24
and the question you really should have all asked yourselves at some point in your life,
4
24260
3000
这个问题是大家应该在以前问过自己的
00:27
because it's a fundamental question
5
27260
2000
因为如果大家想了解大脑功能的话
00:29
if we want to understand brain function.
6
29260
2000
这个问题是很基本的
00:31
And that is, why do we and other animals
7
31260
2000
那就是,为什么我们和其他动物
00:33
have brains?
8
33260
2000
都有大脑呢?
00:35
Not all species on our planet have brains,
9
35260
3000
地球上不是所有物种都有大脑
00:38
so if we want to know what the brain is for,
10
38260
2000
所以要搞清大脑有什么用
00:40
let's think about why we evolved one.
11
40260
2000
那我们应该先考虑为什么我们进化出了大脑
00:42
Now you may reason that we have one
12
42260
2000
大家也许觉得
00:44
to perceive the world or to think,
13
44260
2000
我们有大脑是为了感知世界或者思考
00:46
and that's completely wrong.
14
46260
2000
其实是完全错误的
00:48
If you think about this question for any length of time,
15
48260
3000
如果再好好思考一段时间的话
00:51
it's blindingly obvious why we have a brain.
16
51260
2000
其实我们有大脑的原因很明显
00:53
We have a brain for one reason and one reason only,
17
53260
3000
大脑的存在,有且仅有一个原因
00:56
and that's to produce adaptable and complex movements.
18
56260
3000
就是为了生成有适应性的,复杂的动作
00:59
There is no other reason to have a brain.
19
59260
2000
没有其他原因了
01:01
Think about it.
20
61260
2000
想想看
01:03
Movement is the only way you have
21
63260
2000
动作是你唯一
01:05
of affecting the world around you.
22
65260
2000
对世界产生影响的方法
01:07
Now that's not quite true. There's one other way, and that's through sweating.
23
67260
3000
当然也不尽然,另一个办法是通过排汗
01:10
But apart from that,
24
70260
2000
不过除了那个以外
01:12
everything else goes through contractions of muscles.
25
72260
2000
所有事情都是由肌肉的收缩来办到的
01:14
So think about communication --
26
74260
2000
想想我们的沟通方式--
01:16
speech, gestures, writing, sign language --
27
76260
3000
语言,手势,写作,手语--
01:19
they're all mediated through contractions of your muscles.
28
79260
3000
都是由肌肉的收缩来完成的
01:22
So it's really important to remember
29
82260
2000
所以重要的一点就是
01:24
that sensory, memory and cognitive processes are all important,
30
84260
4000
感知、记忆和认知过程虽然也很关键
01:28
but they're only important
31
88260
2000
但是它们的重要性都只是在于
01:30
to either drive or suppress future movements.
32
90260
2000
它们能够促使或者抑制动作的发生
01:32
There can be no evolutionary advantage
33
92260
2000
如果不是能够影响到大家未来生活中的动作的话
01:34
to laying down memories of childhood
34
94260
2000
能够记住小时候的回忆
01:36
or perceiving the color of a rose
35
96260
2000
或者感知到玫瑰花的颜色
01:38
if it doesn't affect the way you're going to move later in life.
36
98260
3000
在进化这一点上没有任何特别的优势
01:41
Now for those who don't believe this argument,
37
101260
2000
如果有谁不相信这个说法
01:43
we have trees and grass on our planet without the brain,
38
103260
2000
我可以举例说不会运动的树和草都没有大脑
01:45
but the clinching evidence is this animal here --
39
105260
2000
不过有一种动物提供了确凿的证据--
01:47
the humble sea squirt.
40
107260
2000
不起眼的海鞘
01:49
Rudimentary animal, has a nervous system,
41
109260
3000
海鞘是一种初等生物,有神经系统
01:52
swims around in the ocean in its juvenile life.
42
112260
2000
生命初期在海中游动
01:54
And at some point of its life,
43
114260
2000
然后在某一时刻
01:56
it implants on a rock.
44
116260
2000
海鞘会把自己移植到岩石上再也不移动
01:58
And the first thing it does in implanting on that rock, which it never leaves,
45
118260
3000
海鞘在岩石上固定后的第一件事
02:01
is to digest its own brain and nervous system
46
121260
3000
就是把自己的大脑和神经系统
02:04
for food.
47
124260
2000
作为食物消化掉
02:06
So once you don't need to move,
48
126260
2000
也就是说,一旦不用再移动
02:08
you don't need the luxury of that brain.
49
128260
3000
也就不需要大脑这样的奢侈品了
02:11
And this animal is often taken
50
131260
2000
并且,这种动物
02:13
as an analogy to what happens at universities
51
133260
2000
常常被类比到大学里面
02:15
when professors get tenure,
52
135260
2000
教授获得终身职位之后的情况
02:17
but that's a different subject.
53
137260
2000
不过那是另一个话题了
02:19
(Applause)
54
139260
2000
(掌声)
02:21
So I am a movement chauvinist.
55
141260
3000
所以说,我是个运动沙文主义者
02:24
I believe movement is the most important function of the brain --
56
144260
2000
我认为运动是大脑最重要的功能
02:26
don't let anyone tell you that it's not true.
57
146260
2000
不要让别人告诉你这个观点不对
02:28
Now if movement is so important,
58
148260
2000
那么,如果运动如此重要
02:30
how well are we doing
59
150260
2000
我们已经能在多大程度上
02:32
understanding how the brain controls movement?
60
152260
2000
了解大脑如何控制动作了呢?
02:34
And the answer is we're doing extremely poorly; it's a very hard problem.
61
154260
2000
答案其实是非常少,因为这是相当困难的
02:36
But we can look at how well we're doing
62
156260
2000
不过我们已经制造出一些模拟人类动作的机器人
02:38
by thinking about how well we're doing building machines
63
158260
2000
分析这些机器的动作水平
02:40
which can do what humans can do.
64
160260
2000
就知道我们了解大脑控制动作的研究进展如何了
02:42
Think about the game of chess.
65
162260
2000
来看国际象棋这个游戏
02:44
How well are we doing determining what piece to move where?
66
164260
3000
我们让机器人决定如何走棋时候的表现如何呢?
02:47
If you pit Garry Kasparov here, when he's not in jail,
67
167260
3000
如果大家趁国际象棋冠军加里·卡斯帕罗夫还没进监狱的时候
02:50
against IBM's Deep Blue,
68
170260
2000
把他请来与IBM的深蓝对战
02:52
well the answer is IBM's Deep Blue will occasionally win.
69
172260
3000
深蓝有时会赢
02:55
And I think if IBM's Deep Blue played anyone in this room, it would win every time.
70
175260
3000
而且我觉得IBM的深蓝和在座的任何一位对战,应该每次都会赢
02:58
That problem is solved.
71
178260
2000
所以这方面完全没有问题
03:00
What about the problem
72
180260
2000
但是如果让机器人
03:02
of picking up a chess piece,
73
182260
2000
灵巧地拿起棋子
03:04
dexterously manipulating it and putting it back down on the board?
74
184260
3000
再放回棋盘上去呢?
03:07
If you put a five year-old child's dexterity against the best robots of today,
75
187260
3000
如果大家让五岁小孩子与当今最厉害的机器人对决
03:10
the answer is simple:
76
190260
2000
结果很简单
03:12
the child wins easily.
77
192260
2000
小孩子会赢得轻而易举
03:14
There's no competition at all.
78
194260
2000
完全没有悬念
03:16
Now why is that top problem so easy
79
196260
2000
那么为什么前面那个问题这么简单
03:18
and the bottom problem so hard?
80
198260
2000
后面这个问题就这么难呢?
03:20
One reason is a very smart five year-old
81
200260
2000
一个原因是,一个聪明点的五岁小孩子
03:22
could tell you the algorithm for that top problem --
82
202260
2000
就已经能够告诉你上面那个问题的解决算法了--
03:24
look at all possible moves to the end of the game
83
204260
2000
找出游戏结束之前所有可能的下法
03:26
and choose the one that makes you win.
84
206260
2000
选择赢面最大的一步来下
03:28
So it's a very simple algorithm.
85
208260
2000
所以其实这是个很简单的算法
03:30
Now of course there are other moves,
86
210260
2000
当然也有其他的步法
03:32
but with vast computers we approximate
87
212260
2000
不过用强大的计算机做近似计算
03:34
and come close to the optimal solution.
88
214260
2000
就能很容易找到近似最优解
03:36
When it comes to being dexterous,
89
216260
2000
但在灵活性这个问题上
03:38
it's not even clear what the algorithm is you have to solve to be dexterous.
90
218260
2000
我们甚至连让机器人变灵活的算法都找不到
03:40
And we'll see you have to both perceive and act on the world,
91
220260
2000
可以看到,如果既感知世界,又作用于世界的话
03:42
which has a lot of problems.
92
222260
2000
其实是要面对很多问题的
03:44
But let me show you cutting-edge robotics.
93
224260
2000
现在我来介绍一下最高端的机器人技术
03:46
Now a lot of robotics is very impressive,
94
226260
2000
如今许多项机器人技术已经相当厉害
03:48
but manipulation robotics is really just in the dark ages.
95
228260
3000
可是在机器人动作控制方面我们遇到了瓶颈,看不到曙光
03:51
So this is the end of a Ph.D. project
96
231260
2000
这是在一个顶尖机器人控制学院里
03:53
from one of the best robotics institutes.
97
233260
2000
一个博士研究项目的成果
03:55
And the student has trained this robot
98
235260
2000
这位博士生训练这个机器人
03:57
to pour this water into a glass.
99
237260
2000
向这个玻璃杯里面倒水
03:59
It's a hard problem because the water sloshes about, but it can do it.
100
239260
3000
这很难实现,因为水会洒出来;不过机器人能做到
04:02
But it doesn't do it with anything like the agility of a human.
101
242260
3000
但是机器人无法达到任何接近于人类的灵活程度
04:05
Now if you want this robot to do a different task,
102
245260
3000
并且如果想让机器人完成另一个任务的话
04:08
that's another three-year Ph.D. program.
103
248260
3000
就得要另外一个历时三年的博士项目了
04:11
There is no generalization at all
104
251260
2000
在机器人控制领域
04:13
from one task to another in robotics.
105
253260
2000
从一项任务到另一项任务,根本没有共通性可言
04:15
Now we can compare this
106
255260
2000
现在我们再来与
04:17
to cutting-edge human performance.
107
257260
2000
最尖端的人类性能做比较
04:19
So what I'm going to show you is Emily Fox
108
259260
2000
我会播放艾米莉・福克斯叠杯子
04:21
winning the world record for cup stacking.
109
261260
3000
获得世界记录的场景
04:24
Now the Americans in the audience will know all about cup stacking.
110
264260
2000
观众里有美国人的话一定知道叠杯子这个游戏
04:26
It's a high school sport
111
266260
2000
这是个高中里的娱乐项目
04:28
where you have 12 cups you have to stack and unstack
112
268260
2000
要求把12只杯子按照一定顺序
04:30
against the clock in a prescribed order.
113
270260
2000
以最快速度摞起来再展开回来
04:32
And this is her getting the world record in real time.
114
272260
3000
下面就是她创下世界记录的实时情况
04:39
(Laughter)
115
279260
8000
(笑声)
04:47
(Applause)
116
287260
5000
(掌声)
04:52
And she's pretty happy.
117
292260
2000
看她多开心
04:54
We have no idea what is going on inside her brain when she does that,
118
294260
2000
我们不清楚她叠杯子的时候大脑里发生了什么
04:56
and that's what we'd like to know.
119
296260
2000
而且我们的确很想知道
04:58
So in my group, what we try to do
120
298260
2000
所以我和我的团队
05:00
is reverse engineer how humans control movement.
121
300260
3000
试图去逆向实现人类如何控制动作的过程
05:03
And it sounds like an easy problem.
122
303260
2000
看起来问题很简单
05:05
You send a command down, it causes muscles to contract.
123
305260
2000
你送出一个指令,令肌肉收缩
05:07
Your arm or body moves,
124
307260
2000
这样手臂或躯干就会运动
05:09
and you get sensory feedback from vision, from skin, from muscles and so on.
125
309260
3000
然后能够获得从视觉,皮肤和肌肉和其他地方获得感官回馈
05:12
The trouble is
126
312260
2000
但问题是
05:14
these signals are not the beautiful signals you want them to be.
127
314260
2000
这些信号远没有想象中的那样完美
05:16
So one thing that makes controlling movement difficult
128
316260
2000
比如说,其中的难点之一
05:18
is, for example, sensory feedback is extremely noisy.
129
318260
3000
就是感官回馈中的杂音非常大
05:21
Now by noise, I do not mean sound.
130
321260
3000
我这里所说的“杂音”不是指声音
05:24
We use it in the engineering and neuroscience sense
131
324260
2000
在工程学和神经学里面
05:26
meaning a random noise corrupting a signal.
132
326260
2000
我们用“杂音”来表示干扰正常信号的随机杂乱信号
05:28
So the old days before digital radio when you were tuning in your radio
133
328260
3000
所以以前还没有电子收音机的时候,如果调那种老式收音机
05:31
and you heard "crrcckkk" on the station you wanted to hear,
134
331260
2000
电台里面有时候有“喀喇喀喇”的声音
05:33
that was the noise.
135
333260
2000
那个就是杂音
05:35
But more generally, this noise is something that corrupts the signal.
136
335260
3000
推广来说,杂音就是相对于正常信号的干扰信号
05:38
So for example, if you put your hand under a table
137
338260
2000
比如说,如果把一只手放在桌子底下
05:40
and try to localize it with your other hand,
138
340260
2000
然后在桌子上面用另一只手去对准
05:42
you can be off by several centimeters
139
342260
2000
最后位置可能相差好几厘米
05:44
due to the noise in sensory feedback.
140
344260
2000
这就是因为感官回馈里面的杂音在起作用
05:46
Similarly, when you put motor output on movement output,
141
346260
2000
同样,运动神经输出的肌肉动作和实际输出之间
05:48
it's extremely noisy.
142
348260
2000
也是有很多杂音的
05:50
Forget about trying to hit the bull's eye in darts,
143
350260
2000
且不谈扔飞镖的时候瞄准靶心去扔
05:52
just aim for the same spot over and over again.
144
352260
2000
只看重复瞄准同一点的时候发生什么情况
05:54
You have a huge spread due to movement variability.
145
354260
3000
由于每次动作都有差异,最后瞄准的结果会形成一片散点
05:57
And more than that, the outside world, or task,
146
357260
2000
更何况外界环境和要执行的任务
05:59
is both ambiguous and variable.
147
359260
2000
常常模糊和变化着的
06:01
The teapot could be full, it could be empty.
148
361260
2000
看这个茶壶,可能是满的,也可能是空的
06:03
It changes over time.
149
363260
2000
每次都不一样
06:05
So we work in a whole sensory movement task soup of noise.
150
365260
4000
所以我们其实是随时处在一大堆感官动作杂音环绕之中做动作的
06:09
Now this noise is so great
151
369260
2000
这种杂音相当厉害
06:11
that society places a huge premium
152
371260
2000
以至于我们社会会给那些
06:13
on those of us who can reduce the consequences of noise.
153
373260
3000
能有效减少杂音带来的后果的人巨额奖赏
06:16
So if you're lucky enough to be able to knock a small white ball
154
376260
3000
所以在座哪位能做到像老虎伍兹那样,用一根长金属杆
06:19
into a hole several hundred yards away using a long metal stick,
155
379260
3000
把一个小白球打进几百米开外的洞里
06:22
our society will be willing to reward you
156
382260
2000
我们的社会愿意
06:24
with hundreds of millions of dollars.
157
384260
3000
奖励你百万千万的钱
06:27
Now what I want to convince you of
158
387260
2000
好,我接下来想说明的是
06:29
is the brain also goes through a lot of effort
159
389260
2000
其实我们的大脑
06:31
to reduce the negative consequences
160
391260
2000
为了减少噪音和变化性的负面影响
06:33
of this sort of noise and variability.
161
393260
2000
也做了很多工作
06:35
And to do that, I'm going to tell you about a framework
162
395260
2000
为此,我来介绍一个在过去50年里
06:37
which is very popular in statistics and machine learning of the last 50 years
163
397260
3000
统计学和机器学习方面都很常用到的架构
06:40
called Bayesian decision theory.
164
400260
2000
叫做贝叶斯决策论(Bayesian decision theory)
06:42
And it's more recently a unifying way
165
402260
3000
近来这个理论常被用来
06:45
to think about how the brain deals with uncertainty.
166
405260
3000
从整体上理解大脑如何处理这种不确定性
06:48
And the fundamental idea is you want to make inferences and then take actions.
167
408260
3000
基本思路是先做推断,然后做出动作
06:51
So let's think about the inference.
168
411260
2000
我们先来看推断
06:53
You want to generate beliefs about the world.
169
413260
2000
在推断中,我们要建立对于当前情景的“信念”
06:55
So what are beliefs?
170
415260
2000
那么什么是信念?
06:57
Beliefs could be: where are my arms in space?
171
417260
2000
信念可以是 “我的胳膊在空间里的什么位置”
06:59
Am I looking at a cat or a fox?
172
419260
2000
也可以是 “我在看一只猫还是一只狐狸”
07:01
But we're going to represent beliefs with probabilities.
173
421260
3000
不过我们要把信念用概率来表示
07:04
So we're going to represent a belief
174
424260
2000
所以在这里我们把所谓的信念
07:06
with a number between zero and one --
175
426260
2000
表示成0到1之间的一个数--称之为置信值
07:08
zero meaning I don't believe it at all, one means I'm absolutely certain.
176
428260
3000
0表示完全不相信,1表示完全确信
07:11
And numbers in between give you the gray levels of uncertainty.
177
431260
3000
0到1之间就表示不同灰度的不确定程度
07:14
And the key idea to Bayesian inference
178
434260
2000
然后注意,贝叶斯推断的重点是
07:16
is you have two sources of information
179
436260
2000
我们靠两个信息源
07:18
from which to make your inference.
180
438260
2000
来做出推断
07:20
You have data,
181
440260
2000
第一我们有数据--
07:22
and data in neuroscience is sensory input.
182
442260
2000
在神经科学里这个数据就是感官输入进来的内容
07:24
So I have sensory input, which I can take in to make beliefs.
183
444260
3000
所以感官输入是其中一个信息源,用于生成我刚才说的”置信值“
07:27
But there's another source of information, and that's effectively prior knowledge.
184
447260
3000
不过还有第二个信息源,事实上也就是先前的知识
07:30
You accumulate knowledge throughout your life in memories.
185
450260
3000
因为我们在一生中在过去的记忆中积累知识
07:33
And the point about Bayesian decision theory
186
453260
2000
好了,贝叶斯决策论的重点就在于
07:35
is it gives you the mathematics
187
455260
2000
这个理论提供了一种计算方法
07:37
of the optimal way to combine
188
457260
2000
能找到最优的办法来整合
07:39
your prior knowledge with your sensory evidence
189
459260
2000
知识积累和感官输入这两种信息源
07:41
to generate new beliefs.
190
461260
2000
以生成新的置信值
07:43
And I've put the formula up there.
191
463260
2000
我现在把公式放在这里
07:45
I'm not going to explain what that formula is, but it's very beautiful.
192
465260
2000
我不详细解释这个公式了,但是这个公式非常漂亮
07:47
And it has real beauty and real explanatory power.
193
467260
3000
不仅有和谐的内在美,还有实实在在的说服力
07:50
And what it really says, and what you want to estimate,
194
470260
2000
这个公式真正的用途,也就是我们要估测的结果
07:52
is the probability of different beliefs
195
472260
2000
是给出我们感官输入的情况下
07:54
given your sensory input.
196
474260
2000
不同置信值出现的概率
07:56
So let me give you an intuitive example.
197
476260
2000
现在我举一个直观的例子
07:58
Imagine you're learning to play tennis
198
478260
3000
想象你现在在网球场练网球
08:01
and you want to decide where the ball is going to bounce
199
481260
2000
当这个网球越过球网飞过来的时候
08:03
as it comes over the net towards you.
200
483260
2000
你要决定这个球落在哪里
08:05
There are two sources of information
201
485260
2000
根据贝叶斯的理论
08:07
Bayes' rule tells you.
202
487260
2000
你现在有两个信息源
08:09
There's sensory evidence -- you can use visual information auditory information,
203
489260
3000
一个是感官输入--你的视觉和听觉收到的信息
08:12
and that might tell you it's going to land in that red spot.
204
492260
3000
告诉你球应该会落在图上的红点处
08:15
But you know that your senses are not perfect,
205
495260
3000
但是,你也知道自己的感官并不完美
08:18
and therefore there's some variability of where it's going to land
206
498260
2000
所以球的落地点可能会有误差--
08:20
shown by that cloud of red,
207
500260
2000
在图上用这块红色区域来表示
08:22
representing numbers between 0.5 and maybe 0.1.
208
502260
3000
这个区域的概率在0.5和大概0.1附近浮动
08:26
That information is available in the current shot,
209
506260
2000
以上这些信息是实时获得的
08:28
but there's another source of information
210
508260
2000
但是另一个获得信息的渠道
08:30
not available on the current shot,
211
510260
2000
不是实时获得的
08:32
but only available by repeated experience in the game of tennis,
212
512260
3000
而是来自只有通过反复练习网球才得来的经验
08:35
and that's that the ball doesn't bounce
213
515260
2000
经验告诉你,这个网球在比赛过程中
08:37
with equal probability over the court during the match.
214
517260
2000
不会以均等的概率落在球场里
08:39
If you're playing against a very good opponent,
215
519260
2000
如果你的对手水平很高
08:41
they may distribute it in that green area,
216
521260
2000
可能会让球的落点分布在图上的绿色区域
08:43
which is the prior distribution,
217
523260
2000
也就是所谓的”先验分布“
08:45
making it hard for you to return.
218
525260
2000
这些位置很难接到球
08:47
Now both these sources of information carry important information.
219
527260
2000
那么现在,两个信息源都包含重要的信息
08:49
And what Bayes' rule says
220
529260
2000
根据贝叶斯的理论
08:51
is that I should multiply the numbers on the red by the numbers on the green
221
531260
3000
我们应该把红色区域和绿色区域的数据相乘
08:54
to get the numbers of the yellow, which have the ellipses,
222
534260
3000
得到椭圆形的黄色区域
08:57
and that's my belief.
223
537260
2000
这就是我们的置信值
08:59
So it's the optimal way of combining information.
224
539260
3000
并且这是整合信息的最佳方案
09:02
Now I wouldn't tell you all this if it wasn't that a few years ago,
225
542260
2000
几年前我们考察过,人们学习新动作新技巧的时候
09:04
we showed this is exactly what people do
226
544260
2000
真的在遵循这样的模式
09:06
when they learn new movement skills.
227
546260
2000
所以我刚才才举了这个例子
09:08
And what it means
228
548260
2000
这说明
09:10
is we really are Bayesian inference machines.
229
550260
2000
我们实际上都是天生的贝叶斯推断器
09:12
As we go around, we learn about statistics of the world and lay that down,
230
552260
4000
在成长的过程中,我们不但学会了并记下了生活中的统计数据
09:16
but we also learn
231
556260
2000
也掌握了
09:18
about how noisy our own sensory apparatus is,
232
558260
2000
我们自己感官的杂音可能有多大
09:20
and then combine those
233
560260
2000
然后我们用贝叶斯法
09:22
in a real Bayesian way.
234
562260
2000
来整合处理这些数据
09:24
Now a key part to the Bayesian is this part of the formula.
235
564260
3000
那么贝叶斯公式里很关键的是这一项--预测
09:27
And what this part really says
236
567260
2000
这一项的意思是
09:29
is I have to predict the probability
237
569260
2000
我们需要预测
09:31
of different sensory feedbacks
238
571260
2000
在原有置信值条件下
09:33
given my beliefs.
239
573260
2000
不同感官回馈的概率
09:35
So that really means I have to make predictions of the future.
240
575260
3000
也就是说我们要对未来的可能做出预测
09:38
And I want to convince you the brain does make predictions
241
578260
2000
我现在要说服各位相信一点,那就是
09:40
of the sensory feedback it's going to get.
242
580260
2000
大脑的确在对未来可能的感官回馈做出预测
09:42
And moreover, it profoundly changes your perceptions
243
582260
2000
并且你本身做了什么动作
09:44
by what you do.
244
584260
2000
在很大程度上影响了你感知到的东西
09:46
And to do that, I'll tell you
245
586260
2000
为了说明这点,我来解释
09:48
about how the brain deals with sensory input.
246
588260
2000
我们的大脑如何处理感官输入
09:50
So you send a command out,
247
590260
3000
我们先送出一个指令
09:53
you get sensory feedback back,
248
593260
2000
然后得到一个感官回馈输入回来
09:55
and that transformation is governed
249
595260
2000
之间的转换过程是由
09:57
by the physics of your body and your sensory apparatus.
250
597260
3000
身体和感觉器官的物理过程完成的
10:00
But you can imagine looking inside the brain.
251
600260
2000
不过我们能想象大脑内部发生了什么
10:02
And here's inside the brain.
252
602260
2000
图上就是大脑内部
10:04
You might have a little predictor, a neural simulator,
253
604260
2000
里面可能有一个预测结构,也就是神经组成的模拟器
10:06
of the physics of your body and your senses.
254
606260
2000
来模拟身体和感觉器官的物理过程
10:08
So as you send a movement command down,
255
608260
2000
当一个动作指令发出来的时候
10:10
you tap a copy of that off
256
610260
2000
大脑复制一份这个指令
10:12
and run it into your neural simulator
257
612260
2000
然后在这个神经模拟器上运行
10:14
to anticipate the sensory consequences of your actions.
258
614260
4000
来预测出这个动作带来的感官回馈结果
10:18
So as I shake this ketchup bottle,
259
618260
2000
所以我往下磕这个番茄酱瓶子的时候
10:20
I get some true sensory feedback as the function of time in the bottom row.
260
620260
3000
在下面那行里我得到真实的感官回馈,是个关于时间的函数
10:23
And if I've got a good predictor, it predicts the same thing.
261
623260
3000
同时大脑里的预测结构如果准确的话,也预测出了同样的结果
10:26
Well why would I bother doing that?
262
626260
2000
好了,那我为什么非要多此一举来预测呢?
10:28
I'm going to get the same feedback anyway.
263
628260
2000
毕竟最终我总能得到同样的回馈
10:30
Well there's good reasons.
264
630260
2000
不过这样确实是有原因的
10:32
Imagine, as I shake the ketchup bottle,
265
632260
2000
想象我磕这个番茄酱瓶子的时候
10:34
someone very kindly comes up to me and taps it on the back for me.
266
634260
3000
台下有位热心观众过来帮我拍了下瓶底
10:37
Now I get an extra source of sensory information
267
637260
2000
于是我多了一个感官信息的来源
10:39
due to that external act.
268
639260
2000
因为我多接受了这个外在的动作
10:41
So I get two sources.
269
641260
2000
所以感官回馈现在有两个来源
10:43
I get you tapping on it, and I get me shaking it,
270
643260
3000
一个是你拍瓶底的动作,另一个是我磕瓶子的动作
10:46
but from my senses' point of view,
271
646260
2000
但是从我的感觉来讲
10:48
that is combined together into one source of information.
272
648260
3000
这两个是合起来作为一个信息源的
10:51
Now there's good reason to believe
273
651260
2000
可是我们有理由相信
10:53
that you would want to be able to distinguish external events from internal events.
274
653260
3000
我们希望能够把外来事件和内在的事件区分开
10:56
Because external events are actually much more behaviorally relevant
275
656260
3000
因为实际上相对于我身体上发生的内在事件
10:59
than feeling everything that's going on inside my body.
276
659260
3000
外来事件在行为上才更有分析价值
11:02
So one way to reconstruct that
277
662260
2000
所以区分开来的一种办法
11:04
is to compare the prediction --
278
664260
2000
就是把我的预测结果--
11:06
which is only based on your movement commands --
279
666260
2000
因为这个结果只基于我的动作指令--
11:08
with the reality.
280
668260
2000
和真实的感官反馈做比较
11:10
Any discrepancy should hopefully be external.
281
670260
3000
希望两者的差值应该就是外力的结果
11:13
So as I go around the world,
282
673260
2000
所以我和外界接触的时候
11:15
I'm making predictions of what I should get, subtracting them off.
283
675260
3000
我预测出我自己的动作可能得到什么回馈,减掉这些
11:18
Everything left over is external to me.
284
678260
2000
剩下的其他部分就是外界对我的产生的作用
11:20
What evidence is there for this?
285
680260
2000
那有什么证据支持这点吗?
11:22
Well there's one very clear example
286
682260
2000
我们认为其中一个非常明了的例子就是
11:24
where a sensation generated by myself feels very different
287
684260
2000
自身产生的动作带来的感觉
11:26
then if generated by another person.
288
686260
2000
与他人做同样动作带来的感觉是十分不同的
11:28
And so we decided the most obvious place to start
289
688260
2000
我们认为最直接的着手点
11:30
was with tickling.
290
690260
2000
就是挠痒痒这件事
11:32
It's been known for a long time, you can't tickle yourself
291
692260
2000
众所周知,人们挠自己的时候
11:34
as well as other people can.
292
694260
2000
总是不如别人挠自己的时候痒
11:36
But it hasn't really been shown, it's because you have a neural simulator,
293
696260
3000
但是没有被证明为什么。其实是因为每个人自己有一个神经模拟器
11:39
simulating your own body
294
699260
2000
模拟出自己动作带来的效果
11:41
and subtracting off that sense.
295
701260
2000
然后在感觉里自动减去这个效果
11:43
So we can bring the experiments of the 21st century
296
703260
3000
所以我们可以用21世纪的实验条件
11:46
by applying robotic technologies to this problem.
297
706260
3000
把机器人技术应用到这个问题上
11:49
And in effect, what we have is some sort of stick in one hand attached to a robot,
298
709260
3000
具体办法是,我们让试验者一只手握着一根连接在机器人上的小棍
11:52
and they're going to move that back and forward.
299
712260
2000
由手带动一起前后移动
11:54
And then we're going to track that with a computer
300
714260
2000
这时候我们用计算机追踪这个移动模式
11:56
and use it to control another robot,
301
716260
2000
然后用同样的模式带动另一个机器人
11:58
which is going to tickle their palm with another stick.
302
718260
2000
去用另一根小棍挠试验者的另一只手的手心
12:00
And then we're going to ask them to rate a bunch of things
303
720260
2000
之后,我们会让试验者给一系列指标打分
12:02
including ticklishness.
304
722260
2000
也包括痒痒的程度
12:04
I'll show you just one part of our study.
305
724260
2000
在这里我展示我们实验的其中一部分
12:06
And here I've taken away the robots,
306
726260
2000
图上没有画那两个机器人
12:08
but basically people move with their right arm sinusoidally back and forward.
307
728260
3000
基本上人们的右臂是以类正弦的方式前后移动的
12:11
And we replay that to the other hand with a time delay.
308
731260
3000
这时候我们把这个移动加上某个时间延迟,在另一只手上重放
12:14
Either no time delay,
309
734260
2000
延迟可以是0
12:16
in which case light would just tickle your palm,
310
736260
2000
就像直接挠手心一样
12:18
or with a time delay of two-tenths of three-tenths of a second.
311
738260
4000
也可以是0.1秒,0.2秒,0.3秒这样的延迟
12:22
So the important point here
312
742260
2000
这里的重点是
12:24
is the right hand always does the same things -- sinusoidal movement.
313
744260
3000
试验者的右手一直做同样的类正弦动作
12:27
The left hand always is the same and puts sinusoidal tickle.
314
747260
3000
左手一直在被同样的类正弦动作挠着
12:30
All we're playing with is a tempo causality.
315
750260
2000
唯一我们改变的就是因与果之间的步调
12:32
And as we go from naught to 0.1 second,
316
752260
2000
当我们把延迟从0加到0.1秒的时候
12:34
it becomes more ticklish.
317
754260
2000
感觉上越来越痒
12:36
As you go from 0.1 to 0.2,
318
756260
2000
再从0.1到0.2秒
12:38
it becomes more ticklish at the end.
319
758260
2000
越到后来越痒
12:40
And by 0.2 of a second,
320
760260
2000
到了0.2秒的时候
12:42
it's equivalently ticklish
321
762260
2000
发痒的程度已经等同于
12:44
to the robot that just tickled you without you doing anything.
322
764260
2000
自己什么也不做,机器人直接来挠的效果了
12:46
So whatever is responsible for this cancellation
323
766260
2000
因此不管是什么造成了自身动作的抵消
12:48
is extremely tightly coupled with tempo causality.
324
768260
3000
一定与因果之间的步调大有联系
12:51
And based on this illustration, we really convinced ourselves in the field
325
771260
3000
受这个实验的启发,我们终于相信了那个论点
12:54
that the brain's making precise predictions
326
774260
2000
也就是大脑能够做出准确预测
12:56
and subtracting them off from the sensations.
327
776260
3000
并将预测结果从实体感觉里减去
12:59
Now I have to admit, these are the worst studies my lab has ever run.
328
779260
3000
现在我要承认,这个是我实验室里进行过的最糟糕的实验
13:02
Because the tickle sensation on the palm comes and goes,
329
782260
2000
因为痒痒的感觉就像昙花一现
13:04
you need large numbers of subjects
330
784260
2000
所以需要大量的试验者
13:06
with these stars making them significant.
331
786260
2000
还只能靠星级来给痒痒的程度打分
13:08
So we were looking for a much more objective way
332
788260
2000
所以我们需要一个更客观的办法
13:10
to assess this phenomena.
333
790260
2000
来评估这个现象
13:12
And in the intervening years I had two daughters.
334
792260
2000
其间几年中,我有了两个女儿
13:14
And one thing you notice about children in backseats of cars on long journeys,
335
794260
3000
于是关于长途旅行里小孩子坐在后座上,你注意到一件事
13:17
they get into fights --
336
797260
2000
那就是他们会互相掐架--
13:19
which started with one of them doing something to the other, the other retaliating.
337
799260
3000
开始于其中一个对另一个动了什么手脚,另一个就要还手
13:22
It quickly escalates.
338
802260
2000
然后冲突很快就会升级
13:24
And children tend to get into fights which escalate in terms of force.
339
804260
3000
而小孩子们之间的冲突升级一般都体现在用力大小上
13:27
Now when I screamed at my children to stop,
340
807260
2000
于是我嚷嚷着叫我的孩子们住手的时候
13:29
sometimes they would both say to me
341
809260
2000
有的时候她们俩都会告诉我
13:31
the other person hit them harder.
342
811260
3000
对方下手比自己更重
13:34
Now I happen to know my children don't lie,
343
814260
2000
我恰好知道我的孩子们不会说假话
13:36
so I thought, as a neuroscientist,
344
816260
2000
所以作为一个神经学家
13:38
it was important how I could explain
345
818260
2000
我想我如何解释两人自相矛盾的真话
13:40
how they were telling inconsistent truths.
346
820260
2000
应该是很重要的吧
13:42
And we hypothesize based on the tickling study
347
822260
2000
于是我们根据挠痒痒的实验做出了假设
13:44
that when one child hits another,
348
824260
2000
就是当一个孩子打另一个的时候
13:46
they generate the movement command.
349
826260
2000
会生成动作命令
13:48
They predict the sensory consequences and subtract it off.
350
828260
3000
他们预测出了感知到的结果,然后减掉了
13:51
So they actually think they've hit the person less hard than they have --
351
831260
2000
实际上他们以为他们下手比真正要轻
13:53
rather like the tickling.
352
833260
2000
和挠痒的道理类似
13:55
Whereas the passive recipient
353
835260
2000
然而那个被打的孩子
13:57
doesn't make the prediction, feels the full blow.
354
837260
2000
没有做预测,感觉到了全部的打击
13:59
So if they retaliate with the same force,
355
839260
2000
所以他们用同样这个打击的力气还手的话
14:01
the first person will think it's been escalated.
356
841260
2000
第一个人会觉得力气变大,冲突升级了
14:03
So we decided to test this in the lab.
357
843260
2000
所以我们决定在实验室里做这个测试,好了
14:05
(Laughter)
358
845260
3000
(笑声)
14:08
Now we don't work with children, we don't work with hitting,
359
848260
2000
我们不用小孩子,也不用打的
14:10
but the concept is identical.
360
850260
2000
不过概念是相同的
14:12
We bring in two adults. We tell them they're going to play a game.
361
852260
3000
我们找来两个成人,告诉他们来做个小游戏
14:15
And so here's player one and player two sitting opposite to each other.
362
855260
2000
这里显示了玩家一和玩家二面对面坐着
14:17
And the game is very simple.
363
857260
2000
游戏很简单
14:19
We started with a motor
364
859260
2000
开始的时候这里有个电机
14:21
with a little lever, a little force transfuser.
365
861260
2000
连着小杠杆,作为传力器
14:23
And we use this motor to apply force down to player one's fingers
366
863260
2000
小电机向下对玩家一的手指施力
14:25
for three seconds and then it stops.
367
865260
3000
持续3秒钟后停止
14:28
And that player's been told, remember the experience of that force
368
868260
3000
我们告诉这名玩家一,记住这个力的感觉
14:31
and use your other finger
369
871260
2000
再用另一个手指
14:33
to apply the same force
370
873260
2000
以同样的力,通过传力器
14:35
down to the other subject's finger through a force transfuser -- and they do that.
371
875260
3000
下压玩家二的手指--玩家一这么做了
14:38
And player two's been told, remember the experience of that force.
372
878260
3000
然后玩家二被告知记住这个力的感觉
14:41
Use your other hand to apply the force back down.
373
881260
3000
用另一只手把同样的力施加回来
14:44
And so they take it in turns
374
884260
2000
这两个玩家轮流来回
14:46
to apply the force they've just experienced back and forward.
375
886260
2000
施加方才所受的力
14:48
But critically,
376
888260
2000
不过关键的一点是
14:50
they're briefed about the rules of the game in separate rooms.
377
890260
3000
这两个玩家是在不同房间里被介绍游戏规则的
14:53
So they don't know the rules the other person's playing by.
378
893260
2000
所以他们互相不知道对方遵循的规则
14:55
And what we've measured
379
895260
2000
而我们测量的
14:57
is the force as a function of terms.
380
897260
2000
是力的大小关于回合次数的函数
14:59
And if we look at what we start with,
381
899260
2000
我们来看图,开始的时候
15:01
a quarter of a Newton there, a number of turns,
382
901260
2000
力是四分之一牛顿,横轴是回合的次数
15:03
perfect would be that red line.
383
903260
2000
完美的结果应该是这条红线
15:05
And what we see in all pairs of subjects is this --
384
905260
3000
但是我们在所有实验配对中看到的都是这个--
15:08
a 70 percent escalation in force
385
908260
2000
每一次施力中
15:10
on each go.
386
910260
2000
大小上扬70%
15:12
So it really suggests, when you're doing this --
387
912260
2000
所以确实表明,我们在运动的时候--
15:14
based on this study and others we've done --
388
914260
2000
根据这个实验和我们所做的其他实验--
15:16
that the brain is canceling the sensory consequences
389
916260
2000
大脑一直在抵消感官带来的结果
15:18
and underestimating the force it's producing.
390
918260
2000
而低估自己产生的力
15:20
So it re-shows the brain makes predictions
391
920260
2000
所以再次说明大脑会做出预测
15:22
and fundamentally changes the precepts.
392
922260
3000
并且在根本上改变感知到的内容
15:25
So we've made inferences, we've done predictions,
393
925260
3000
到现在为止,我们做了推断,也做了预测
15:28
now we have to generate actions.
394
928260
2000
现在我们要生成动作了
15:30
And what Bayes' rule says is, given my beliefs,
395
930260
2000
贝叶斯法则说的是,基于置信值
15:32
the action should in some sense be optimal.
396
932260
2000
动作应该在某种意义上是最优的
15:34
But we've got a problem.
397
934260
2000
但在这里出现问题了
15:36
Tasks are symbolic -- I want to drink, I want to dance --
398
936260
3000
动作任务是符号性质的--我要喝水,我要跳舞--
15:39
but the movement system has to contract 600 muscles
399
939260
2000
但是运动系统需要按特定顺序
15:41
in a particular sequence.
400
941260
2000
收缩600块肌肉
15:43
And there's a big gap
401
943260
2000
况且有一个巨大的鸿沟
15:45
between the task and the movement system.
402
945260
2000
横在动作任务和运动系统之间
15:47
So it could be bridged in infinitely many different ways.
403
947260
2000
意思是我们有无穷多种方式越过这个鸿沟
15:49
So think about just a point to point movement.
404
949260
2000
来考虑仅仅是点到点的移动
15:51
I could choose these two paths
405
951260
2000
我可以在无穷条可能的路径中
15:53
out of an infinite number of paths.
406
953260
2000
选出这两条
15:55
Having chosen a particular path,
407
955260
2000
选定一条特定路径之后
15:57
I can hold my hand on that path
408
957260
2000
我可以把手放在这条路径上
15:59
as infinitely many different joint configurations.
409
959260
2000
但是又有无穷多种关节构型
16:01
And I can hold my arm in a particular joint configuration
410
961260
2000
另外我把的胳膊固定在某一种构型之后
16:03
either very stiff or very relaxed.
411
963260
2000
我可以紧张,也可以松弛
16:05
So I have a huge amount of choice to make.
412
965260
3000
所以我有非常多的选择余地
16:08
Now it turns out, we are extremely stereotypical.
413
968260
3000
不过结果是,我们都特别典型
16:11
We all move the same way pretty much.
414
971260
3000
都基本上用同一种方式移动
16:14
And so it turns out we're so stereotypical,
415
974260
2000
我们典型到
16:16
our brains have got dedicated neural circuitry
416
976260
2000
我们的大脑已经开辟出特定的神经回路
16:18
to decode this stereotyping.
417
978260
2000
来解码这类典型
16:20
So if I take some dots
418
980260
2000
因此如果我拿一些点
16:22
and set them in motion with biological motion,
419
982260
3000
然后让它们按生物动作形式来运动
16:25
your brain's circuitry would understand instantly what's going on.
420
985260
3000
大家的大脑回路会立即知道怎么回事
16:28
Now this is a bunch of dots moving.
421
988260
2000
好了,这仅仅是一堆点在动
16:30
You will know what this person is doing,
422
990260
3000
我们就知道这个人在做什么
16:33
whether happy, sad, old, young -- a huge amount of information.
423
993260
3000
是喜还是悲,是老还是少--很大量的信息
16:36
If these dots were cars going on a racing circuit,
424
996260
2000
如果这些点是赛车在赛道上绕圈
16:38
you would have absolutely no idea what's going on.
425
998260
3000
我们对发生了什么就完全没有概念了
16:41
So why is it
426
1001260
2000
那我们为什么
16:43
that we move the particular ways we do?
427
1003260
2000
用这种特定的模式移动呢?
16:45
Well let's think about what really happens.
428
1005260
2000
来想想真实情况可能是什么
16:47
Maybe we don't all quite move the same way.
429
1007260
3000
假如我们并不都用同一种模式移动
16:50
Maybe there's variation in the population.
430
1010260
2000
假如人群中有差异
16:52
And maybe those who move better than others
431
1012260
2000
而且假如那些比其他人移动得更好的个体
16:54
have got more chance of getting their children into the next generation.
432
1014260
2000
有更多机会让他们的子代进入下一代的群体里面
16:56
So in evolutionary scales, movements get better.
433
1016260
3000
那么在进化级别上,动作越来越优化
16:59
And perhaps in life, movements get better through learning.
434
1019260
3000
另外,也许在一生当中,学习会让动作更优化
17:02
So what is it about a movement which is good or bad?
435
1022260
2000
那么,是什么决定了动作的好与坏呢?
17:04
Imagine I want to intercept this ball.
436
1024260
2000
来想象我要截下这个球
17:06
Here are two possible paths to that ball.
437
1026260
3000
这里有两种路径来做到
17:09
Well if I choose the left-hand path,
438
1029260
2000
假如我选了左手边这条路径
17:11
I can work out the forces required
439
1031260
2000
我可以算出某一块肌肉需要施多大力
17:13
in one of my muscles as a function of time.
440
1033260
2000
用关于时间的函数表示
17:15
But there's noise added to this.
441
1035260
2000
但是还有杂音附加在上面
17:17
So what I actually get, based on this lovely, smooth, desired force,
442
1037260
3000
所以根据这条美好、光滑、期望中的曲线
17:20
is a very noisy version.
443
1040260
2000
我事实上得到的是个杂音很大的版本
17:22
So if I pick the same command through many times,
444
1042260
3000
那如果我多次发布同样的动作指令
17:25
I will get a different noisy version each time, because noise changes each time.
445
1045260
3000
每次会得到不同的含杂音的版本,因为每次杂音不一样
17:28
So what I can show you here
446
1048260
2000
所以我现在在这儿展示的
17:30
is how the variability of the movement will evolve
447
1050260
2000
只是这个动作的可变性有多大
17:32
if I choose that way.
448
1052260
2000
前提是如果我选这种方式的话
17:34
If I choose a different way of moving -- on the right for example --
449
1054260
3000
如果我选另一种方式--比如右边这个--
17:37
then I'll have a different command, different noise,
450
1057260
2000
那我就会有不同的指令,不同的杂音
17:39
playing through a noisy system, very complicated.
451
1059260
3000
还要透过杂音系统,总之非常复杂
17:42
All we can be sure of is the variability will be different.
452
1062260
3000
我们唯一能确定的是,两个方式的可变性会不同
17:45
If I move in this particular way,
453
1065260
2000
要是我用这种方式运动的话
17:47
I end up with a smaller variability across many movements.
454
1067260
3000
最后得到的可变性在很多种动作里面是最小的
17:50
So if I have to choose between those two,
455
1070260
2000
所以要是我在这两者里面选其一
17:52
I would choose the right one because it's less variable.
456
1072260
2000
我就会选右边那个,因为可变性更小
17:54
And the fundamental idea
457
1074260
2000
话说回来,我们的基本思路
17:56
is you want to plan your movements
458
1076260
2000
是要找到一种动作方式
17:58
so as to minimize the negative consequence of the noise.
459
1078260
3000
能够把杂音带来的负面影响降到最低
18:01
And one intuition to get
460
1081260
2000
并且我们凭直觉就知道
18:03
is actually the amount of noise or variability I show here
461
1083260
2000
我在这里展示的杂音,或者说可变性
18:05
gets bigger as the force gets bigger.
462
1085260
2000
随力的大小的增加而增加
18:07
So you want to avoid big forces as one principle.
463
1087260
3000
所以我们的原则之一就是避免施加太大的力
18:10
So we've shown that using this,
464
1090260
2000
用这个原则
18:12
we can explain a huge amount of data --
465
1092260
2000
我们就能解释很多得到的数据--
18:14
that exactly people are going about their lives planning movements
466
1094260
3000
那就是人们在生活中有意安排动作方式
18:17
so as to minimize negative consequences of noise.
467
1097260
3000
来把杂音带来的负面影响降到最低
18:20
So I hope I've convinced you the brain is there
468
1100260
2000
现在,我想我已经让大家相信大脑之所以存在
18:22
and evolved to control movement.
469
1102260
2000
是为了控制动作
18:24
And it's an intellectual challenge to understand how we do that.
470
1104260
3000
而且了解怎样做到这点是需要费一番脑筋的
18:27
But it's also relevant
471
1107260
2000
不过同样具有相关价值的
18:29
for disease and rehabilitation.
472
1109260
2000
是在疾病和康复方面
18:31
There are many diseases which effect movement.
473
1111260
3000
有很多病症有对动作产生影响
18:34
And hopefully if we understand how we control movement,
474
1114260
2000
所以如果有朝一日掌握了人类控制动作的机制
18:36
we can apply that to robotic technology.
475
1116260
2000
我们就可以用到机器人技术中去
18:38
And finally, I want to remind you,
476
1118260
2000
最后我要提醒大家
18:40
when you see animals do what look like very simple tasks,
477
1120260
2000
当你们看见动物做些看似非常简单的动作的时候
18:42
the actual complexity of what is going on inside their brain
478
1122260
2000
它们运行在大脑内部的真正复杂度
18:44
is really quite dramatic.
479
1124260
2000
其实是相当令人叹为观止的
18:46
Thank you very much.
480
1126260
2000
谢谢大家
18:48
(Applause)
481
1128260
8000
(掌声)
18:56
Chris Anderson: Quick question for you, Dan.
482
1136260
2000
克里斯・安德森(以下简称“安”):丹尼尔(简称‘沃“),我问一个简短的问题
18:58
So you're a movement -- (DW: Chauvinist.) -- chauvinist.
483
1138260
4000
所以你是一个运动--(沃:沙文主义者。)--沙文主义者
19:02
Does that mean that you think that the other things we think our brains are about --
484
1142260
3000
是不是意味着你认为我们觉得让大脑有存在意义的其他事情
19:05
the dreaming, the yearning, the falling in love and all these things --
485
1145260
3000
那些梦想,渴望,恋爱等等一切东西
19:08
are a kind of side show, an accident?
486
1148260
3000
都是些余兴节目或者意外收获呢?
19:11
DW: No, no, actually I think they're all important
487
1151260
2000
沃:不不不,其实我认为这些也很重要
19:13
to drive the right movement behavior to get reproduction in the end.
488
1153260
3000
它们能促使合适的动作行为,以达到繁殖的最终目的
19:16
So I think people who study sensation or memory
489
1156260
3000
所以我觉得有些人在研究感觉或者记忆
19:19
without realizing why you're laying down memories of childhood.
490
1159260
2000
却没意识到为什么我们要记下童年的回忆
19:21
The fact that we forget most of our childhood, for example,
491
1161260
3000
我们会忘记大部分幼年的记忆这个事实,比如说
19:24
is probably fine, because it doesn't effect our movements later in life.
492
1164260
3000
其实应该无关紧要,因为那些不会影响我们长大以后的动作
19:27
You only need to store things which are really going to effect movement.
493
1167260
3000
我们只需要存储能对动作产生真正影响的事情就行了
19:30
CA: So you think that people thinking about the brain, and consciousness generally,
494
1170260
3000
安:那你是否认为人们研究大脑,以及更笼统的意识
19:33
could get real insight
495
1173260
2000
如果要获得真正的领悟,就要问
19:35
by saying, where does movement play in this game?
496
1175260
2000
动作在这里起了什么作用?
19:37
DW: So people have found out for example
497
1177260
2000
沃:对。人们已经发现,比如说
19:39
that studying vision in the absence of realizing why you have vision
498
1179260
2000
在不明确视觉何以存在的时候,就去研究视觉
19:41
is a mistake.
499
1181260
2000
是个失误
19:43
You have to study vision with the realization
500
1183260
2000
研究视觉的时候
19:45
of how the movement system is going to use vision.
501
1185260
2000
我们必须先意识到运动系统要怎样用这个视觉
19:47
And it uses it very differently once you think about it that way.
502
1187260
2000
这样想的时候用法就不一样了
19:49
CA: Well that was quite fascinating. Thank you very much indeed.
503
1189260
3000
安:噢的确很有趣。非常感谢你。
19:52
(Applause)
504
1192260
2000
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog